Blood-brain barrier integrity is linked to cognitive function, but not to cerebral arterial pulsatility, among elderly.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
03 Jul 2024
Historique:
received: 09 12 2023
accepted: 24 06 2024
medline: 4 7 2024
pubmed: 4 7 2024
entrez: 3 7 2024
Statut: epublish

Résumé

Blood-brain barrier (BBB) disruption may contribute to cognitive decline, but questions remain whether this association is more pronounced for certain brain regions, such as the hippocampus, or represents a whole-brain mechanism. Further, whether human BBB leakage is triggered by excessive vascular pulsatility, as suggested by animal studies, remains unknown. In a prospective cohort (N = 50; 68-84 years), we used contrast-enhanced MRI to estimate the permeability-surface area product (PS) and fractional plasma volume (

Identifiants

pubmed: 38961135
doi: 10.1038/s41598-024-65944-y
pii: 10.1038/s41598-024-65944-y
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

15338

Subventions

Organisme : Vetenskapsrådet (Swedish Research Council)
ID : 2022-04263

Informations de copyright

© 2024. The Author(s).

Références

Thrippleton, M. J. et al. Quantifying blood–brain barrier leakage in small vessel disease: Review and consensus recommendations. Alzheimer’s Dement. 15, 840–858 (2019).
doi: 10.1016/j.jalz.2019.01.013
Sweeney, M. D., Sagare, A. P. & Zlokovic, B. V. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol. 14, 133–150 (2018).
pubmed: 29377008 pmcid: 5829048 doi: 10.1038/nrneurol.2017.188
Banks, W. A. et al. Healthy aging and the blood–brain barrier. Nat. Aging 1, 243–254 (2021).
pubmed: 34368785 pmcid: 8340949 doi: 10.1038/s43587-021-00043-5
Verheggen, I. C. M. et al. Increase in blood–brain barrier leakage in healthy, older adults. GeroScience 42, 1183–1193 (2020).
pubmed: 32601792 pmcid: 7394987 doi: 10.1007/s11357-020-00211-2
Montagne, A. et al. Blood–brain barrier breakdown in the aging human hippocampus. Neuron 85, 296–302 (2015).
pubmed: 25611508 pmcid: 4350773 doi: 10.1016/j.neuron.2014.12.032
Taheri, S. et al. Blood–brain barrier permeability abnormalities in vascular cognitive impairment. Stroke 42, 2158–2163 (2011).
pubmed: 21719768 pmcid: 3584170 doi: 10.1161/STROKEAHA.110.611731
Ha, I. H. et al. Regional differences in blood–brain barrier permeability in cognitively normal elderly subjects: A dynamic contrast-enhanced MRI-based study. Korean J. Radiol. 22, 1152–1162 (2021).
pubmed: 33739632 pmcid: 8236362 doi: 10.3348/kjr.2020.0816
Nation, D. A. et al. Blood–brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat. Med. 25, 270–276 (2019).
pubmed: 30643288 pmcid: 6367058 doi: 10.1038/s41591-018-0297-y
Montagne, A. et al. APOE4 leads to blood–brain barrier dysfunction predicting cognitive decline. Nature 581, 71–76 (2020).
pubmed: 32376954 pmcid: 7250000 doi: 10.1038/s41586-020-2247-3
Moon, W. J. et al. Hippocampal blood–brain barrier permeability is related to the APOE4 mutation status of elderly individuals without dementia. J. Cereb. Blood Flow Metab. 41, 1351–1361 (2021).
pubmed: 32936729 doi: 10.1177/0271678X20952012
Freeze, W. M. et al. White matter hyperintensities mediate the association between blood–brain barrier leakage and information processing speed. Neurobiol. Aging 85, 113–122 (2020).
pubmed: 31718926 doi: 10.1016/j.neurobiolaging.2019.09.017
Bakhtiari, A. et al. Changes in hippocampal volume during a preceding 10-year period do not correlate with cognitive performance and hippocampal blood–brain barrier permeability in cognitively normal late-middle-aged men. GeroScience 45, 1161–1175 (2023).
pubmed: 36534276 doi: 10.1007/s11357-022-00712-2
Verheggen, I. C. M. et al. Imaging the role of blood–brain barrier disruption in normal cognitive ageing. GeroScience 42, 1751–1764 (2020).
pubmed: 33025410 pmcid: 7732959 doi: 10.1007/s11357-020-00282-1
Van De Haar, H. J. et al. Blood–brain barrier leakage in patients with early Alzheimer disease. Radiology 281, 527–535 (2016).
pubmed: 27243267 doi: 10.1148/radiol.2016152244
Wåhlin, A. & Nyberg, L. At the heart of cognitive functioning in aging. Trends Cogn. Sci. 23, 717–720 (2019).
pubmed: 31303538 doi: 10.1016/j.tics.2019.06.004
Wardlaw, J. M., Smith, C. & Dichgans, M. Small vessel disease: Mechanisms and clinical implications. Lancet Neurol. 18, 684–696 (2019).
pubmed: 31097385 doi: 10.1016/S1474-4422(19)30079-1
De Montgolfier, O. et al. High systolic blood pressure induces cerebral microvascular endothelial dysfunction, neurovascular unit damage, and cognitive decline in mice. Hypertension 73, 217–228 (2019).
pubmed: 30571552 doi: 10.1161/HYPERTENSIONAHA.118.12048
Muhire, G. et al. Arterial stiffness due to carotid calcification disrupts cerebral blood flow regulation and leads to cognitive deficits. J. Am. Heart Assoc. 8, e011630 (2019).
pubmed: 31057061 pmcid: 6512142 doi: 10.1161/JAHA.118.011630
Gu, T. et al. PC VIPR: A high-speed 3D phase-contrast method for flow quantification and high-resolution angiography. Am. J. Neuroradiol. 26, 743–749 (2005).
pubmed: 15814915 pmcid: 7977085
Johnson, K. M. & Markl, M. Improved SNR in phase contrast velocimetry with five-point balanced flow encoding. Magn. Reson. Med. 63, 349–355 (2010).
pubmed: 20099326 pmcid: 3418793 doi: 10.1002/mrm.22202
Schrauben, E. et al. Fast 4D flow MRI intracranial segmentation and quantification in tortuous arteries. J. Magn. Reson. Imaging 42, 1458–1464 (2015).
pubmed: 25847621 pmcid: 4592372 doi: 10.1002/jmri.24900
Rivera-Rivera, L. A. et al. 4D flow MRI for intracranial hemodynamics assessment in Alzheimer’s disease. J. Cereb. Blood Flow Metab. 36, 1718–1730 (2016).
pubmed: 26661239 doi: 10.1177/0271678X15617171
Vikner, T. et al. Characterizing pulsatility in distal cerebral arteries using 4D flow MRI. J. Cereb. Blood Flow Metab. 40, 2429–2440 (2020).
pubmed: 31722598 doi: 10.1177/0271678X19886667
Lewis, D. et al. Surrogate vascular input function measurements from the superior sagittal sinus are repeatable and provide tissue-validated kinetic parameters in brain DCE-MRI. Sci. Rep. 12, 8737 (2022).
pubmed: 35610281 pmcid: 9130284 doi: 10.1038/s41598-022-12582-x
Nasreddine, Z. S. et al. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 53, 695–699 (2005).
pubmed: 15817019 doi: 10.1111/j.1532-5415.2005.53221.x
Griswold, M. A. et al. Partially parallel imaging with localized sensitivities (PILS). Magn. Reson. Med. 44, 602–609 (2000).
pubmed: 11025516 doi: 10.1002/1522-2594(200010)44:4<602::AID-MRM14>3.0.CO;2-5
Bernstein, M. A. et al. Concomitant gradient terms in phase contrast MR: Analysis and correction. Magn. Reson. Med. 39, 300–308 (1998).
pubmed: 9469714 doi: 10.1002/mrm.1910390218
Chang, L. C. et al. Linear least-squares method for unbiased estimation of T1 from SPGR signals. Magn. Reson. Med. 60, 496–501 (2008).
pubmed: 18666108 pmcid: 4196213 doi: 10.1002/mrm.21669
Sacolick, L. I. et al. B1 mapping by Bloch-Siegert shift. Magn. Reson. Med. 63, 1315–1322 (2010).
pubmed: 20432302 pmcid: 2933656 doi: 10.1002/mrm.22357
Fischl, B. et al. Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron 33, 341–355 (2002).
pubmed: 11832223 doi: 10.1016/S0896-6273(02)00569-X
Klein, A. & Tourville, J. 101 Labeled brain images and a consistent human cortical labeling protocol. Front. Neurosci. 6, 33392. https://doi.org/10.3389/fnins.2012.00171 (2012).
doi: 10.3389/fnins.2012.00171
Hansen, T. I. et al. How does the accuracy of intracranial volume measurements affect normalized brain volumes? Sample size estimates based on 966 subjects from the HUNT MRI cohort. Am. J. Neuroradiol. 36, 1450–1456 (2015).
pubmed: 25857759 pmcid: 7964698 doi: 10.3174/ajnr.A4299
Lee, H.-H., Novikov, D. S. & Fieremans, E. Removal of partial Fourier-induced Gibbs (RPG) ringing artifacts in MRI. Magn. Reson. Med. 86, 2733–2750 (2021).
pubmed: 34227142 pmcid: 9212190 doi: 10.1002/mrm.28830
Greve, D. N. & Fischl, B. Accurate and robust brain image alignment using boundary-based registration. Neuroimage 48, 63–72 (2009).
pubmed: 19573611 doi: 10.1016/j.neuroimage.2009.06.060
Schabel, M. C. & Parker, D. L. Uncertainty and bias in contrast concentration measurements using spoiled gradient echo pulse sequences. Phys Med Biol 53, 2345–2373 (2008).
pubmed: 18421121 pmcid: 2894639 doi: 10.1088/0031-9155/53/9/010
Rohrer, M. et al. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest. Radiol. 40, 715–724 (2005).
pubmed: 16230904 doi: 10.1097/01.rli.0000184756.66360.d3
Heye, A. K. et al. Tracer kinetic modelling for DCE-MRI quantification of subtle blood–brain barrier permeability. Neuroimage 125, 446–455 (2016).
pubmed: 26477653 doi: 10.1016/j.neuroimage.2015.10.018
Larsson, H. B. W. et al. Measurement of brain perfusion, blood volume, and blood–brain barrier permeability, using dynamic contrast-enhanced T1-weighted MRI at 3 tesla. Magn. Reson. Med. 62, 1270–1281 (2009).
pubmed: 19780145 doi: 10.1002/mrm.22136
Manning, C. et al. Sources of systematic error in DCE-MRI estimation of low-level blood–brain barrier leakage. Magn. Reson. Med. 86, 1888–1903 (2021).
pubmed: 34002894 doi: 10.1002/mrm.28833
Jerman, T. et al. Enhancement of vascular structures in 3D and 2D angiographic images. IEEE Trans. Med. Imaging 35, 2107–2118 (2016).
pubmed: 27076353 doi: 10.1109/TMI.2016.2550102
Wåhlin, A. et al. Intracranial pulsatility is associated with regional brain volume in elderly individuals. Neurobiol. Aging 35, 365–372 (2014).
pubmed: 24080175 doi: 10.1016/j.neurobiolaging.2013.08.026
Chagnot, A., Barnes, S. R. & Montagne, A. Magnetic resonance imaging of blood–brain barrier permeability in dementia. Neuroscience 474, 14–29 (2021).
pubmed: 34400249 doi: 10.1016/j.neuroscience.2021.08.003
Hase, Y. et al. White matter capillaries in vascular and neurodegenerative dementias. Acta Neuropathol. Commun. 7, 16 (2019).
pubmed: 30732655 pmcid: 6366070 doi: 10.1186/s40478-019-0666-x
Vikner, T. et al. Cerebral arterial pulsatility is linked to hippocampal microvascular function and episodic memory in healthy older adults. J. Cereb. Blood Flow Metab. 41, 1778–1790 (2021).
pubmed: 33444091 pmcid: 8217890 doi: 10.1177/0271678X20980652
Shao, X. et al. Mapping water exchange across the blood–brain barrier using 3D diffusion-prepared arterial spin labeled perfusion MRI. Magn. Reson. Med. 81, 3065–3079 (2019).
pubmed: 30561821 doi: 10.1002/mrm.27632
Shao, X. et al. Comparison between blood–brain barrier water exchange rate and permeability to gadolinium-based contrast agent in an elderly cohort. Front. Neurosci. 14, 571480 (2020).
pubmed: 33328848 pmcid: 7733970 doi: 10.3389/fnins.2020.571480
Leenders, K. L. et al. Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age. Brain 113(1), 27–47 (1990).
pubmed: 2302536 doi: 10.1093/brain/113.1.27
Miller, M. L. et al. Changes in cerebral arterial pulsatility and hippocampal volume: A transcranial doppler ultrasonography study. Neurobiol. Aging 108, 110–121 (2021).
pubmed: 34555677 doi: 10.1016/j.neurobiolaging.2021.08.014
Vikner, T. et al. 5-Year associations among cerebral arterial pulsatility, perivascular space dilation, and white matter lesions. Ann. Neurol. 92, 871–881 (2022).
pubmed: 36054261 pmcid: 9804392 doi: 10.1002/ana.26475
Wåhlin, A. et al. Phase contrast MRI quantification of pulsatile volumes of brain arteries, veins, and cerebrospinal fluids compartments: Repeatability and physiological interactions. J. Magn. Reson. Imaging 35, 1055–1062 (2012).
pubmed: 22170792 doi: 10.1002/jmri.23527
Ritter, A. et al. The association between Montreal cognitive assessment memory scores and hippocampal volume in a neurodegenerative disease sample. J. Alzheimer’s Dis. 58, 695–699 (2017).
doi: 10.3233/JAD-161241

Auteurs

Tomas Vikner (T)

Department of Diagnostics and Intervention, Umeå University, 90187, Umeå, Sweden. tomas.vikner@umu.se.
Department of Applied Physics and Electronics, Umeå University, 90187, Umeå, Sweden. tomas.vikner@umu.se.
Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA. tomas.vikner@umu.se.

Anders Garpebring (A)

Department of Diagnostics and Intervention, Umeå University, 90187, Umeå, Sweden.

Cecilia Björnfot (C)

Department of Diagnostics and Intervention, Umeå University, 90187, Umeå, Sweden.

Lars Nyberg (L)

Department of Diagnostics and Intervention, Umeå University, 90187, Umeå, Sweden.
Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187, Umeå, Sweden.
Department of Medical and Translational Biology, Umeå University, 90187, Umeå, Sweden.

Jan Malm (J)

Department of Clinical Science, Neurosciences, Umeå University, 90187, Umeå, Sweden.

Anders Eklund (A)

Department of Diagnostics and Intervention, Umeå University, 90187, Umeå, Sweden.
Department of Applied Physics and Electronics, Umeå University, 90187, Umeå, Sweden.
Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187, Umeå, Sweden.

Anders Wåhlin (A)

Department of Diagnostics and Intervention, Umeå University, 90187, Umeå, Sweden. anders.wahlin@umu.se.
Department of Applied Physics and Electronics, Umeå University, 90187, Umeå, Sweden. anders.wahlin@umu.se.
Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187, Umeå, Sweden. anders.wahlin@umu.se.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH