Three SARS-CoV-2 spike protein variants delivered intranasally by measles and mumps vaccines are broadly protective.
Animals
Spike Glycoprotein, Coronavirus
/ immunology
Administration, Intranasal
Female
SARS-CoV-2
/ immunology
COVID-19
/ prevention & control
Antibodies, Viral
/ immunology
Antibodies, Neutralizing
/ immunology
Mice
COVID-19 Vaccines
/ immunology
Cricetinae
Humans
Measles-Mumps-Rubella Vaccine
/ immunology
Measles virus
/ immunology
Immunoglobulin G
/ blood
Mumps virus
/ immunology
Mice, Knockout
Mesocricetus
Immunoglobulin A
/ immunology
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
03 Jul 2024
03 Jul 2024
Historique:
received:
19
04
2023
accepted:
29
05
2024
medline:
4
7
2024
pubmed:
4
7
2024
entrez:
3
7
2024
Statut:
epublish
Résumé
As the new SARS-CoV-2 Omicron variants and subvariants emerge, there is an urgency to develop intranasal, broadly protective vaccines. Here, we developed highly efficacious, intranasal trivalent SARS-CoV-2 vaccine candidates (TVC) based on three components of the MMR vaccine: measles virus (MeV), mumps virus (MuV) Jeryl Lynn (JL1) strain, and MuV JL2 strain. Specifically, MeV, MuV-JL1, and MuV-JL2 vaccine strains, each expressing prefusion spike (preS-6P) from a different variant of concern (VoC), were combined to generate TVCs. Intranasal immunization of IFNAR1
Identifiants
pubmed: 38961063
doi: 10.1038/s41467-024-49443-2
pii: 10.1038/s41467-024-49443-2
doi:
Substances chimiques
Spike Glycoprotein, Coronavirus
0
spike protein, SARS-CoV-2
0
Antibodies, Viral
0
Antibodies, Neutralizing
0
COVID-19 Vaccines
0
Measles-Mumps-Rubella Vaccine
0
Immunoglobulin G
0
Immunoglobulin A
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
5589Subventions
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : AI090060
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : AI112524
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : AI093848
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : AI42733
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : AI145144
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : AI157205
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : AI175399
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : AI145144
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : AI157205
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : AI112524
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : AI093848
Organisme : Division of Cancer Prevention, National Cancer Institute (NCI Division of Cancer Prevention)
ID : U54CA260582
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : T32AI165391
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : T32AI165391
Organisme : U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
ID : U54CA260582
Informations de copyright
© 2024. The Author(s).
Références
Firouzabadi, N., Ghasemiyeh, P., Moradishooli, F. & Mohammadi-Samani, S. Update on the effectiveness of COVID-19 vaccines on different variants of SARS-CoV-2. Int. Immunopharmacol. 117, 109968 (2023).
pubmed: 37012880
pmcid: 9977625
doi: 10.1016/j.intimp.2023.109968
Collier, A. Y. et al. Differential kinetics of immune responses elicited by Covid-19 vaccines. N. Engl. J. Med. 385, 2010–2012 (2021).
pubmed: 34648703
doi: 10.1056/NEJMc2115596
Lau, J. J. et al. Real-world COVID-19 vaccine effectiveness against the omicron BA.2 variant in a SARS-CoV-2 infection-naive population. Nat. Med. 29, 348–357 (2023).
pubmed: 36652990
pmcid: 9941049
doi: 10.1038/s41591-023-02219-5
Tregoning, J. S., Flight, K. E., Higham, S. L., Wang, Z. & Pierce, B. F. Progress of the COVID-19 vaccine effort: viruses, vaccines and variants versus efficacy, effectiveness and escape. Nat. Rev. Immunol. 21, 626–636 (2021).
pubmed: 34373623
pmcid: 8351583
doi: 10.1038/s41577-021-00592-1
Wrapp, D. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367, 1260–1263 (2020).
pubmed: 32075877
pmcid: 7164637
doi: 10.1126/science.abb2507
Krammer, F. SARS-CoV-2 vaccines in development. Nature 586, 516–527 (2020).
pubmed: 32967006
doi: 10.1038/s41586-020-2798-3
Markov, P. V. et al. The evolution of SARS-CoV-2. Nat. Rev. Microbiol. 21, 361–379 (2023).
Wang, Q. et al. XBB.1.5 monovalent mRNA vaccine booster elicits robust neutralizing antibodies against XBB subvariants and JN.1. Cell Host Microbe 32, 315–321.e313 (2024).
pubmed: 38377995
pmcid: 10948033
doi: 10.1016/j.chom.2024.01.014
Iketani, S. et al. Antibody evasion properties of SARS-CoV-2 omicron sublineages. Nature 604, 553 (2022).
pubmed: 35240676
pmcid: 9021018
doi: 10.1038/s41586-022-04594-4
Fang, Z. et al. Bivalent mRNA vaccine booster induces robust antibody immunity against omicron lineages BA.2, BA.2.12.1, BA.2.75 and BA.5. Cell Discov. 8, 108 (2022).
pubmed: 36220819
pmcid: 9552143
doi: 10.1038/s41421-022-00473-4
Collier, A. Y. et al. Immunogenicity of BA.5 bivalent mRNA vaccine boosters. N. Engl. J. Med. 388, 565–567 (2023).
pubmed: 36630611
doi: 10.1056/NEJMc2213948
Hu, Y. P. et al. Less neutralization evasion of SARS-CoV-2 BA.2.86 than XBB sublineages and CH.1.1. Emerg. Microbes Infec. 12, 2271089 (2023).
doi: 10.1080/22221751.2023.2271089
Regan, J. J. et al. Use of updated COVID-19 vaccines 2023-2024 formula for persons aged >/=6 months: recommendations of the advisory committee on immunization practices—United States, September 2023. MMWR Morb. Mortal. Wkly. Rep. 72, 1140–1146 (2023).
pubmed: 37856366
pmcid: 10602621
doi: 10.15585/mmwr.mm7242e1
Wang, Q. et al. Antigenicity and receptor affinity of SARS-CoV-2 BA.2.86 spike. Nature 624, 639–644 (2023).
Tang, J. et al. Respiratory mucosal immunity against SARS-CoV-2 after mRNA vaccination. Sci. Immunol. 7, eadd4853 (2022).
pubmed: 35857583
doi: 10.1126/sciimmunol.add4853
Mao, T. et al. Unadjuvanted intranasal spike vaccine elicits protective mucosal immunity against sarbecoviruses. Science 378, eabo2523 (2022).
pubmed: 36302057
pmcid: 9798903
doi: 10.1126/science.abo2523
Nickel, O. et al. Evaluation of the systemic and mucosal immune response induced by COVID-19 and the BNT162b2 mRNA vaccine for SARS-CoV-2. PLoS One 17, e0263861 (2022).
pubmed: 36256664
pmcid: 9578597
doi: 10.1371/journal.pone.0263861
Callaway, E. The next generation of coronavirus vaccines: a graphical guide. Nature 614, 22–25 (2023).
pubmed: 36726000
doi: 10.1038/d41586-023-00220-z
Kauffmann, F. et al. Measles, mumps, rubella prevention: how can we do better? Expert Rev. Vaccines 20, 811–826 (2021).
pubmed: 34096442
doi: 10.1080/14760584.2021.1927722
Almansour, I. Mumps vaccines: current challenges and future prospects. Front Microbiol 11, 1999 (2020).
pubmed: 32973721
pmcid: 7468195
doi: 10.3389/fmicb.2020.01999
Amexis, G. et al. Sequence diversity of Jeryl Lynn strain of mumps virus: quantitative mutant analysis for vaccine quality control. Virology 300, 171–179 (2002).
pubmed: 12350348
doi: 10.1006/viro.2002.1499
Lam, E., Rosen, J. B. & Zucker, J. R. Mumps: an update on outbreaks, vaccine efficacy, and genomic diversity. Clin. Microbiol. Rev. 33, e00151-19 (2020).
Xu, R. et al. Prime-boost vaccination with recombinant mumps virus and recombinant vesicular stomatitis virus vectors elicits an enhanced human immunodeficiency virus type 1 gag-specific cellular immune response in rhesus macaques. J. Virol. 83, 9813–9823 (2009).
pubmed: 19625392
pmcid: 2747989
doi: 10.1128/JVI.00550-09
Ebenig, A., Lange, M. V. & Muhlebach, M. D. Versatility of live-attenuated measles viruses as platform technology for recombinant vaccines. Npj Vaccines 7, 119 (2022).
Frantz, P. N., Teeravechyan, S. & Tangy, F. Measles-derived vaccines to prevent emerging viral diseases. Microbes Infect. 20, 493–500 (2018).
pubmed: 29410084
pmcid: 7110469
doi: 10.1016/j.micinf.2018.01.005
Vlatkovic, R. et al. Intranasal administration of chick embryo fibroblast edmonston-zagreb measles vaccine. Lancet 1, 520 (1985).
pubmed: 2857883
doi: 10.1016/S0140-6736(85)92120-8
Low, N., Kraemer, S., Schneider, M. & Restrepo, A. M. Immunogenicity and safety of aerosolized measles vaccine: systematic review and meta-analysis. Vaccine 26, 383–398 (2008).
pubmed: 18082295
doi: 10.1016/j.vaccine.2007.11.010
Krasnova, V. P., Iuminova, N. V. & Liashenko, V. A. An intranasal method of revaccination against mumps. Vopr. Virusol. 39, 24–26 (1994).
de Swart, R. L. et al. Needle-free delivery of measles virus vaccine to the lower respiratory tract of non-human primates elicits optimal immunity and protection. npj Vaccines 2, 22 (2017).
pubmed: 29263877
pmcid: 5627256
doi: 10.1038/s41541-017-0022-8
Lu, M. et al. SARS-CoV-2 prefusion spike protein stabilized by six rather than two prolines is more potent for inducing antibodies that neutralize viral variants of concern. Proc. Natl Acad. Sci. USA 119, e2110105119 (2022).
pubmed: 35994646
pmcid: 9436349
doi: 10.1073/pnas.2110105119
Lu, M. et al. A methyltransferase-defective vesicular stomatitis virus-based SARS-CoV-2 vaccine candidate provides complete protection against SARS-CoV-2 infection in hamsters. J. Virol. 95, e0059221 (2021).
pubmed: 34379509
doi: 10.1128/JVI.00592-21
Zhang, Y. et al. A highly efficacious live attenuated mumps virus-based SARS-CoV-2 vaccine candidate expressing a six-proline stabilized prefusion spike. Proc. Natl Acad. Sci. USA 119, e2201616119 (2022).
pubmed: 35895717
pmcid: 9388148
doi: 10.1073/pnas.2201616119
Xu, J. Y. et al. A next-generation intranasal trivalent MMS vaccine induces durable and broad protection against SARS- CoV-2 variants of concern. Proc. Natl Acad. Sci. USA 120, e2220403120 (2023).
Lu, M. et al. A safe and highly efficacious measles virus-based vaccine expressing SARS-CoV-2 stabilized prefusion spike. Proc. Natl Acad. Sci. USA 118, e2026153118 (2021).
Zhang, Y. X. et al. Recombinant measles virus expressing prefusion spike protein stabilized by six rather than two prolines is more efficacious against SARS-CoV-2 infection. J. Med. Virol. 95, e28687 (2023).
Hsieh, C. L. et al. Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. Science 369, 1501–1505 (2020).
pubmed: 32703906
doi: 10.1126/science.abd0826
Mura, M. et al. hCD46 receptor is not required for measles vaccine Schwarz strain replication: type-I IFN is the species barrier in mice. Virology 524, 151–159 (2018).
pubmed: 30199752
doi: 10.1016/j.virol.2018.08.014
Pickar, A. et al. Establishing a small animal model for evaluating protective immunity against mumps virus. PLoS One 12, e017444410 (2017).
doi: 10.1371/journal.pone.0174444
Zeng, C. et al. Neutralizing antibody against SARS-CoV-2 spike in COVID-19 patients, health care workers, and convalescent plasma donors. JCI Insight 5, e143213 (2020).
Tang, J. & Sun, J. Lung tissue-resident memory T cells: the gatekeeper to respiratory viral (re)-infection. Curr. Opin. Immunol. 80, 102278 (2023).
pubmed: 36565508
doi: 10.1016/j.coi.2022.102278
Son, Y. M. et al. Tissue-resident CD4(+) T helper cells assist the development of protective respiratory B and CD8(+) T cell memory responses. Sci. Immunol. 6, eabb6852 (2021).
Rubin, S., Eckhaus, M., Rennick, L. J., Bamford, C. G. & Duprex, W. P. Molecular biology, pathogenesis and pathology of mumps virus. J. Pathol. 235, 242–252 (2015).
pubmed: 25229387
pmcid: 4268314
doi: 10.1002/path.4445
Nurnberger, C., Bodmer, B. S., Fiedler, A. H., Gabriel, G. & Muhlebach, M. D. A Measles virus-based vaccine candidate mediates protection against Zika virus in an allogeneic mouse pregnancy model. J. Virol. 93, e01485-18 (2019).
Keeton, R. et al. T cell responses to SARS-CoV-2 spike cross-recognize omicron. Nature 603, 488–492 (2022).
pubmed: 35102311
pmcid: 8930768
doi: 10.1038/s41586-022-04460-3
Chandrashekar, A. et al. Vaccine protection against the SARS-CoV-2 omicron variant in macaques. Cell 185, 1549–1555.e1511 (2022).
pubmed: 35427477
pmcid: 8926910
doi: 10.1016/j.cell.2022.03.024
Gao, Y. et al. Ancestral SARS-CoV-2-specific T cells cross-recognize the omicron variant. Nat. Med. 28, 472–476 (2022).
pubmed: 35042228
pmcid: 8938268
doi: 10.1038/s41591-022-01700-x
Iuminova, N. V., Krasnova, V. P. & Liashenko, V. A. The specific activity and immunological safety of a live mumps vaccine from the Leningrad-3 strain in intranasally revaccinated adult subjects. Vopr. Virusol. 39, 113–116 (1994).
Zheng, M. Z. M. & Wakim, L. M. Tissue resident memory T cells in the respiratory tract. Mucosal. Immunol. 15, 379–388 (2022).
pubmed: 34671115
doi: 10.1038/s41385-021-00461-z
Urban, S. L. et al. Peripherally induced brain tissue-resident memory CD8(+) T cells mediate protection against CNS infection. Nat. Immunol. 21, 938–949 (2020).
pubmed: 32572242
pmcid: 7381383
doi: 10.1038/s41590-020-0711-8
Paik, D. H. & Farber, D. L. Anti-viral protective capacity of tissue resident memory T cells. Curr. Opin. Virol. 46, 20–26 (2021).
pubmed: 33130326
doi: 10.1016/j.coviro.2020.09.006
Xu, J. et al. A next-generation intranasal trivalent MMS vaccine induces durable and broad protection against SARS-CoV-2 variants of concern. Proc. Natl Acad. Sci. USA 120, e2220403120 (2023).
pubmed: 37796985
pmcid: 10576135
doi: 10.1073/pnas.2220403120
Faraone, J. N. & Liu, S. L. Immune imprinting as a barrier to effective COVID-19 vaccines. Cell Rep. Med. 4, 101291 (2023).
Huang, C. Q., Vishwanath, S., Carnell, G. W., Chan, A. C. Y. & Heeney, J. L. Immune imprinting and next-generation coronavirus vaccines. Nat. Microbiol. 8, 1971–1985 (2023).
pubmed: 37932355
doi: 10.1038/s41564-023-01505-9
Davis-Gardner, M. E. et al. Neutralization against BA.2.75.2, BQ.1.1, and XBB from mRNA bivalent booster. N. Engl. J. Med. 388, 183–185 (2023).
pubmed: 36546661
doi: 10.1056/NEJMc2214293
Kurhade, C. et al. Low neutralization of SARS-CoV-2 Omicron BA.2.75.2, BQ.1.1 and XBB.1 by parental mRNA vaccine or a BA.5 bivalent booster. Nat. Med. 29, 344–347 (2023).
pubmed: 36473500
doi: 10.1038/s41591-022-02162-x
Tortorici, M. A. et al. Persistent immune imprinting occurs after vaccination with the COVID-19 XBB.1.5 mRNA booster in humans. Immunity 57, 904–911.e4 (2024).
Clarke, D. K., Sidhu, M. S., Johnson, J. E. & Udem, S. A. Rescue of mumps virus from cDNA. J. Virol. 74, 4831–4838 (2000).
pubmed: 10775622
pmcid: 112006
doi: 10.1128/jvi.74.10.4831-4838.2000
Xu, P., Chen, Z. H., Phan, S., Pickar, A. & He, B. Immunogenicity of novel mumps vaccine candidates generated by genetic modification. J. Virol. 88, 2600–2610 (2014).
pubmed: 24352450
pmcid: 3958107
doi: 10.1128/JVI.02778-13
Fuerst, T. R., Niles, E. G., Studier, F. W. & Moss, B. Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage-T7 Rna-polymerase. P Natl Acad. Sci. USA 83, 8122–8126 (1986).
doi: 10.1073/pnas.83.21.8122
Qu, P. et al. Neutralization of the SARS-CoV-2 omicron BA.4/5 and BA.2.12.1 subvariants. N. Engl. J. Med. 386, 2526–2528 (2022).
pubmed: 35704428
doi: 10.1056/NEJMc2206725
Qu, P. et al. Durability of booster mRNA vaccine against SARS-CoV-2 BA.2.12.1, BA.4, and BA.5 subvariants. N. Engl. J. Med. 387, 1329–1331 (2022).
pubmed: 36069925
doi: 10.1056/NEJMc2210546
Qu, P. et al. Enhanced neutralization resistance of SARS-CoV-2 Omicron subvariants BQ.1, BQ.1.1, BA.4.6, BF.7, and BA.2.75.2. Cell Host Microbe. 31, 9–17.e13 (2023).
pubmed: 36476380
doi: 10.1016/j.chom.2022.11.012
Li, A. Z. et al. A Zika virus vaccine expressing premembrane-envelope-NS1 polyprotein. Nat. Commun. 9, 3067 (2018).