Blood-brain barrier integrity is linked to cognitive function, but not to cerebral arterial pulsatility, among elderly.
Humans
Blood-Brain Barrier
/ diagnostic imaging
Aged
Male
Female
Cognition
/ physiology
Aged, 80 and over
Magnetic Resonance Imaging
Pulsatile Flow
Cerebral Arteries
/ diagnostic imaging
Prospective Studies
Hippocampus
/ diagnostic imaging
Brain
/ diagnostic imaging
Cognitive Dysfunction
/ physiopathology
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
03 Jul 2024
03 Jul 2024
Historique:
received:
09
12
2023
accepted:
24
06
2024
medline:
4
7
2024
pubmed:
4
7
2024
entrez:
3
7
2024
Statut:
epublish
Résumé
Blood-brain barrier (BBB) disruption may contribute to cognitive decline, but questions remain whether this association is more pronounced for certain brain regions, such as the hippocampus, or represents a whole-brain mechanism. Further, whether human BBB leakage is triggered by excessive vascular pulsatility, as suggested by animal studies, remains unknown. In a prospective cohort (N = 50; 68-84 years), we used contrast-enhanced MRI to estimate the permeability-surface area product (PS) and fractional plasma volume (
Identifiants
pubmed: 38961135
doi: 10.1038/s41598-024-65944-y
pii: 10.1038/s41598-024-65944-y
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
15338Subventions
Organisme : Vetenskapsrådet (Swedish Research Council)
ID : 2022-04263
Informations de copyright
© 2024. The Author(s).
Références
Thrippleton, M. J. et al. Quantifying blood–brain barrier leakage in small vessel disease: Review and consensus recommendations. Alzheimer’s Dement. 15, 840–858 (2019).
doi: 10.1016/j.jalz.2019.01.013
Sweeney, M. D., Sagare, A. P. & Zlokovic, B. V. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol. 14, 133–150 (2018).
pubmed: 29377008
pmcid: 5829048
doi: 10.1038/nrneurol.2017.188
Banks, W. A. et al. Healthy aging and the blood–brain barrier. Nat. Aging 1, 243–254 (2021).
pubmed: 34368785
pmcid: 8340949
doi: 10.1038/s43587-021-00043-5
Verheggen, I. C. M. et al. Increase in blood–brain barrier leakage in healthy, older adults. GeroScience 42, 1183–1193 (2020).
pubmed: 32601792
pmcid: 7394987
doi: 10.1007/s11357-020-00211-2
Montagne, A. et al. Blood–brain barrier breakdown in the aging human hippocampus. Neuron 85, 296–302 (2015).
pubmed: 25611508
pmcid: 4350773
doi: 10.1016/j.neuron.2014.12.032
Taheri, S. et al. Blood–brain barrier permeability abnormalities in vascular cognitive impairment. Stroke 42, 2158–2163 (2011).
pubmed: 21719768
pmcid: 3584170
doi: 10.1161/STROKEAHA.110.611731
Ha, I. H. et al. Regional differences in blood–brain barrier permeability in cognitively normal elderly subjects: A dynamic contrast-enhanced MRI-based study. Korean J. Radiol. 22, 1152–1162 (2021).
pubmed: 33739632
pmcid: 8236362
doi: 10.3348/kjr.2020.0816
Nation, D. A. et al. Blood–brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat. Med. 25, 270–276 (2019).
pubmed: 30643288
pmcid: 6367058
doi: 10.1038/s41591-018-0297-y
Montagne, A. et al. APOE4 leads to blood–brain barrier dysfunction predicting cognitive decline. Nature 581, 71–76 (2020).
pubmed: 32376954
pmcid: 7250000
doi: 10.1038/s41586-020-2247-3
Moon, W. J. et al. Hippocampal blood–brain barrier permeability is related to the APOE4 mutation status of elderly individuals without dementia. J. Cereb. Blood Flow Metab. 41, 1351–1361 (2021).
pubmed: 32936729
doi: 10.1177/0271678X20952012
Freeze, W. M. et al. White matter hyperintensities mediate the association between blood–brain barrier leakage and information processing speed. Neurobiol. Aging 85, 113–122 (2020).
pubmed: 31718926
doi: 10.1016/j.neurobiolaging.2019.09.017
Bakhtiari, A. et al. Changes in hippocampal volume during a preceding 10-year period do not correlate with cognitive performance and hippocampal blood–brain barrier permeability in cognitively normal late-middle-aged men. GeroScience 45, 1161–1175 (2023).
pubmed: 36534276
doi: 10.1007/s11357-022-00712-2
Verheggen, I. C. M. et al. Imaging the role of blood–brain barrier disruption in normal cognitive ageing. GeroScience 42, 1751–1764 (2020).
pubmed: 33025410
pmcid: 7732959
doi: 10.1007/s11357-020-00282-1
Van De Haar, H. J. et al. Blood–brain barrier leakage in patients with early Alzheimer disease. Radiology 281, 527–535 (2016).
pubmed: 27243267
doi: 10.1148/radiol.2016152244
Wåhlin, A. & Nyberg, L. At the heart of cognitive functioning in aging. Trends Cogn. Sci. 23, 717–720 (2019).
pubmed: 31303538
doi: 10.1016/j.tics.2019.06.004
Wardlaw, J. M., Smith, C. & Dichgans, M. Small vessel disease: Mechanisms and clinical implications. Lancet Neurol. 18, 684–696 (2019).
pubmed: 31097385
doi: 10.1016/S1474-4422(19)30079-1
De Montgolfier, O. et al. High systolic blood pressure induces cerebral microvascular endothelial dysfunction, neurovascular unit damage, and cognitive decline in mice. Hypertension 73, 217–228 (2019).
pubmed: 30571552
doi: 10.1161/HYPERTENSIONAHA.118.12048
Muhire, G. et al. Arterial stiffness due to carotid calcification disrupts cerebral blood flow regulation and leads to cognitive deficits. J. Am. Heart Assoc. 8, e011630 (2019).
pubmed: 31057061
pmcid: 6512142
doi: 10.1161/JAHA.118.011630
Gu, T. et al. PC VIPR: A high-speed 3D phase-contrast method for flow quantification and high-resolution angiography. Am. J. Neuroradiol. 26, 743–749 (2005).
pubmed: 15814915
pmcid: 7977085
Johnson, K. M. & Markl, M. Improved SNR in phase contrast velocimetry with five-point balanced flow encoding. Magn. Reson. Med. 63, 349–355 (2010).
pubmed: 20099326
pmcid: 3418793
doi: 10.1002/mrm.22202
Schrauben, E. et al. Fast 4D flow MRI intracranial segmentation and quantification in tortuous arteries. J. Magn. Reson. Imaging 42, 1458–1464 (2015).
pubmed: 25847621
pmcid: 4592372
doi: 10.1002/jmri.24900
Rivera-Rivera, L. A. et al. 4D flow MRI for intracranial hemodynamics assessment in Alzheimer’s disease. J. Cereb. Blood Flow Metab. 36, 1718–1730 (2016).
pubmed: 26661239
doi: 10.1177/0271678X15617171
Vikner, T. et al. Characterizing pulsatility in distal cerebral arteries using 4D flow MRI. J. Cereb. Blood Flow Metab. 40, 2429–2440 (2020).
pubmed: 31722598
doi: 10.1177/0271678X19886667
Lewis, D. et al. Surrogate vascular input function measurements from the superior sagittal sinus are repeatable and provide tissue-validated kinetic parameters in brain DCE-MRI. Sci. Rep. 12, 8737 (2022).
pubmed: 35610281
pmcid: 9130284
doi: 10.1038/s41598-022-12582-x
Nasreddine, Z. S. et al. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 53, 695–699 (2005).
pubmed: 15817019
doi: 10.1111/j.1532-5415.2005.53221.x
Griswold, M. A. et al. Partially parallel imaging with localized sensitivities (PILS). Magn. Reson. Med. 44, 602–609 (2000).
pubmed: 11025516
doi: 10.1002/1522-2594(200010)44:4<602::AID-MRM14>3.0.CO;2-5
Bernstein, M. A. et al. Concomitant gradient terms in phase contrast MR: Analysis and correction. Magn. Reson. Med. 39, 300–308 (1998).
pubmed: 9469714
doi: 10.1002/mrm.1910390218
Chang, L. C. et al. Linear least-squares method for unbiased estimation of T1 from SPGR signals. Magn. Reson. Med. 60, 496–501 (2008).
pubmed: 18666108
pmcid: 4196213
doi: 10.1002/mrm.21669
Sacolick, L. I. et al. B1 mapping by Bloch-Siegert shift. Magn. Reson. Med. 63, 1315–1322 (2010).
pubmed: 20432302
pmcid: 2933656
doi: 10.1002/mrm.22357
Fischl, B. et al. Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron 33, 341–355 (2002).
pubmed: 11832223
doi: 10.1016/S0896-6273(02)00569-X
Klein, A. & Tourville, J. 101 Labeled brain images and a consistent human cortical labeling protocol. Front. Neurosci. 6, 33392. https://doi.org/10.3389/fnins.2012.00171 (2012).
doi: 10.3389/fnins.2012.00171
Hansen, T. I. et al. How does the accuracy of intracranial volume measurements affect normalized brain volumes? Sample size estimates based on 966 subjects from the HUNT MRI cohort. Am. J. Neuroradiol. 36, 1450–1456 (2015).
pubmed: 25857759
pmcid: 7964698
doi: 10.3174/ajnr.A4299
Lee, H.-H., Novikov, D. S. & Fieremans, E. Removal of partial Fourier-induced Gibbs (RPG) ringing artifacts in MRI. Magn. Reson. Med. 86, 2733–2750 (2021).
pubmed: 34227142
pmcid: 9212190
doi: 10.1002/mrm.28830
Greve, D. N. & Fischl, B. Accurate and robust brain image alignment using boundary-based registration. Neuroimage 48, 63–72 (2009).
pubmed: 19573611
doi: 10.1016/j.neuroimage.2009.06.060
Schabel, M. C. & Parker, D. L. Uncertainty and bias in contrast concentration measurements using spoiled gradient echo pulse sequences. Phys Med Biol 53, 2345–2373 (2008).
pubmed: 18421121
pmcid: 2894639
doi: 10.1088/0031-9155/53/9/010
Rohrer, M. et al. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest. Radiol. 40, 715–724 (2005).
pubmed: 16230904
doi: 10.1097/01.rli.0000184756.66360.d3
Heye, A. K. et al. Tracer kinetic modelling for DCE-MRI quantification of subtle blood–brain barrier permeability. Neuroimage 125, 446–455 (2016).
pubmed: 26477653
doi: 10.1016/j.neuroimage.2015.10.018
Larsson, H. B. W. et al. Measurement of brain perfusion, blood volume, and blood–brain barrier permeability, using dynamic contrast-enhanced T1-weighted MRI at 3 tesla. Magn. Reson. Med. 62, 1270–1281 (2009).
pubmed: 19780145
doi: 10.1002/mrm.22136
Manning, C. et al. Sources of systematic error in DCE-MRI estimation of low-level blood–brain barrier leakage. Magn. Reson. Med. 86, 1888–1903 (2021).
pubmed: 34002894
doi: 10.1002/mrm.28833
Jerman, T. et al. Enhancement of vascular structures in 3D and 2D angiographic images. IEEE Trans. Med. Imaging 35, 2107–2118 (2016).
pubmed: 27076353
doi: 10.1109/TMI.2016.2550102
Wåhlin, A. et al. Intracranial pulsatility is associated with regional brain volume in elderly individuals. Neurobiol. Aging 35, 365–372 (2014).
pubmed: 24080175
doi: 10.1016/j.neurobiolaging.2013.08.026
Chagnot, A., Barnes, S. R. & Montagne, A. Magnetic resonance imaging of blood–brain barrier permeability in dementia. Neuroscience 474, 14–29 (2021).
pubmed: 34400249
doi: 10.1016/j.neuroscience.2021.08.003
Hase, Y. et al. White matter capillaries in vascular and neurodegenerative dementias. Acta Neuropathol. Commun. 7, 16 (2019).
pubmed: 30732655
pmcid: 6366070
doi: 10.1186/s40478-019-0666-x
Vikner, T. et al. Cerebral arterial pulsatility is linked to hippocampal microvascular function and episodic memory in healthy older adults. J. Cereb. Blood Flow Metab. 41, 1778–1790 (2021).
pubmed: 33444091
pmcid: 8217890
doi: 10.1177/0271678X20980652
Shao, X. et al. Mapping water exchange across the blood–brain barrier using 3D diffusion-prepared arterial spin labeled perfusion MRI. Magn. Reson. Med. 81, 3065–3079 (2019).
pubmed: 30561821
doi: 10.1002/mrm.27632
Shao, X. et al. Comparison between blood–brain barrier water exchange rate and permeability to gadolinium-based contrast agent in an elderly cohort. Front. Neurosci. 14, 571480 (2020).
pubmed: 33328848
pmcid: 7733970
doi: 10.3389/fnins.2020.571480
Leenders, K. L. et al. Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age. Brain 113(1), 27–47 (1990).
pubmed: 2302536
doi: 10.1093/brain/113.1.27
Miller, M. L. et al. Changes in cerebral arterial pulsatility and hippocampal volume: A transcranial doppler ultrasonography study. Neurobiol. Aging 108, 110–121 (2021).
pubmed: 34555677
doi: 10.1016/j.neurobiolaging.2021.08.014
Vikner, T. et al. 5-Year associations among cerebral arterial pulsatility, perivascular space dilation, and white matter lesions. Ann. Neurol. 92, 871–881 (2022).
pubmed: 36054261
pmcid: 9804392
doi: 10.1002/ana.26475
Wåhlin, A. et al. Phase contrast MRI quantification of pulsatile volumes of brain arteries, veins, and cerebrospinal fluids compartments: Repeatability and physiological interactions. J. Magn. Reson. Imaging 35, 1055–1062 (2012).
pubmed: 22170792
doi: 10.1002/jmri.23527
Ritter, A. et al. The association between Montreal cognitive assessment memory scores and hippocampal volume in a neurodegenerative disease sample. J. Alzheimer’s Dis. 58, 695–699 (2017).
doi: 10.3233/JAD-161241