Three SARS-CoV-2 spike protein variants delivered intranasally by measles and mumps vaccines are broadly protective.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
03 Jul 2024
Historique:
received: 19 04 2023
accepted: 29 05 2024
medline: 4 7 2024
pubmed: 4 7 2024
entrez: 3 7 2024
Statut: epublish

Résumé

As the new SARS-CoV-2 Omicron variants and subvariants emerge, there is an urgency to develop intranasal, broadly protective vaccines. Here, we developed highly efficacious, intranasal trivalent SARS-CoV-2 vaccine candidates (TVC) based on three components of the MMR vaccine: measles virus (MeV), mumps virus (MuV) Jeryl Lynn (JL1) strain, and MuV JL2 strain. Specifically, MeV, MuV-JL1, and MuV-JL2 vaccine strains, each expressing prefusion spike (preS-6P) from a different variant of concern (VoC), were combined to generate TVCs. Intranasal immunization of IFNAR1

Identifiants

pubmed: 38961063
doi: 10.1038/s41467-024-49443-2
pii: 10.1038/s41467-024-49443-2
doi:

Substances chimiques

Spike Glycoprotein, Coronavirus 0
spike protein, SARS-CoV-2 0
Antibodies, Viral 0
Antibodies, Neutralizing 0
COVID-19 Vaccines 0
Measles-Mumps-Rubella Vaccine 0
Immunoglobulin G 0
Immunoglobulin A 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

5589

Subventions

Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : AI090060
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : AI112524
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : AI093848
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : AI42733
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : AI145144
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : AI157205
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : AI175399
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : AI145144
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : AI157205
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : AI112524
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : AI093848
Organisme : Division of Cancer Prevention, National Cancer Institute (NCI Division of Cancer Prevention)
ID : U54CA260582
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : T32AI165391
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : T32AI165391
Organisme : U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
ID : U54CA260582

Informations de copyright

© 2024. The Author(s).

Références

Firouzabadi, N., Ghasemiyeh, P., Moradishooli, F. & Mohammadi-Samani, S. Update on the effectiveness of COVID-19 vaccines on different variants of SARS-CoV-2. Int. Immunopharmacol. 117, 109968 (2023).
pubmed: 37012880 pmcid: 9977625 doi: 10.1016/j.intimp.2023.109968
Collier, A. Y. et al. Differential kinetics of immune responses elicited by Covid-19 vaccines. N. Engl. J. Med. 385, 2010–2012 (2021).
pubmed: 34648703 doi: 10.1056/NEJMc2115596
Lau, J. J. et al. Real-world COVID-19 vaccine effectiveness against the omicron BA.2 variant in a SARS-CoV-2 infection-naive population. Nat. Med. 29, 348–357 (2023).
pubmed: 36652990 pmcid: 9941049 doi: 10.1038/s41591-023-02219-5
Tregoning, J. S., Flight, K. E., Higham, S. L., Wang, Z. & Pierce, B. F. Progress of the COVID-19 vaccine effort: viruses, vaccines and variants versus efficacy, effectiveness and escape. Nat. Rev. Immunol. 21, 626–636 (2021).
pubmed: 34373623 pmcid: 8351583 doi: 10.1038/s41577-021-00592-1
Wrapp, D. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367, 1260–1263 (2020).
pubmed: 32075877 pmcid: 7164637 doi: 10.1126/science.abb2507
Krammer, F. SARS-CoV-2 vaccines in development. Nature 586, 516–527 (2020).
pubmed: 32967006 doi: 10.1038/s41586-020-2798-3
Markov, P. V. et al. The evolution of SARS-CoV-2. Nat. Rev. Microbiol. 21, 361–379 (2023).
Wang, Q. et al. XBB.1.5 monovalent mRNA vaccine booster elicits robust neutralizing antibodies against XBB subvariants and JN.1. Cell Host Microbe 32, 315–321.e313 (2024).
pubmed: 38377995 pmcid: 10948033 doi: 10.1016/j.chom.2024.01.014
Iketani, S. et al. Antibody evasion properties of SARS-CoV-2 omicron sublineages. Nature 604, 553 (2022).
pubmed: 35240676 pmcid: 9021018 doi: 10.1038/s41586-022-04594-4
Fang, Z. et al. Bivalent mRNA vaccine booster induces robust antibody immunity against omicron lineages BA.2, BA.2.12.1, BA.2.75 and BA.5. Cell Discov. 8, 108 (2022).
pubmed: 36220819 pmcid: 9552143 doi: 10.1038/s41421-022-00473-4
Collier, A. Y. et al. Immunogenicity of BA.5 bivalent mRNA vaccine boosters. N. Engl. J. Med. 388, 565–567 (2023).
pubmed: 36630611 doi: 10.1056/NEJMc2213948
Hu, Y. P. et al. Less neutralization evasion of SARS-CoV-2 BA.2.86 than XBB sublineages and CH.1.1. Emerg. Microbes Infec. 12, 2271089 (2023).
doi: 10.1080/22221751.2023.2271089
Regan, J. J. et al. Use of updated COVID-19 vaccines 2023-2024 formula for persons aged >/=6 months: recommendations of the advisory committee on immunization practices—United States, September 2023. MMWR Morb. Mortal. Wkly. Rep. 72, 1140–1146 (2023).
pubmed: 37856366 pmcid: 10602621 doi: 10.15585/mmwr.mm7242e1
Wang, Q. et al. Antigenicity and receptor affinity of SARS-CoV-2 BA.2.86 spike. Nature 624, 639–644 (2023).
Tang, J. et al. Respiratory mucosal immunity against SARS-CoV-2 after mRNA vaccination. Sci. Immunol. 7, eadd4853 (2022).
pubmed: 35857583 doi: 10.1126/sciimmunol.add4853
Mao, T. et al. Unadjuvanted intranasal spike vaccine elicits protective mucosal immunity against sarbecoviruses. Science 378, eabo2523 (2022).
pubmed: 36302057 pmcid: 9798903 doi: 10.1126/science.abo2523
Nickel, O. et al. Evaluation of the systemic and mucosal immune response induced by COVID-19 and the BNT162b2 mRNA vaccine for SARS-CoV-2. PLoS One 17, e0263861 (2022).
pubmed: 36256664 pmcid: 9578597 doi: 10.1371/journal.pone.0263861
Callaway, E. The next generation of coronavirus vaccines: a graphical guide. Nature 614, 22–25 (2023).
pubmed: 36726000 doi: 10.1038/d41586-023-00220-z
Kauffmann, F. et al. Measles, mumps, rubella prevention: how can we do better? Expert Rev. Vaccines 20, 811–826 (2021).
pubmed: 34096442 doi: 10.1080/14760584.2021.1927722
Almansour, I. Mumps vaccines: current challenges and future prospects. Front Microbiol 11, 1999 (2020).
pubmed: 32973721 pmcid: 7468195 doi: 10.3389/fmicb.2020.01999
Amexis, G. et al. Sequence diversity of Jeryl Lynn strain of mumps virus: quantitative mutant analysis for vaccine quality control. Virology 300, 171–179 (2002).
pubmed: 12350348 doi: 10.1006/viro.2002.1499
Lam, E., Rosen, J. B. & Zucker, J. R. Mumps: an update on outbreaks, vaccine efficacy, and genomic diversity. Clin. Microbiol. Rev. 33, e00151-19 (2020).
Xu, R. et al. Prime-boost vaccination with recombinant mumps virus and recombinant vesicular stomatitis virus vectors elicits an enhanced human immunodeficiency virus type 1 gag-specific cellular immune response in rhesus macaques. J. Virol. 83, 9813–9823 (2009).
pubmed: 19625392 pmcid: 2747989 doi: 10.1128/JVI.00550-09
Ebenig, A., Lange, M. V. & Muhlebach, M. D. Versatility of live-attenuated measles viruses as platform technology for recombinant vaccines. Npj Vaccines 7, 119 (2022).
Frantz, P. N., Teeravechyan, S. & Tangy, F. Measles-derived vaccines to prevent emerging viral diseases. Microbes Infect. 20, 493–500 (2018).
pubmed: 29410084 pmcid: 7110469 doi: 10.1016/j.micinf.2018.01.005
Vlatkovic, R. et al. Intranasal administration of chick embryo fibroblast edmonston-zagreb measles vaccine. Lancet 1, 520 (1985).
pubmed: 2857883 doi: 10.1016/S0140-6736(85)92120-8
Low, N., Kraemer, S., Schneider, M. & Restrepo, A. M. Immunogenicity and safety of aerosolized measles vaccine: systematic review and meta-analysis. Vaccine 26, 383–398 (2008).
pubmed: 18082295 doi: 10.1016/j.vaccine.2007.11.010
Krasnova, V. P., Iuminova, N. V. & Liashenko, V. A. An intranasal method of revaccination against mumps. Vopr. Virusol. 39, 24–26 (1994).
de Swart, R. L. et al. Needle-free delivery of measles virus vaccine to the lower respiratory tract of non-human primates elicits optimal immunity and protection. npj Vaccines 2, 22 (2017).
pubmed: 29263877 pmcid: 5627256 doi: 10.1038/s41541-017-0022-8
Lu, M. et al. SARS-CoV-2 prefusion spike protein stabilized by six rather than two prolines is more potent for inducing antibodies that neutralize viral variants of concern. Proc. Natl Acad. Sci. USA 119, e2110105119 (2022).
pubmed: 35994646 pmcid: 9436349 doi: 10.1073/pnas.2110105119
Lu, M. et al. A methyltransferase-defective vesicular stomatitis virus-based SARS-CoV-2 vaccine candidate provides complete protection against SARS-CoV-2 infection in hamsters. J. Virol. 95, e0059221 (2021).
pubmed: 34379509 doi: 10.1128/JVI.00592-21
Zhang, Y. et al. A highly efficacious live attenuated mumps virus-based SARS-CoV-2 vaccine candidate expressing a six-proline stabilized prefusion spike. Proc. Natl Acad. Sci. USA 119, e2201616119 (2022).
pubmed: 35895717 pmcid: 9388148 doi: 10.1073/pnas.2201616119
Xu, J. Y. et al. A next-generation intranasal trivalent MMS vaccine induces durable and broad protection against SARS- CoV-2 variants of concern. Proc. Natl Acad. Sci. USA 120, e2220403120 (2023).
Lu, M. et al. A safe and highly efficacious measles virus-based vaccine expressing SARS-CoV-2 stabilized prefusion spike. Proc. Natl Acad. Sci. USA 118, e2026153118 (2021).
Zhang, Y. X. et al. Recombinant measles virus expressing prefusion spike protein stabilized by six rather than two prolines is more efficacious against SARS-CoV-2 infection. J. Med. Virol. 95, e28687 (2023).
Hsieh, C. L. et al. Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. Science 369, 1501–1505 (2020).
pubmed: 32703906 doi: 10.1126/science.abd0826
Mura, M. et al. hCD46 receptor is not required for measles vaccine Schwarz strain replication: type-I IFN is the species barrier in mice. Virology 524, 151–159 (2018).
pubmed: 30199752 doi: 10.1016/j.virol.2018.08.014
Pickar, A. et al. Establishing a small animal model for evaluating protective immunity against mumps virus. PLoS One 12, e017444410 (2017).
doi: 10.1371/journal.pone.0174444
Zeng, C. et al. Neutralizing antibody against SARS-CoV-2 spike in COVID-19 patients, health care workers, and convalescent plasma donors. JCI Insight 5, e143213 (2020).
Tang, J. & Sun, J. Lung tissue-resident memory T cells: the gatekeeper to respiratory viral (re)-infection. Curr. Opin. Immunol. 80, 102278 (2023).
pubmed: 36565508 doi: 10.1016/j.coi.2022.102278
Son, Y. M. et al. Tissue-resident CD4(+) T helper cells assist the development of protective respiratory B and CD8(+) T cell memory responses. Sci. Immunol. 6, eabb6852 (2021).
Rubin, S., Eckhaus, M., Rennick, L. J., Bamford, C. G. & Duprex, W. P. Molecular biology, pathogenesis and pathology of mumps virus. J. Pathol. 235, 242–252 (2015).
pubmed: 25229387 pmcid: 4268314 doi: 10.1002/path.4445
Nurnberger, C., Bodmer, B. S., Fiedler, A. H., Gabriel, G. & Muhlebach, M. D. A Measles virus-based vaccine candidate mediates protection against Zika virus in an allogeneic mouse pregnancy model. J. Virol. 93, e01485-18 (2019).
Keeton, R. et al. T cell responses to SARS-CoV-2 spike cross-recognize omicron. Nature 603, 488–492 (2022).
pubmed: 35102311 pmcid: 8930768 doi: 10.1038/s41586-022-04460-3
Chandrashekar, A. et al. Vaccine protection against the SARS-CoV-2 omicron variant in macaques. Cell 185, 1549–1555.e1511 (2022).
pubmed: 35427477 pmcid: 8926910 doi: 10.1016/j.cell.2022.03.024
Gao, Y. et al. Ancestral SARS-CoV-2-specific T cells cross-recognize the omicron variant. Nat. Med. 28, 472–476 (2022).
pubmed: 35042228 pmcid: 8938268 doi: 10.1038/s41591-022-01700-x
Iuminova, N. V., Krasnova, V. P. & Liashenko, V. A. The specific activity and immunological safety of a live mumps vaccine from the Leningrad-3 strain in intranasally revaccinated adult subjects. Vopr. Virusol. 39, 113–116 (1994).
Zheng, M. Z. M. & Wakim, L. M. Tissue resident memory T cells in the respiratory tract. Mucosal. Immunol. 15, 379–388 (2022).
pubmed: 34671115 doi: 10.1038/s41385-021-00461-z
Urban, S. L. et al. Peripherally induced brain tissue-resident memory CD8(+) T cells mediate protection against CNS infection. Nat. Immunol. 21, 938–949 (2020).
pubmed: 32572242 pmcid: 7381383 doi: 10.1038/s41590-020-0711-8
Paik, D. H. & Farber, D. L. Anti-viral protective capacity of tissue resident memory T cells. Curr. Opin. Virol. 46, 20–26 (2021).
pubmed: 33130326 doi: 10.1016/j.coviro.2020.09.006
Xu, J. et al. A next-generation intranasal trivalent MMS vaccine induces durable and broad protection against SARS-CoV-2 variants of concern. Proc. Natl Acad. Sci. USA 120, e2220403120 (2023).
pubmed: 37796985 pmcid: 10576135 doi: 10.1073/pnas.2220403120
Faraone, J. N. & Liu, S. L. Immune imprinting as a barrier to effective COVID-19 vaccines. Cell Rep. Med. 4, 101291 (2023).
Huang, C. Q., Vishwanath, S., Carnell, G. W., Chan, A. C. Y. & Heeney, J. L. Immune imprinting and next-generation coronavirus vaccines. Nat. Microbiol. 8, 1971–1985 (2023).
pubmed: 37932355 doi: 10.1038/s41564-023-01505-9
Davis-Gardner, M. E. et al. Neutralization against BA.2.75.2, BQ.1.1, and XBB from mRNA bivalent booster. N. Engl. J. Med. 388, 183–185 (2023).
pubmed: 36546661 doi: 10.1056/NEJMc2214293
Kurhade, C. et al. Low neutralization of SARS-CoV-2 Omicron BA.2.75.2, BQ.1.1 and XBB.1 by parental mRNA vaccine or a BA.5 bivalent booster. Nat. Med. 29, 344–347 (2023).
pubmed: 36473500 doi: 10.1038/s41591-022-02162-x
Tortorici, M. A. et al. Persistent immune imprinting occurs after vaccination with the COVID-19 XBB.1.5 mRNA booster in humans. Immunity 57, 904–911.e4 (2024).
Clarke, D. K., Sidhu, M. S., Johnson, J. E. & Udem, S. A. Rescue of mumps virus from cDNA. J. Virol. 74, 4831–4838 (2000).
pubmed: 10775622 pmcid: 112006 doi: 10.1128/jvi.74.10.4831-4838.2000
Xu, P., Chen, Z. H., Phan, S., Pickar, A. & He, B. Immunogenicity of novel mumps vaccine candidates generated by genetic modification. J. Virol. 88, 2600–2610 (2014).
pubmed: 24352450 pmcid: 3958107 doi: 10.1128/JVI.02778-13
Fuerst, T. R., Niles, E. G., Studier, F. W. & Moss, B. Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage-T7 Rna-polymerase. P Natl Acad. Sci. USA 83, 8122–8126 (1986).
doi: 10.1073/pnas.83.21.8122
Qu, P. et al. Neutralization of the SARS-CoV-2 omicron BA.4/5 and BA.2.12.1 subvariants. N. Engl. J. Med. 386, 2526–2528 (2022).
pubmed: 35704428 doi: 10.1056/NEJMc2206725
Qu, P. et al. Durability of booster mRNA vaccine against SARS-CoV-2 BA.2.12.1, BA.4, and BA.5 subvariants. N. Engl. J. Med. 387, 1329–1331 (2022).
pubmed: 36069925 doi: 10.1056/NEJMc2210546
Qu, P. et al. Enhanced neutralization resistance of SARS-CoV-2 Omicron subvariants BQ.1, BQ.1.1, BA.4.6, BF.7, and BA.2.75.2. Cell Host Microbe. 31, 9–17.e13 (2023).
pubmed: 36476380 doi: 10.1016/j.chom.2022.11.012
Li, A. Z. et al. A Zika virus vaccine expressing premembrane-envelope-NS1 polyprotein. Nat. Commun. 9, 3067 (2018).

Auteurs

Yuexiu Zhang (Y)

Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA.

Michelle Chamblee (M)

Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA.

Jiayu Xu (J)

Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA.

Panke Qu (P)

Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA.

Mohamed M Shamseldin (MM)

Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA.
Department of Microbiology, The Ohio State University, Columbus, OH, USA.
Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, Ain Helwan, Helwan, Egypt.

Sung J Yoo (SJ)

Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA.

Jack Misny (J)

Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.

Ilada Thongpan (I)

Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.

Mahesh Kc (M)

Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.

Jesse M Hall (JM)

Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA.

Yash A Gupta (YA)

Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA.

John P Evans (JP)

Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA.

Mijia Lu (M)

Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA.

Chengjin Ye (C)

Texas Biomedical Research Institute, San Antonio, TX, USA.

Cheng Chih Hsu (CC)

Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA.

Xueya Liang (X)

Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA.

Luis Martinez-Sobrido (L)

Texas Biomedical Research Institute, San Antonio, TX, USA.

Jacob S Yount (JS)

Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA.
Infectious Disease Institute, The Ohio State University, Columbus, OH, USA.

Prosper N Boyaka (PN)

Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA.
Infectious Disease Institute, The Ohio State University, Columbus, OH, USA.

Shan-Lu Liu (SL)

Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA.
Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA.
Infectious Disease Institute, The Ohio State University, Columbus, OH, USA.
Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA.

Purnima Dubey (P)

Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA.
Infectious Disease Institute, The Ohio State University, Columbus, OH, USA.

Mark E Peeples (ME)

Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
Infectious Disease Institute, The Ohio State University, Columbus, OH, USA.
Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA.

Jianrong Li (J)

Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA. li.926@osu.edu.
Infectious Disease Institute, The Ohio State University, Columbus, OH, USA. li.926@osu.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH