Bergenin inhibits growth of human cervical cancer cells by decreasing Galectin-3 and MMP-9 expression.
Humans
Matrix Metalloproteinase 9
/ metabolism
Benzopyrans
/ pharmacology
Female
Uterine Cervical Neoplasms
/ drug therapy
Galectin 3
/ metabolism
Cell Proliferation
/ drug effects
Cell Line, Tumor
Molecular Docking Simulation
Galectins
/ metabolism
Gene Expression Regulation, Neoplastic
/ drug effects
Apoptosis
/ drug effects
HeLa Cells
Blood Proteins
Bergenin
Cervical cancer
Galectin 3
HPV
Matrix metallo protease 9
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
03 Jul 2024
03 Jul 2024
Historique:
received:
04
12
2023
accepted:
13
06
2024
medline:
4
7
2024
pubmed:
4
7
2024
entrez:
3
7
2024
Statut:
epublish
Résumé
Cervical cancer is still the leading cause of cancer mortality worldwide even after introduction of vaccine against Human papillomavirus (HPV), due to low vaccine coverage, especially in the developing world. Cervical cancer is primarily treated by Chemo/Radiotherapy, depending on the disease stage, with Carboplatin/Cisplatin-based drug regime. These drugs being non-specific, target rapidly dividing cells, including normal cells, so safer options are needed for lower off-target toxicity. Natural products offer an attractive option compared to synthetic drugs due to their well-established safety profile and capacity to target multiple oncogenic hallmarks of cancer like inflammation, angiogenesis, etc. In the current study, we investigated the effect of Bergenin (C-glycoside of 4-O-methylgallic acid), a natural polyphenol compound that is isolated from medicinal plants such as Bergenia crassifolia, Caesalpinia digyna, and Flueggea leucopyrus. Bergenin has been shown to have anti-inflammatory, anti-ulcerogenic, and wound healing properties but its anticancer potential has been realized only recently. We performed a proteomic analysis of cervical carcinoma cells treated with bergenin and found it to influence multiple hallmarks of cancers, including apoptosis, angiogenesis, and tumor suppressor proteins. It was also involved in many different cellular processes unrelated to cancer, as shown by our proteomic analysis. Further analysis showed bergenin to be a potent-angiogenic agent by reducing key angiogenic proteins like Galectin 3 and MMP-9 (Matrix Metalloprotease 9) in cervical carcinoma cells. Further understanding of this interaction was carried out using molecular docking analysis, which indicated MMP-9 has more affinity for bergenin as compared to Galectin-3. Cumulatively, our data provide novel insight into the anti-angiogenic mechanism of bergenin in cervical carcinoma cells by modulation of multiple angiogenic proteins like Galectin-3 and MMP-9 which warrant its further development as an anticancer agent in cervical cancer.
Identifiants
pubmed: 38961106
doi: 10.1038/s41598-024-64781-3
pii: 10.1038/s41598-024-64781-3
doi:
Substances chimiques
bergenin
L84RBE4IDC
Matrix Metalloproteinase 9
EC 3.4.24.35
Benzopyrans
0
Galectin 3
0
MMP9 protein, human
EC 3.4.24.35
LGALS3 protein, human
0
Galectins
0
Blood Proteins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
15287Subventions
Organisme : All-India Institute of Medical Sciences
ID : AI 34
Informations de copyright
© 2024. The Author(s).
Références
Zhang, S., Xu, H., Zhang, L. & Qiao, Y. Cervical cancer: Epidemiology, risk factors and screening. Chin. J. Cancer Res. 32(6), 720 (2020).
pubmed: 33446995
pmcid: 7797226
doi: 10.21147/j.issn.1000-9604.2020.06.05
Nour, N. M. Cervical cancer: A preventable death. Rev. Obstet. Gynecol. 2(4), 240 (2009).
pubmed: 20111660
pmcid: 2812875
Chan, C. K., Aimagambetova, G., Ukybassova, T., Kongrtay, K. & Azizan, A. Human papillomavirus infection and cervical cancer: Epidemiology, screening, and vaccination—Review of current perspectives. J. Oncol. 2019, 1–11 (2019).
doi: 10.1155/2019/3257939
Burmeister, C. A. et al. Cervical cancer therapies: Current challenges and future perspectives. Tumour Virus Res. 13, 200238 (2022).
pubmed: 35460940
pmcid: 9062473
doi: 10.1016/j.tvr.2022.200238
Otrock, Z. K., Mahfouz, R. A., Makarem, J. A. & Shamseddine, A. I. Understanding the biology of angiogenesis: Review of the most important molecular mechanisms. Blood Cells Mol. Dis. 39(2), 212–220 (2007).
pubmed: 17553709
doi: 10.1016/j.bcmd.2007.04.001
Sharma, A. et al. Pazopanib based oral metronomic therapy for platinum resistant/refractory epithelial ovarian cancer: A phase II, open label, randomized, controlled trial. Gynecol. Oncol. 162(2), 382–388 (2021).
pubmed: 34088513
doi: 10.1016/j.ygyno.2021.05.025
Nguyen, N. H. et al. Anticancer activity of novel plant extracts and compounds from Adenosma bracteosum (Bonati) in human lung and liver cancer cells. Molecules. 25(12), 2912 (2020).
pubmed: 32599892
pmcid: 7356985
doi: 10.3390/molecules25122912
Nisar, S. et al. Natural products as chemo-radiation therapy sensitizers in cancers. Biomed. Pharmacother. 154, 113610 (2022).
pubmed: 36030591
doi: 10.1016/j.biopha.2022.113610
Hashem, S. et al. Targeting cancer signaling pathways by natural products: Exploring promising anticancer agents. Biomed. Pharmacother. 150, 113054 (2022).
pubmed: 35658225
doi: 10.1016/j.biopha.2022.113054
Singh, M. & Singh, N. Molecular mechanism of curcumin induced cytotoxicity in human cervical carcinoma cells. Mol. Cell. Biochem. 325(1), 107–119 (2009).
pubmed: 19191010
doi: 10.1007/s11010-009-0025-5
Singh, M. & Singh, N. Curcumin counteracts the proliferative effect of estradiol and induces apoptosis in cervical cancer cells. Mol. Cell. Biochem. 347(1), 1–11 (2011).
pubmed: 20941532
doi: 10.1007/s11010-010-0606-3
Mahata, S. et al. Berberine modulates AP-1 activity to suppress HPV transcription and downstream signaling to induce growth arrest and apoptosis in cervical cancer cells. Mol. Cancer. 10(1), 1–14 (2011).
doi: 10.1186/1476-4598-10-39
Bajracharya, G. B. Diversity, pharmacology and synthesis of bergenin and its derivatives: Potential materials for therapeutic usages. Fitoterapia. 101, 133–152 (2015).
pubmed: 25596093
doi: 10.1016/j.fitote.2015.01.001
Liu, J. et al. Bergenin inhibits bladder cancer progression via activating the PPARγ/PTEN/Akt signal pathway. Drug Dev. Res. 82(2), 278–286 (2021).
pubmed: 33112006
doi: 10.1002/ddr.21751
Sultana, T., Mitra, A. K. & Das, S. Evaluation of anticancer potential of Excoecaria agallocha (L.) leaf extract on human cervical cancer (SiHa) cell line and assessing the underlying mechanism of action. Future J. Pharm. Sci. 8(1), 1–18 (2022).
Jayakody, R. S., Wijewardhane, P., Herath, C. & Perera, S. Bergenin: A computationally proven promising scaffold for novel galectin-3 inhibitors. J. Mol. Model. 24(10), 1–11 (2018).
doi: 10.1007/s00894-018-3831-4
Chen, C. Y., Chen, J., He, L. & Stiles, B. L. PTEN: Tumor suppressor and metabolic regulator. Front. Endocrinol. 9, 338 (2018).
doi: 10.3389/fendo.2018.00338
Kreis, N. N., Louwen, F. & Yuan, J. The multifaceted p21 (Cip1/Waf1/CDKN1A) in cell differentiation, migration and cancer therapy. Cancers. 11(9), 1220 (2019).
pubmed: 31438587
pmcid: 6770903
doi: 10.3390/cancers11091220
Zhao, M., Mishra, L. & Deng, C. X. The role of TGF-β/SMAD4 signaling in cancer. Int. J. Biol. Sci. 14(2), 111 (2018).
pubmed: 29483830
pmcid: 5821033
doi: 10.7150/ijbs.23230
Li, X., Wang, F., Xu, X., Zhang, J. & Xu, G. The dual role of STAT1 in ovarian cancer: Insight into molecular mechanisms and application potentials. Front. Cell Dev. Biol. 9, 636595 (2021).
pubmed: 33834023
pmcid: 8021797
doi: 10.3389/fcell.2021.636595
Ribatti, D., Tamma, R. & Annese, T. Epithelial–mesenchymal transition in cancer: A historical overview. Transl. Oncol. 13(6), 100773 (2020).
pubmed: 32334405
pmcid: 7182759
doi: 10.1016/j.tranon.2020.100773
Tochowicz, A. et al. Crystal structures of MMP-9 complexes with five inhibitors: Contribution of the flexible Arg424 side-chain to selectivity. J. Mol. Biol. 371(4), 989–1006 (2007).
pubmed: 17599356
doi: 10.1016/j.jmb.2007.05.068
Rowsell, S. et al. Crystal structure of human MMP9 in complex with a reverse hydroxamate inhibitor. J. Mol. Biol. 319(1), 173–181 (2002).
pubmed: 12051944
doi: 10.1016/S0022-2836(02)00262-0
Claudia, A., et al. Crystallization of bi-functional ligand protein complexes. (2013).
Tranchant, I. et al. Halogen bonding controls selectivity of FRET substrate probes for MMP-9. Chem. Biol. 21(3), 408–413 (2014).
pubmed: 24583051
doi: 10.1016/j.chembiol.2014.01.008
Schiffman, M., Castle, P. E., Jeronimo, J., Rodriguez, A. C. & Wacholder, S. Human papillomavirus and cervical cancer. Lancet. 370(9590), 890–907 (2007).
pubmed: 17826171
doi: 10.1016/S0140-6736(07)61416-0
Yang, J., Cai, H., Xiao, Z. X., Wang, H. & Yang, P. Effect of radiotherapy on the survival of cervical cancer patients: An analysis based on SEER database. Medicine. 98(30), e16421 (2019).
pubmed: 31348242
pmcid: 6708958
doi: 10.1097/MD.0000000000016421
Dehelean, C. A. et al. Plant-derived anticancer compounds as new perspectives in drug discovery and alternative therapy. Molecules. 26(4), 1109 (2021).
pubmed: 33669817
pmcid: 7922180
doi: 10.3390/molecules26041109
Mehta, S. et al. A fresh look on bergenin: vision of its novel drug delivery systems and pharmacological activities. Future Pharmacol. 2(1), 64–91 (2022).
doi: 10.3390/futurepharmacol2010006
Tahtamouni, L., Ahram, M., Koblinski, J., Rolfo, C. Molecular Regulation of Cancer Cell Migration, Invasion, and Metastasis, vol. 2019, Analytical Cellular Pathology (Hindawi, 2019).
Xu, J. et al. Resveratrol reverses Doxorubicin resistance by inhibiting epithelial–mesenchymal transition (EMT) through modulating PTEN/Akt signaling pathway in gastric cancer. J. Exp. Clin. Cancer Res. 36(1), 1–14 (2017).
doi: 10.1186/s13046-016-0487-8
Tian, Y. et al. SIRT2 promotes the viability, invasion and metastasis of osteosarcoma cells by inhibiting the degradation of Snail. Cell Death Dis. 13(11), 1–10 (2022).
doi: 10.1038/s41419-022-05388-2
Morris, G. M. et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 30(16), 2785–2791 (2009).
pubmed: 19399780
pmcid: 2760638
doi: 10.1002/jcc.21256
Malhotra, L. et al. Mechanism of apoptosis activation by Curcumin rescued mutant p53Y220C in human pancreatic cancer. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 1869(12), 119343 (2022).
doi: 10.1016/j.bbamcr.2022.119343
Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498–2504 (2003).
pubmed: 14597658
pmcid: 403769
doi: 10.1101/gr.1239303
Bindea, G. et al. ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 25(8), 1091–1093 (2009).
pubmed: 19237447
pmcid: 2666812
doi: 10.1093/bioinformatics/btp101
Sörme, P. et al. Structural and thermodynamic studies on cation−π interactions in lectin–ligand complexes: High-affinity galectin-3 inhibitors through fine-tuning of an arginine−arene interaction. J. Am. Chem. Soc. 127(6), 1737–1743 (2005).
pubmed: 15701008
doi: 10.1021/ja043475p
Yadav, P., Kumar, M., Bansal, R., Kaur, P. & Ethayathulla, A. S. Structure model of ferrochelatase from Salmonella typhi elucidating metalation mechanism. Int. J. Biol. Macromol. 127, 585–593 (2019).
pubmed: 30660563
doi: 10.1016/j.ijbiomac.2019.01.066
Naz, F. et al. Drug repurposing approach to target FtsZ cell division protein from Salmonella typhi. Int. J. Biol. Macromol. 159, 1073–1083 (2020).
pubmed: 32417543
doi: 10.1016/j.ijbiomac.2020.05.063
Malhotra, L. et al. Curcumin rescue p53Y220C in BxPC-3 pancreatic adenocarcinomas cell line: Evidence-based on computational, biophysical, and in vivo studies. Biochim. Biophys. Acta (BBA) Gen. Subj. 1865(2), 129807 (2021).
doi: 10.1016/j.bbagen.2020.129807
Berendsen, H. J., van der Spoel, D. & van Drunen, R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 91(1–3), 43–56 (1995).
doi: 10.1016/0010-4655(95)00042-E
Abraham, M. J. et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 1, 19–25 (2015).
doi: 10.1016/j.softx.2015.06.001
Schmid, N. et al. Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur. Biophys. J. 40(7), 843–856 (2011).
pubmed: 21533652
doi: 10.1007/s00249-011-0700-9
Mark, P. & Nilsson, L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys. Chem. A. 105(43), 9954–9960 (2001).
doi: 10.1021/jp003020w
Kumari, R., Kumar, R., Consortium, O. S. D. D. & Lynn, A. g_mmpbsa· A GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model. 54(7), 1951–1962 (2014).
pubmed: 24850022
doi: 10.1021/ci500020m
Sharma, S. et al. Genistein: A novel inhibitor of IL-6/IL-6R interface of the Interleukin-6-mediated STAT3 dependent pathway of carcinogenesis. J. Mol. Struct. 1258, 132668 (2022).
doi: 10.1016/j.molstruc.2022.132668