Bergenin inhibits growth of human cervical cancer cells by decreasing Galectin-3 and MMP-9 expression.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
03 Jul 2024
Historique:
received: 04 12 2023
accepted: 13 06 2024
medline: 4 7 2024
pubmed: 4 7 2024
entrez: 3 7 2024
Statut: epublish

Résumé

Cervical cancer is still the leading cause of cancer mortality worldwide even after introduction of vaccine against Human papillomavirus (HPV), due to low vaccine coverage, especially in the developing world. Cervical cancer is primarily treated by Chemo/Radiotherapy, depending on the disease stage, with Carboplatin/Cisplatin-based drug regime. These drugs being non-specific, target rapidly dividing cells, including normal cells, so safer options are needed for lower off-target toxicity. Natural products offer an attractive option compared to synthetic drugs due to their well-established safety profile and capacity to target multiple oncogenic hallmarks of cancer like inflammation, angiogenesis, etc. In the current study, we investigated the effect of Bergenin (C-glycoside of 4-O-methylgallic acid), a natural polyphenol compound that is isolated from medicinal plants such as Bergenia crassifolia, Caesalpinia digyna, and Flueggea leucopyrus. Bergenin has been shown to have anti-inflammatory, anti-ulcerogenic, and wound healing properties but its anticancer potential has been realized only recently. We performed a proteomic analysis of cervical carcinoma cells treated with bergenin and found it to influence multiple hallmarks of cancers, including apoptosis, angiogenesis, and tumor suppressor proteins. It was also involved in many different cellular processes unrelated to cancer, as shown by our proteomic analysis. Further analysis showed bergenin to be a potent-angiogenic agent by reducing key angiogenic proteins like Galectin 3 and MMP-9 (Matrix Metalloprotease 9) in cervical carcinoma cells. Further understanding of this interaction was carried out using molecular docking analysis, which indicated MMP-9 has more affinity for bergenin as compared to Galectin-3. Cumulatively, our data provide novel insight into the anti-angiogenic mechanism of bergenin in cervical carcinoma cells by modulation of multiple angiogenic proteins like Galectin-3 and MMP-9 which warrant its further development as an anticancer agent in cervical cancer.

Identifiants

pubmed: 38961106
doi: 10.1038/s41598-024-64781-3
pii: 10.1038/s41598-024-64781-3
doi:

Substances chimiques

bergenin L84RBE4IDC
Matrix Metalloproteinase 9 EC 3.4.24.35
Benzopyrans 0
Galectin 3 0
MMP9 protein, human EC 3.4.24.35
LGALS3 protein, human 0
Galectins 0
Blood Proteins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

15287

Subventions

Organisme : All-India Institute of Medical Sciences
ID : AI 34

Informations de copyright

© 2024. The Author(s).

Références

Zhang, S., Xu, H., Zhang, L. & Qiao, Y. Cervical cancer: Epidemiology, risk factors and screening. Chin. J. Cancer Res. 32(6), 720 (2020).
pubmed: 33446995 pmcid: 7797226 doi: 10.21147/j.issn.1000-9604.2020.06.05
Nour, N. M. Cervical cancer: A preventable death. Rev. Obstet. Gynecol. 2(4), 240 (2009).
pubmed: 20111660 pmcid: 2812875
Chan, C. K., Aimagambetova, G., Ukybassova, T., Kongrtay, K. & Azizan, A. Human papillomavirus infection and cervical cancer: Epidemiology, screening, and vaccination—Review of current perspectives. J. Oncol. 2019, 1–11 (2019).
doi: 10.1155/2019/3257939
Burmeister, C. A. et al. Cervical cancer therapies: Current challenges and future perspectives. Tumour Virus Res. 13, 200238 (2022).
pubmed: 35460940 pmcid: 9062473 doi: 10.1016/j.tvr.2022.200238
Otrock, Z. K., Mahfouz, R. A., Makarem, J. A. & Shamseddine, A. I. Understanding the biology of angiogenesis: Review of the most important molecular mechanisms. Blood Cells Mol. Dis. 39(2), 212–220 (2007).
pubmed: 17553709 doi: 10.1016/j.bcmd.2007.04.001
Sharma, A. et al. Pazopanib based oral metronomic therapy for platinum resistant/refractory epithelial ovarian cancer: A phase II, open label, randomized, controlled trial. Gynecol. Oncol. 162(2), 382–388 (2021).
pubmed: 34088513 doi: 10.1016/j.ygyno.2021.05.025
Nguyen, N. H. et al. Anticancer activity of novel plant extracts and compounds from Adenosma bracteosum (Bonati) in human lung and liver cancer cells. Molecules. 25(12), 2912 (2020).
pubmed: 32599892 pmcid: 7356985 doi: 10.3390/molecules25122912
Nisar, S. et al. Natural products as chemo-radiation therapy sensitizers in cancers. Biomed. Pharmacother. 154, 113610 (2022).
pubmed: 36030591 doi: 10.1016/j.biopha.2022.113610
Hashem, S. et al. Targeting cancer signaling pathways by natural products: Exploring promising anticancer agents. Biomed. Pharmacother. 150, 113054 (2022).
pubmed: 35658225 doi: 10.1016/j.biopha.2022.113054
Singh, M. & Singh, N. Molecular mechanism of curcumin induced cytotoxicity in human cervical carcinoma cells. Mol. Cell. Biochem. 325(1), 107–119 (2009).
pubmed: 19191010 doi: 10.1007/s11010-009-0025-5
Singh, M. & Singh, N. Curcumin counteracts the proliferative effect of estradiol and induces apoptosis in cervical cancer cells. Mol. Cell. Biochem. 347(1), 1–11 (2011).
pubmed: 20941532 doi: 10.1007/s11010-010-0606-3
Mahata, S. et al. Berberine modulates AP-1 activity to suppress HPV transcription and downstream signaling to induce growth arrest and apoptosis in cervical cancer cells. Mol. Cancer. 10(1), 1–14 (2011).
doi: 10.1186/1476-4598-10-39
Bajracharya, G. B. Diversity, pharmacology and synthesis of bergenin and its derivatives: Potential materials for therapeutic usages. Fitoterapia. 101, 133–152 (2015).
pubmed: 25596093 doi: 10.1016/j.fitote.2015.01.001
Liu, J. et al. Bergenin inhibits bladder cancer progression via activating the PPARγ/PTEN/Akt signal pathway. Drug Dev. Res. 82(2), 278–286 (2021).
pubmed: 33112006 doi: 10.1002/ddr.21751
Sultana, T., Mitra, A. K. & Das, S. Evaluation of anticancer potential of Excoecaria agallocha (L.) leaf extract on human cervical cancer (SiHa) cell line and assessing the underlying mechanism of action. Future J. Pharm. Sci. 8(1), 1–18 (2022).
Jayakody, R. S., Wijewardhane, P., Herath, C. & Perera, S. Bergenin: A computationally proven promising scaffold for novel galectin-3 inhibitors. J. Mol. Model. 24(10), 1–11 (2018).
doi: 10.1007/s00894-018-3831-4
Chen, C. Y., Chen, J., He, L. & Stiles, B. L. PTEN: Tumor suppressor and metabolic regulator. Front. Endocrinol. 9, 338 (2018).
doi: 10.3389/fendo.2018.00338
Kreis, N. N., Louwen, F. & Yuan, J. The multifaceted p21 (Cip1/Waf1/CDKN1A) in cell differentiation, migration and cancer therapy. Cancers. 11(9), 1220 (2019).
pubmed: 31438587 pmcid: 6770903 doi: 10.3390/cancers11091220
Zhao, M., Mishra, L. & Deng, C. X. The role of TGF-β/SMAD4 signaling in cancer. Int. J. Biol. Sci. 14(2), 111 (2018).
pubmed: 29483830 pmcid: 5821033 doi: 10.7150/ijbs.23230
Li, X., Wang, F., Xu, X., Zhang, J. & Xu, G. The dual role of STAT1 in ovarian cancer: Insight into molecular mechanisms and application potentials. Front. Cell Dev. Biol. 9, 636595 (2021).
pubmed: 33834023 pmcid: 8021797 doi: 10.3389/fcell.2021.636595
Ribatti, D., Tamma, R. & Annese, T. Epithelial–mesenchymal transition in cancer: A historical overview. Transl. Oncol. 13(6), 100773 (2020).
pubmed: 32334405 pmcid: 7182759 doi: 10.1016/j.tranon.2020.100773
Tochowicz, A. et al. Crystal structures of MMP-9 complexes with five inhibitors: Contribution of the flexible Arg424 side-chain to selectivity. J. Mol. Biol. 371(4), 989–1006 (2007).
pubmed: 17599356 doi: 10.1016/j.jmb.2007.05.068
Rowsell, S. et al. Crystal structure of human MMP9 in complex with a reverse hydroxamate inhibitor. J. Mol. Biol. 319(1), 173–181 (2002).
pubmed: 12051944 doi: 10.1016/S0022-2836(02)00262-0
Claudia, A., et al. Crystallization of bi-functional ligand protein complexes. (2013).
Tranchant, I. et al. Halogen bonding controls selectivity of FRET substrate probes for MMP-9. Chem. Biol. 21(3), 408–413 (2014).
pubmed: 24583051 doi: 10.1016/j.chembiol.2014.01.008
Schiffman, M., Castle, P. E., Jeronimo, J., Rodriguez, A. C. & Wacholder, S. Human papillomavirus and cervical cancer. Lancet. 370(9590), 890–907 (2007).
pubmed: 17826171 doi: 10.1016/S0140-6736(07)61416-0
Yang, J., Cai, H., Xiao, Z. X., Wang, H. & Yang, P. Effect of radiotherapy on the survival of cervical cancer patients: An analysis based on SEER database. Medicine. 98(30), e16421 (2019).
pubmed: 31348242 pmcid: 6708958 doi: 10.1097/MD.0000000000016421
Dehelean, C. A. et al. Plant-derived anticancer compounds as new perspectives in drug discovery and alternative therapy. Molecules. 26(4), 1109 (2021).
pubmed: 33669817 pmcid: 7922180 doi: 10.3390/molecules26041109
Mehta, S. et al. A fresh look on bergenin: vision of its novel drug delivery systems and pharmacological activities. Future Pharmacol. 2(1), 64–91 (2022).
doi: 10.3390/futurepharmacol2010006
Tahtamouni, L., Ahram, M., Koblinski, J., Rolfo, C. Molecular Regulation of Cancer Cell Migration, Invasion, and Metastasis, vol. 2019, Analytical Cellular Pathology (Hindawi, 2019).
Xu, J. et al. Resveratrol reverses Doxorubicin resistance by inhibiting epithelial–mesenchymal transition (EMT) through modulating PTEN/Akt signaling pathway in gastric cancer. J. Exp. Clin. Cancer Res. 36(1), 1–14 (2017).
doi: 10.1186/s13046-016-0487-8
Tian, Y. et al. SIRT2 promotes the viability, invasion and metastasis of osteosarcoma cells by inhibiting the degradation of Snail. Cell Death Dis. 13(11), 1–10 (2022).
doi: 10.1038/s41419-022-05388-2
Morris, G. M. et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 30(16), 2785–2791 (2009).
pubmed: 19399780 pmcid: 2760638 doi: 10.1002/jcc.21256
Malhotra, L. et al. Mechanism of apoptosis activation by Curcumin rescued mutant p53Y220C in human pancreatic cancer. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 1869(12), 119343 (2022).
doi: 10.1016/j.bbamcr.2022.119343
Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498–2504 (2003).
pubmed: 14597658 pmcid: 403769 doi: 10.1101/gr.1239303
Bindea, G. et al. ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 25(8), 1091–1093 (2009).
pubmed: 19237447 pmcid: 2666812 doi: 10.1093/bioinformatics/btp101
Sörme, P. et al. Structural and thermodynamic studies on cation−π interactions in lectin–ligand complexes: High-affinity galectin-3 inhibitors through fine-tuning of an arginine−arene interaction. J. Am. Chem. Soc. 127(6), 1737–1743 (2005).
pubmed: 15701008 doi: 10.1021/ja043475p
Yadav, P., Kumar, M., Bansal, R., Kaur, P. & Ethayathulla, A. S. Structure model of ferrochelatase from Salmonella typhi elucidating metalation mechanism. Int. J. Biol. Macromol. 127, 585–593 (2019).
pubmed: 30660563 doi: 10.1016/j.ijbiomac.2019.01.066
Naz, F. et al. Drug repurposing approach to target FtsZ cell division protein from Salmonella typhi. Int. J. Biol. Macromol. 159, 1073–1083 (2020).
pubmed: 32417543 doi: 10.1016/j.ijbiomac.2020.05.063
Malhotra, L. et al. Curcumin rescue p53Y220C in BxPC-3 pancreatic adenocarcinomas cell line: Evidence-based on computational, biophysical, and in vivo studies. Biochim. Biophys. Acta (BBA) Gen. Subj. 1865(2), 129807 (2021).
doi: 10.1016/j.bbagen.2020.129807
Berendsen, H. J., van der Spoel, D. & van Drunen, R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 91(1–3), 43–56 (1995).
doi: 10.1016/0010-4655(95)00042-E
Abraham, M. J. et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 1, 19–25 (2015).
doi: 10.1016/j.softx.2015.06.001
Schmid, N. et al. Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur. Biophys. J. 40(7), 843–856 (2011).
pubmed: 21533652 doi: 10.1007/s00249-011-0700-9
Mark, P. & Nilsson, L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys. Chem. A. 105(43), 9954–9960 (2001).
doi: 10.1021/jp003020w
Kumari, R., Kumar, R., Consortium, O. S. D. D. & Lynn, A. g_mmpbsa· A GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model. 54(7), 1951–1962 (2014).
pubmed: 24850022 doi: 10.1021/ci500020m
Sharma, S. et al. Genistein: A novel inhibitor of IL-6/IL-6R interface of the Interleukin-6-mediated STAT3 dependent pathway of carcinogenesis. J. Mol. Struct. 1258, 132668 (2022).
doi: 10.1016/j.molstruc.2022.132668

Auteurs

Ravi Chauhan (R)

Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India.

Lakshay Malhotra (L)

Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, India.

Ashna Gupta (A)

Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India.

Gunjan Dagar (G)

Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India.

Mohini Mendiratta (M)

Department of Medical Oncology, Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, India.

Tariq Masoodi (T)

Laboratory of Cancer Immunology and Genetics, Sidra Medicine, Doha, Qatar.

Sheema Hashem (S)

Department of Human Genetics, Sidra Medicine, Doha, Qatar.

Sara Al Marzooqi (S)

Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar.

Dayasagar Das (D)

Department of Medicine, NYU Langone Health, New York, 10016, USA.

Shahab Uddin (S)

Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.

Abdul Samath Ethayathulla (AS)

Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.

Muzafar A Macha (MA)

Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Pulwama, Jammu and Kashmir, India.

Ammira Al-Shabeeb Akil (AA)

Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar.

Ranjit Kumar Sahoo (RK)

Department of Medical Oncology, Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, India.

Ekta Rai (E)

School of Life Sciences Jawahar Lal Nehru University, New Delhi, India.

Ajaz A Bhat (AA)

Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar.

Mayank Singh (M)

Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India. mayank.osu@gmail.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH