A deep-learning framework to predict cancer treatment response from histopathology images through imputed transcriptomics.
Journal
Nature cancer
ISSN: 2662-1347
Titre abrégé: Nat Cancer
Pays: England
ID NLM: 101761119
Informations de publication
Date de publication:
03 Jul 2024
03 Jul 2024
Historique:
received:
10
08
2023
accepted:
06
06
2024
medline:
4
7
2024
pubmed:
4
7
2024
entrez:
3
7
2024
Statut:
aheadofprint
Résumé
Advances in artificial intelligence have paved the way for leveraging hematoxylin and eosin-stained tumor slides for precision oncology. We present ENLIGHT-DeepPT, an indirect two-step approach consisting of (1) DeepPT, a deep-learning framework that predicts genome-wide tumor mRNA expression from slides, and (2) ENLIGHT, which predicts response to targeted and immune therapies from the inferred expression values. We show that DeepPT successfully predicts transcriptomics in all 16 The Cancer Genome Atlas cohorts tested and generalizes well to two independent datasets. ENLIGHT-DeepPT successfully predicts true responders in five independent patient cohorts involving four different treatments spanning six cancer types, with an overall odds ratio of 2.28 and a 39.5% increased response rate among predicted responders versus the baseline rate. Notably, its prediction accuracy, obtained without any training on the treatment data, is comparable to that achieved by directly predicting the response from the images, which requires specific training on the treatment evaluation cohorts.
Identifiants
pubmed: 38961276
doi: 10.1038/s43018-024-00793-2
pii: 10.1038/s43018-024-00793-2
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Centre of Excellence for Electromaterials Science, Australian Research Council (ARC Centre of Excellence for Electromaterials Science)
ID : DP190103402
Organisme : Centre of Excellence for Electromaterials Science, Australian Research Council (ARC Centre of Excellence for Electromaterials Science)
ID : DP190103402
Informations de copyright
© 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.
Références
Golub, T. R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999).
pubmed: 10521349
doi: 10.1126/science.286.5439.531
Curtis, C. et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486, 346–352 (2012).
pubmed: 22522925
pmcid: 3440846
doi: 10.1038/nature10983
Doroshow, D. B. & Doroshow, J. H. Genomics and the history of precision oncology. Surg. Oncol. Clin. N. Am. 29, 35–49 (2020).
pubmed: 31757312
doi: 10.1016/j.soc.2019.08.003
Rosenthal, J. et al. Building tools for machine learning and artificial intelligence in cancer research: best practices and a case study with the PathML toolkit for computational pathology. Mol. Cancer Res. 20, 202–206 (2022).
pubmed: 34880124
doi: 10.1158/1541-7786.MCR-21-0665
Ström, P. et al. Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study. Lancet Oncol. 21, 222–232 (2020).
pubmed: 31926806
doi: 10.1016/S1470-2045(19)30738-7
Fu, Y. et al. Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis. Nat. Cancer 1, 800–810 (2020).
pubmed: 35122049
doi: 10.1038/s43018-020-0085-8
Noorbakhsh, J. et al. Deep learning-based cross-classifications reveal conserved spatial behaviors within tumor histological images. Nat. Commun. 11, 6367 (2020).
pubmed: 33311458
pmcid: 7733499
doi: 10.1038/s41467-020-20030-5
Kim, J. et al. Unsupervised discovery of tissue architecture in multiplexed imaging. Nat. Methods 19, 1653–1661 (2022).
pubmed: 36316562
pmcid: 11102857
doi: 10.1038/s41592-022-01657-2
Coudray, N. et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat. Med. 24, 1559–1567 (2018).
pubmed: 30224757
pmcid: 9847512
doi: 10.1038/s41591-018-0177-5
Swiderska-Chadaj, Z. et al. Learning to detect lymphocytes in immunohistochemistry with deep learning. Med. Image Anal. 58, 101547 (2019).
pubmed: 31476576
doi: 10.1016/j.media.2019.101547
Yu, K.-H. et al. Classifying non-small cell lung cancer types and transcriptomic subtypes using convolutional neural networks. J. Am. Med. Inform. Assoc. 27, 757–769 (2020).
pubmed: 32364237
pmcid: 7309263
doi: 10.1093/jamia/ocz230
Couture, H. D. et al. Image analysis with deep learning to predict breast cancer grade, ER status, histologic subtype, and intrinsic subtype. NPJ Breast Cancer 4, 30 (2018).
pubmed: 30182055
pmcid: 6120869
doi: 10.1038/s41523-018-0079-1
Campanella, G. et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 25, 1301–1309 (2019).
pubmed: 31308507
pmcid: 7418463
doi: 10.1038/s41591-019-0508-1
Xu, H. et al. Spatial heterogeneity and organization of tumor mutation burden with immune infiltrates within tumors based on whole slide images correlated with patient survival in bladder cancer. J. Pathol. Inform. 13, 100105 (2022).
pubmed: 36268064
pmcid: 9577053
doi: 10.1016/j.jpi.2022.100105
Kather, J. N. et al. Pan-cancer image-based detection of clinically actionable genetic alterations. Nat. Cancer 1, 789–799 (2020).
pubmed: 33763651
pmcid: 7610412
doi: 10.1038/s43018-020-0087-6
Qu, H. et al. Genetic mutation and biological pathway prediction based on whole slide images in breast carcinoma using deep learning. NPJ Precis. Oncol. 5, 87 (2021).
pubmed: 34556802
pmcid: 8460699
doi: 10.1038/s41698-021-00225-9
Schaumberg, A. J., Rubin, M. A. & Fuchs, T. J. H&E-stained whole slide image deep learning predicts SPOP mutation state in prostate cancer. Preprint at bioRxiv https://doi.org/10.1101/064279 (2018).
Tsou, P. & Wu, C.-J. Mapping driver mutations to histopathological subtypes in papillary thyroid carcinoma: applying a deep convolutional neural network. J. Clin. Med. 8, 1675 (2019).
pubmed: 31614962
pmcid: 6832421
doi: 10.3390/jcm8101675
Chang, P. et al. Deep-learning convolutional neural networks accurately classify genetic mutations in gliomas. AJNR Am. J. Neuroradiol. 39, 1201–1207 (2018).
pubmed: 29748206
pmcid: 6880932
doi: 10.3174/ajnr.A5667
Kather, J. N. et al. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat. Med. 25, 1054–1056 (2019).
pubmed: 31160815
pmcid: 7423299
doi: 10.1038/s41591-019-0462-y
Kim, R. H. et al. A deep learning approach for rapid mutational screening in melanoma. Preprint at bioRxiv https://doi.org/10.1101/610311 (2019).
Chen, M. et al. Classification and mutation prediction based on histopathology H&E images in liver cancer using deep learning. NPJ Precis. Oncol. 4, 14 (2020).
pubmed: 32550270
pmcid: 7280520
doi: 10.1038/s41698-020-0120-3
Ghaffari Laleh, N. et al. Benchmarking weakly-supervised deep learning pipelines for whole slide classification in computational pathology. Med. Image Anal. 79, 102474 (2022).
pubmed: 35588568
doi: 10.1016/j.media.2022.102474
Mobadersany, P. et al. Predicting cancer outcomes from histology and genomics using convolutional networks. Proc. Natl Acad. Sci. USA 115, E2970–E2979 (2018).
pubmed: 29531073
pmcid: 5879673
doi: 10.1073/pnas.1717139115
Cheng, J. et al. Integrative analysis of histopathological images and genomic data predicts clear cell renal cell carcinoma prognosis. Cancer Res. 77, e91–e100 (2017).
pubmed: 29092949
pmcid: 7262576
doi: 10.1158/0008-5472.CAN-17-0313
Beck, A. H. et al. Systematic analysis of breast cancer morphology uncovers stromal features associated with survival. Sci. Transl. Med. 3, 108ra113 (2011).
pubmed: 22072638
doi: 10.1126/scitranslmed.3002564
Bulten, W. et al. Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study. Lancet Oncol. 21, 233–241 (2020).
pubmed: 31926805
doi: 10.1016/S1470-2045(19)30739-9
Courtiol, P. et al. Deep learning-based classification of mesothelioma improves prediction of patient outcome. Nat. Med. 25, 1519–1525 (2019).
pubmed: 31591589
doi: 10.1038/s41591-019-0583-3
Boehm, K. M. et al. Multimodal data integration using machine learning improves risk stratification of high-grade serous ovarian cancer. Nat. Cancer 3, 723–733 (2022).
pubmed: 35764743
pmcid: 9239907
doi: 10.1038/s43018-022-00388-9
Chen, Y. et al. Computational pathology improves risk stratification of a multi-gene assay for early stage ER+ breast cancer. NPJ Breast Cancer 9, 40 (2023).
pubmed: 37198173
pmcid: 10192429
doi: 10.1038/s41523-023-00545-y
Zheng, H., Momeni, A., Cedoz, P.-L., Vogel, H. & Gevaert, O. Whole slide images reflect DNA methylation patterns of human tumors. NPJ Genom. Med. 5, 11 (2020).
pubmed: 32194984
pmcid: 7064513
doi: 10.1038/s41525-020-0120-9
Wang, H. et al. Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features. J. Med. Imaging (Bellingham) 1, 034003 (2014).
pubmed: 26158062
doi: 10.1117/1.JMI.1.3.034003
Turkki, R., Linder, N., Kovanen, P. E., Pellinen, T. & Lundin, J. Antibody-supervised deep learning for quantification of tumor-infiltrating immune cells in hematoxylin and eosin stained breast cancer samples. J. Pathol. Inform. 7, 38 (2016).
pubmed: 27688929
pmcid: 5027738
doi: 10.4103/2153-3539.189703
Saltz, J. et al. Spatial organization and molecular correlation of tumor-infiltrating lymphocytes using deep learning on pathology images. Cell Rep. 23, 181–193 (2018).
pubmed: 29617659
pmcid: 5943714
doi: 10.1016/j.celrep.2018.03.086
Page, D. B. et al. Spatial analyses of immune cell infiltration in cancer: current methods and future directions: a report of the International Immuno-Oncology Biomarker Working Group on Breast Cancer. J. Pathol. 260, 514–532 (2023).
pubmed: 37608771
doi: 10.1002/path.6165
Wang, X. et al. Spatial interplay patterns of cancer nuclei and tumor-infiltrating lymphocytes (TILs) predict clinical benefit for immune checkpoint inhibitors. Sci. Adv. 8, eabn3966 (2022).
pubmed: 35648850
pmcid: 9159577
doi: 10.1126/sciadv.abn3966
Hu, J. et al. Using deep learning to predict anti-PD-1 response in melanoma and lung cancer patients from histopathology images. Transl. Oncol. 14, 100921 (2021).
pubmed: 33129113
doi: 10.1016/j.tranon.2020.100921
Johannet, P. et al. Using machine learning algorithms to predict immunotherapy response in patients with advanced melanoma. Clin. Cancer Res. 27, 131–140 (2021).
pubmed: 33208341
doi: 10.1158/1078-0432.CCR-20-2415
Zhang, F. et al. Predicting treatment response to neoadjuvant chemoradiotherapy in local advanced rectal cancer by biopsy digital pathology image features. Clin. Transl. Med. 10, e110 (2020).
pubmed: 32594660
pmcid: 7403709
doi: 10.1002/ctm2.110
Honomichl, N. HER2 and trastuzumab treatment response H&E slides with tumor ROI annotations (HER2 tumor ROIs). The Cancer Imaging Archive https://doi.org/10.7937/E65C-AM96 (2022).
He, B. et al. Integrating spatial gene expression and breast tumour morphology via deep learning. Nat. Biomed. Eng. 4, 827–834 (2020).
pubmed: 32572199
doi: 10.1038/s41551-020-0578-x
Wang, Y. et al. Predicting molecular phenotypes from histopathology images: a transcriptome-wide expression–morphology analysis in breast cancer. Cancer Res. 81, 5115–5126 (2021).
pubmed: 34341074
pmcid: 9397635
doi: 10.1158/0008-5472.CAN-21-0482
Monjo, T., Koido, M., Nagasawa, S., Suzuki, Y. & Kamatani, Y. Efficient prediction of a spatial transcriptomics profile better characterizes breast cancer tissue sections without costly experimentation. Sci. Rep. 12, 4133 (2022).
pubmed: 35260632
pmcid: 8904587
doi: 10.1038/s41598-022-07685-4
Schmauch, B. et al. A deep learning model to predict RNA-Seq expression of tumours from whole slide images. Nat. Commun. 11, 3877 (2020).
pubmed: 32747659
pmcid: 7400514
doi: 10.1038/s41467-020-17678-4
Levy-Jurgenson, A., Tekpli, X., Kristensen, V. N. & Yakhini, Z. Spatial transcriptomics inferred from pathology whole-slide images links tumor heterogeneity to survival in breast and lung cancer. Sci. Rep. 10, 18802 (2020).
pubmed: 33139755
pmcid: 7606448
doi: 10.1038/s41598-020-75708-z
Alsaafin, A., Safarpoor, A., Sikaroudi, M., Hipp, J. D. & Tizhoosh, H. R. Learning to predict RNA sequence expressions from whole slide images with applications for search and classification. Commun. Biol. 6, 304 (2023).
pubmed: 36949169
pmcid: 10033650
doi: 10.1038/s42003-023-04583-x
Dinstag, G. et al. Clinically oriented prediction of patient response to targeted and immunotherapies from the tumor transcriptome. Med 4, 15–30 (2023).
pubmed: 36513065
doi: 10.1016/j.medj.2022.11.001
Sammut, S.-J. et al. Multi-omic machine learning predictor of breast cancer therapy response. Nature 601, 623–629 (2022).
pubmed: 34875674
doi: 10.1038/s41586-021-04278-5
Zheng, Y. et al. Digital profiling of cancer transcriptomes from histology images with grouped vision attention. Preprint at bioRxiv https://doi.org/10.1101/2023.09.28.560068 (2023).
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).
pubmed: 21376230
doi: 10.1016/j.cell.2011.02.013
Iorio, F. et al. Pathway-based dissection of the genomic heterogeneity of cancer hallmarks’ acquisition with SLAPenrich. Sci. Rep. 8, 6713 (2018).
pubmed: 29713020
pmcid: 5928049
doi: 10.1038/s41598-018-25076-6
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
pubmed: 16199517
pmcid: 1239896
doi: 10.1073/pnas.0506580102
Richardsen, E. et al. Evaluation of the proliferation marker Ki-67 in a large prostatectomy cohort. PLoS ONE 12, e0186852 (2017).
pubmed: 29141018
pmcid: 5687762
doi: 10.1371/journal.pone.0186852
Whitfield, M. L., George, L. K., Grant, G. D. & Perou, C. M. Common markers of proliferation. Nat. Rev. Cancer 6, 99–106 (2006).
pubmed: 16491069
doi: 10.1038/nrc1802
Liberzon, A. et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 1, 417–425 (2015).
pubmed: 26771021
pmcid: 4707969
doi: 10.1016/j.cels.2015.12.004
Farahmand, S. et al. Deep learning trained on hematoxylin and eosin tumor region of interest predicts HER2 status and trastuzumab treatment response in HER2+ breast cancer. Mod. Pathol. 35, 44–51 (2022).
pubmed: 34493825
doi: 10.1038/s41379-021-00911-w
Strauss, J. et al. Bintrafusp alfa, a bifunctional fusion protein targeting TGF-β and PD-L1, in patients with human papillomavirus-associated malignancies. J. Immunother. Cancer 8, e001395 (2020).
pubmed: 33323462
pmcid: 7745517
doi: 10.1136/jitc-2020-001395
Kanopoulos, N., Vasanthavada, N. & Baker, R. L. Design of an image edge detection filter using the Sobel operator. IEEE J. Solid-State Circuits 23, 358–367 (1988).
doi: 10.1109/4.996
Macenko, M. et al. A method for normalizing histology slides for quantitative analysis. in 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro 1107–1110 (IEEE, 2009); https://doi.org/10.1109/ISBI.2009.5193250
He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 770–778 (IEEE, 2016); https://doi.org/10.1109/cvpr.2016.90
Hoang, D.-T. et al. DeepPT: a deep learning model for predicting transcriptomics from histopathology images. Zenodo https://doi.org/10.5281/zenodo.11125591 (2024).