Kinetic features dictate sensorimotor alignment in the superior colliculus.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
03 Jul 2024
03 Jul 2024
Historique:
received:
15
12
2022
accepted:
28
05
2024
medline:
4
7
2024
pubmed:
4
7
2024
entrez:
3
7
2024
Statut:
aheadofprint
Résumé
The execution of goal-oriented behaviours requires a spatially coherent alignment between sensory and motor maps. The current model for sensorimotor transformation in the superior colliculus relies on the topographic mapping of static spatial receptive fields onto movement endpoints
Identifiants
pubmed: 38961292
doi: 10.1038/s41586-024-07619-2
pii: 10.1038/s41586-024-07619-2
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s).
Références
Schiller, P. H. & Stryker, M. Single-unit recording and stimulation in superior colliculus of the alert rhesus monkey. J. Neurophysiol. 35, 915–924 (1972).
pubmed: 4631839
doi: 10.1152/jn.1972.35.6.915
Drager, U. C. & Hubel, D. H. Physiology of visual cells in mouse superior colliculus and correlation with somatosensory and auditory input. Nature 253, 203–204 (1975).
pubmed: 1110771
doi: 10.1038/253203a0
Sparks, D., Rohrer, W. H. & Zhang, Y. The role of the superior colliculus in saccade initiation: a study of express saccades and the gap effect. Vision Res. 40, 2763–2777 (2000).
pubmed: 10960650
doi: 10.1016/S0042-6989(00)00133-4
Marino, R. A., Rodgers, C. K., Levy, R. & Munoz, D. P. Spatial relationships of visuomotor transformations in the superior colliculus map. J. Neurophysiol. 100, 2564–2576 (2008).
pubmed: 18753320
doi: 10.1152/jn.90688.2008
Sadeh, M., Sajad, A., Wang, H. Y., Yan, X. G. & Crawford, J. D. Spatial transformations between superior colliculus visual and motor response fields during head-unrestrained gaze shifts. Eur. J. Neurosci. 42, 2934–2951 (2015).
pubmed: 26448341
doi: 10.1111/ejn.13093
Chen, C. Y., Hoffmann, K. P., Distler, C. & Hafed, Z. M. The foveal visual representation of the primate superior colliculus. Curr. Biol. 29, 2109–2119.e7 (2019).
pubmed: 31257138
doi: 10.1016/j.cub.2019.05.040
Gandhi, N. J. & Katnani, H. A. Motor functions of the superior colliculus. Annu. Rev. Neurosci. 34, 205–231 (2011).
pubmed: 21456962
pmcid: 3641825
doi: 10.1146/annurev-neuro-061010-113728
Harris, L. R. The superior colliculus and movements of the head and eyes in cats. J. Physiol. 300, 367–391 (1980).
pubmed: 6770082
pmcid: 1279360
doi: 10.1113/jphysiol.1980.sp013167
Masullo, L. et al. Genetically defined functional modules for spatial orienting in the mouse superior colliculus. Curr. Biol. 29, 2892–2904.e8 (2019).
pubmed: 31474533
pmcid: 6739420
doi: 10.1016/j.cub.2019.07.083
Stryker, M. P. & Schiller, P. H. Eye and head movements evoked by electrical stimulation of monkey superior colliculus. Exp. Brain Res. 23, 103–112 (1975).
pubmed: 1149845
doi: 10.1007/BF00238733
Masullo, L. & Tripodi, M. Goal-oriented behaviour: the ventral tegmental area in motivated movements. Curr. Biol. 29, R922–R925 (2019).
pubmed: 31593666
doi: 10.1016/j.cub.2019.08.041
González-Rueda, A. & Tripodi, M. Eloge de la fuite: neural circuits for avoiding dangerous situations. Trends Neurosci. 42, 657–659 (2019).
pubmed: 31399288
doi: 10.1016/j.tins.2019.07.006
Sparks, D. L. & Nelson, J. S. Sensory and motor maps in the mammalian superior colliculus. Trends Neurosci. 10, 312–317 (1987).
doi: 10.1016/0166-2236(87)90085-3
Chevalier, G., Vacher, S. & Deniau, J. M. Inhibitory nigral influence on tectospinal neurons, a possible implication of basal ganglia in orienting behavior. Exp. Brain Res. 53, 320–326 (1984).
pubmed: 6705865
doi: 10.1007/BF00238161
Bolton, A. D. et al. A diencephalic dopamine source provides input to the superior colliculus, where D
pubmed: 26565913
doi: 10.1016/j.celrep.2015.09.046
Cang, J., Savier, E., Barchini, J. & Liu, X. Visual function, organization, and development of the mouse superior colliculus. Annu. Rev. Vis. Sci. 4, 239–262 (2018).
pubmed: 29852095
doi: 10.1146/annurev-vision-091517-034142
de Malmazet, D., Kuhn, N. K. & Farrow, K. Retinotopic separation of nasal and temporal motion selectivity in the mouse superior colliculus. Curr. Biol. 28, 2961–2969.e4 (2018).
pubmed: 30174186
doi: 10.1016/j.cub.2018.07.001
Feinberg, E. H. & Meister, M. Orientation columns in the mouse superior colliculus. Nature 519, 229–232 (2015).
pubmed: 25517100
doi: 10.1038/nature14103
Ahmadlou, M. & Heimel, J. A. Preference for concentric orientations in the mouse superior colliculus. Nat. Commun. 6, 6773 (2015).
pubmed: 25832803
doi: 10.1038/ncomms7773
Wheatcroft, T., Saleem, A. B. & Solomon, S. G. Functional organisation of the mouse superior colliculus. Front. Neural Circuits 16, 792959 (2022).
pubmed: 35601532
pmcid: 9118347
doi: 10.3389/fncir.2022.792959
Ito, S., Feldheim, D. A. & Litke, A. M. Segregation of visual response properties in the mouse superior colliculus and their modulation during locomotion. J. Neurosci. 37, 8428–8443 (2017).
pubmed: 28760858
pmcid: 5577856
doi: 10.1523/JNEUROSCI.3689-16.2017
Lee, K. H., Tran, A., Turan, Z. & Meister, M. The sifting of visual information in the superior colliculus. eLife 9, e50678 (2020).
pubmed: 32286224
pmcid: 7237212
doi: 10.7554/eLife.50678
Gordon, B. Receptive fields in deep layers of cat superior colliculus. J. Neurophysiol. 36, 157–178 (1973).
pubmed: 4574712
doi: 10.1152/jn.1973.36.2.157
Jay, M. F. & Sparks, D. L. Sensorimotor integration in the primate superior colliculus. I. Motor convergence. J. Neurophysiol. 57, 22–34 (1987).
pubmed: 3559673
doi: 10.1152/jn.1987.57.1.22
Mays, L. E. & Sparks, D. L. Dissociation of visual and saccade-related responses in superior colliculus neurons. J. Neurophysiol. 43, 207–232 (1980).
pubmed: 6766178
doi: 10.1152/jn.1980.43.1.207
Wurtz, R. H. & Goldberg, M. E. Activity of superior colliculus in behaving monkey. 3. Cells discharging before eye movements. J. Neurophysiol. 35, 575–586 (1972).
pubmed: 4624741
doi: 10.1152/jn.1972.35.4.575
Gale, S. D. & Murphy, G. J. Distinct representation and distribution of visual information by specific cell types in mouse superficial superior colliculus. J. Neurosci. 34, 13458–13471 (2014).
pubmed: 25274823
pmcid: 4180477
doi: 10.1523/JNEUROSCI.2768-14.2014
Isa, T., Endo, T. & Saito, Y. The visuo-motor pathway in the local circuit of the rat superior colliculus. J. Neurosci. 18, 8496–8504 (1998).
pubmed: 9763492
pmcid: 6792861
doi: 10.1523/JNEUROSCI.18-20-08496.1998
Isa, T. & Hall, W. C. Exploring the superior colliculus in vitro. J. Neurophysiol. 102, 2581–2593 (2009).
pubmed: 19710376
pmcid: 2777828
doi: 10.1152/jn.00498.2009
Lee, P. H., Helms, M. C., Augustine, G. J. & Hall, W. C. Role of intrinsic synaptic circuitry in collicular sensorimotor integration. Proc. Natl Acad. Sci. USA 94, 13299–13304 (1997).
pubmed: 9371840
pmcid: 24303
doi: 10.1073/pnas.94.24.13299
Graybiel, A. M. A stereometric pattern of distribution of acetylthiocholinesterase in the deep layers of the superior colliculus. Nature 272, 539–541 (1978).
pubmed: 99660
doi: 10.1038/272539b0
Hoy, J. L., Bishop, H. I. & Niell, C. M. Defined cell types in superior colliculus make distinct contributions to prey capture behavior in the mouse. Curr. Biol. 29, 4130–4138.e5 (2019).
pubmed: 31761701
pmcid: 6925587
doi: 10.1016/j.cub.2019.10.017
Jia, H., Rochefort, N. L., Chen, X. & Konnerth, A. Dendritic organization of sensory input to cortical neurons in vivo. Nature 464, 1307–1312 (2010).
pubmed: 20428163
doi: 10.1038/nature08947
Fenno, L. E. et al. Comprehensive dual- and triple-feature intersectional single-vector delivery of diverse functional payloads to cells of behaving mammals. Neuron 107, 836–853.e11 (2020).
pubmed: 32574559
pmcid: 7687746
doi: 10.1016/j.neuron.2020.06.003
Ciabatti, E., González-Rueda, A., Mariotti, L., Morgese, F. & Tripodi, M. Life-long genetic and functional access to neural circuits using self-inactivating rabies virus. Cell 170, 382–392.e14 (2017).
pubmed: 28689641
pmcid: 5509544
doi: 10.1016/j.cell.2017.06.014
Lee, H. S. et al. Combining long-term circuit mapping and network transcriptomics with SiR-N2c. Nat. Methods 20, 580–589 (2023).
pubmed: 36864202
pmcid: 7614628
doi: 10.1038/s41592-023-01787-1
Ciabatti, E. et al. Genomic stability of self-inactivating rabies. eLife 12, e83459 (2023).
pubmed: 37921437
pmcid: 10666929
doi: 10.7554/eLife.83459
Wilson, J. J., Alexandre, N., Trentin, C. & Tripodi, M. Three-dimensional representation of motor space in the mouse superior colliculus. Curr. Biol. 28, 1744–1755.e12 (2018).
pubmed: 29779875
pmcid: 5988568
doi: 10.1016/j.cub.2018.04.021
Schiller, P. H. & Koerner, F. Discharge characteristics of single units in superior colliculus of the alert rhesus monkey. J. Neurophysiol. 34, 920–936 (1971).
pubmed: 4999593
doi: 10.1152/jn.1971.34.5.920
Meyer, A. F., O’Keefe, J. & Poort, J. Two distinct types of eye–head coupling in freely moving mice. Curr. Biol. 30, 2116–2130.e6 (2020).
pubmed: 32413309
pmcid: 7284311
doi: 10.1016/j.cub.2020.04.042
Michaiel, A. M., Abe, E. T. & Niell, C. M. Dynamics of gaze control during prey capture in freely moving mice. eLife 9, e57458 (2020).
pubmed: 32706335
pmcid: 7438109
doi: 10.7554/eLife.57458
Li, Y. T., Turan, Z. & Meister, M. Functional architecture of motion direction in the mouse superior colliculus. Curr. Biol. 30, 3304–3315.e4 (2020).
pubmed: 32649907
pmcid: 8221388
doi: 10.1016/j.cub.2020.06.023
Itti, L., Koch, C. & Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. 20, 1254–1259 (1998).
doi: 10.1109/34.730558
Veale, R., Hafed, Z. M. & Yoshida, M. How is visual salience computed in the brain? Insights from behaviour, neurobiology and modelling. Philos. Trans. R. Soc. B 372, 20160113 (2017).
doi: 10.1098/rstb.2016.0113
Wurtz, R. H. & Albano, J. E. Visual-motor function of the primate superior colliculus. Annu. Rev. Neurosci. 3, 189–226 (1980).
pubmed: 6774653
doi: 10.1146/annurev.ne.03.030180.001201
Horwitz, G. D. & Newsome, W. T. Separate signals for target selection and movement specification in the superior colliculus. Science 284, 1158–1161 (1999).
pubmed: 10325224
doi: 10.1126/science.284.5417.1158
Engert, F., Tao, H. W., Zhang, L. I. & Poo, M. M. Moving visual stimuli rapidly induce direction sensitivity of developing tectal neurons. Nature 419, 470–475 (2002).
pubmed: 12368854
doi: 10.1038/nature00988
Linkenhoker, B. A. & Knudsen, E. I. Incremental training increases the plasticity of the auditory space map in adult barn owls. Nature 419, 293–296 (2002).
pubmed: 12239566
doi: 10.1038/nature01002
Evans, D. A. et al. A synaptic threshold mechanism for computing escape decisions. Nature 558, 590–594 (2018).
pubmed: 29925954
pmcid: 6235113
doi: 10.1038/s41586-018-0244-6
De Franceschi, G., Vivattanasarn, T., Saleem, A. B. & Solomon, S. G. Vision guides selection of freeze or flight defense strategies in mice. Curr. Biol. 26, 2150–2154 (2016).
pubmed: 27498569
doi: 10.1016/j.cub.2016.06.006
Benavidez, N. L. et al. Organization of the inputs and outputs of the mouse superior colliculus. Nat. Commun. 12, 4004 (2021).
pubmed: 34183678
pmcid: 8239028
doi: 10.1038/s41467-021-24241-2
Baden, T., Euler, T. & Berens, P. Understanding the retinal basis of vision across species. Nat. Rev. Neurosci. 21, 5–20 (2020).
pubmed: 31780820
doi: 10.1038/s41583-019-0242-1
Campagner, D. et al. A cortico-collicular circuit for orienting to shelter during escape. Nature 613, 111–119 (2023).
pubmed: 36544025
doi: 10.1038/s41586-022-05553-9
Kadakia, N. et al. Odour motion sensing enhances navigation of complex plumes. Nature 611, 754–761 (2022).
pubmed: 36352224
pmcid: 10039482
doi: 10.1038/s41586-022-05423-4
Chapman, J. W. et al. Animal orientation strategies for movement in flows. Curr. Biol. 21, R861–R870 (2011).
pubmed: 22032194
doi: 10.1016/j.cub.2011.08.014
González-Rueda, A., Pedrosa, V., Feord, R. C., Clopath, C. & Paulsen, O. Activity-dependent downscaling of subthreshold synaptic inputs during slow-wave-sleep-like activity in vivo. Neuron 97, 1244–1252.e5 (2018).
pubmed: 29503184
pmcid: 5873548
doi: 10.1016/j.neuron.2018.01.047
Anikeeva, P. et al. Optetrode: a multichannel readout for optogenetic control in freely moving mice. Nat. Neurosci. 15, 163–170 (2012).
doi: 10.1038/nn.2992
Giovannucci, A. et al. CaImAn: an open source tool for scalable calcium imaging data analysis. eLife 8, e38173 (2019).
pubmed: 30652683
pmcid: 6342523
doi: 10.7554/eLife.38173
Meyer, A. F., Poort, J., O’Keefe, J., Sahani, M. & Linden, J. F. A head-mounted camera system integrates detailed behavioral monitoring with multichannel electrophysiology in freely moving mice. Neuron 100, 46–60.e7 (2018).
pubmed: 30308171
pmcid: 6195680
doi: 10.1016/j.neuron.2018.09.020
Khan, A. & Mathelier, A. Intervene: a tool for intersection and visualization of multiple gene or genomic region sets. BMC Bioinformatics 18, 287 (2017).
pubmed: 28569135
pmcid: 5452382
doi: 10.1186/s12859-017-1708-7
Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21, 1281–1289 (2018).
pubmed: 30127430
doi: 10.1038/s41593-018-0209-y
Sakatani, T. & Isa, T. PC-based high-speed video-oculography for measuring rapid eye movements in mice. Neurosci. Res. 49, 123–131 (2004).
pubmed: 15099710
doi: 10.1016/j.neures.2004.02.002
Dai, J. S. Euler–Rodrigues formula variations, quaternion conjugation and intrinsic connections. Mech. Mach. Theory 92, 144–152 (2015).
doi: 10.1016/j.mechmachtheory.2015.03.004
González-Rueda, A. et al. Kinetic features dictate sensorimotor alignment in the superior colliculus. Zenodo https://doi.org/10.5281/zenodo.11105001 (2024).