Impaired ATP hydrolysis in blood plasma contributes to age-related neutrophil dysfunction.

ATP hydrolysis Aging Mice Neutrophil dysfunction Purinergic signaling

Journal

Immunity & ageing : I & A
ISSN: 1742-4933
Titre abrégé: Immun Ageing
Pays: England
ID NLM: 101235427

Informations de publication

Date de publication:
03 Jul 2024
Historique:
received: 29 02 2024
accepted: 29 05 2024
medline: 4 7 2024
pubmed: 4 7 2024
entrez: 3 7 2024
Statut: epublish

Résumé

The function of polymorphonuclear neutrophils (PMNs) decreases with age, which results in infectious and inflammatory complications in older individuals. The underlying causes are not fully understood. ATP release and autocrine stimulation of purinergic receptors help PMNs combat microbial invaders. Excessive extracellular ATP interferes with these mechanisms and promotes inflammatory PMN responses. Here, we studied whether dysregulated purinergic signaling in PMNs contributes to their dysfunction in older individuals. Bacterial infection of C57BL/6 mice resulted in exaggerated PMN activation that was significantly greater in old mice (64 weeks) than in young animals (10 weeks). In contrast to young animals, old mice were unable to prevent the systemic spread of bacteria, resulting in lethal sepsis and significantly greater mortality in old mice than in their younger counterparts. We found that the ATP levels in the plasma of mice increased with age and that, along with the extracellular accumulation of ATP, the PMNs of old mice became increasingly primed. Stimulation of the formyl peptide receptors of those primed PMNs triggered inflammatory responses that were significantly more pronounced in old mice than in young animals. However, bacterial phagocytosis and killing by PMNs of old mice were significantly lower than that of young mice. These age-dependent PMN dysfunctions correlated with a decrease in the enzymatic activity of plasma ATPases that convert extracellular ATP to adenosine. ATPases depend on divalent metal ions, including Ca Our findings suggest that impaired hydrolysis of plasma ATP dysregulates PMN function in older individuals. We conclude that strategies aimed at restoring plasma ATPase activity may offer novel therapeutic opportunities to reduce immune dysfunction, inflammation, and infectious complications in older patients.

Sections du résumé

BACKGROUND BACKGROUND
The function of polymorphonuclear neutrophils (PMNs) decreases with age, which results in infectious and inflammatory complications in older individuals. The underlying causes are not fully understood. ATP release and autocrine stimulation of purinergic receptors help PMNs combat microbial invaders. Excessive extracellular ATP interferes with these mechanisms and promotes inflammatory PMN responses. Here, we studied whether dysregulated purinergic signaling in PMNs contributes to their dysfunction in older individuals.
RESULTS RESULTS
Bacterial infection of C57BL/6 mice resulted in exaggerated PMN activation that was significantly greater in old mice (64 weeks) than in young animals (10 weeks). In contrast to young animals, old mice were unable to prevent the systemic spread of bacteria, resulting in lethal sepsis and significantly greater mortality in old mice than in their younger counterparts. We found that the ATP levels in the plasma of mice increased with age and that, along with the extracellular accumulation of ATP, the PMNs of old mice became increasingly primed. Stimulation of the formyl peptide receptors of those primed PMNs triggered inflammatory responses that were significantly more pronounced in old mice than in young animals. However, bacterial phagocytosis and killing by PMNs of old mice were significantly lower than that of young mice. These age-dependent PMN dysfunctions correlated with a decrease in the enzymatic activity of plasma ATPases that convert extracellular ATP to adenosine. ATPases depend on divalent metal ions, including Ca
CONCLUSIONS CONCLUSIONS
Our findings suggest that impaired hydrolysis of plasma ATP dysregulates PMN function in older individuals. We conclude that strategies aimed at restoring plasma ATPase activity may offer novel therapeutic opportunities to reduce immune dysfunction, inflammation, and infectious complications in older patients.

Identifiants

pubmed: 38961477
doi: 10.1186/s12979-024-00441-4
pii: 10.1186/s12979-024-00441-4
doi:

Types de publication

Journal Article

Langues

eng

Pagination

45

Subventions

Organisme : NIH HHS
ID : R35 GM-136429
Pays : United States

Informations de copyright

© 2024. The Author(s).

Références

Goronzy JJ, Weyand CM. Understanding immunosenescence to improve responses to vaccines. Nat Immunol. 2013;14(5):428–36.
pubmed: 23598398 pmcid: 4183346 doi: 10.1038/ni.2588
Nikolich-Žugich J. The twilight of immunity: emerging concepts in aging of the immune system. Nat Immunol. 2018;19(1):10–9.
pubmed: 29242543 doi: 10.1038/s41590-017-0006-x
Liu Z, Liang Q, Ren Y, Guo C, Ge X, Wang L, et al. Immunosenescence: molecular mechanisms and diseases. Signal Transduct Target Ther. 2023;8(1):200.
pubmed: 37179335 pmcid: 10182360 doi: 10.1038/s41392-023-01451-2
Brubaker AL, Rendon JL, Ramirez L, Choudhry MA, Kovacs EJ. Reduced neutrophil chemotaxis and infiltration contributes to delayed resolution of cutaneous wound infection with advanced age. J Immunol. 2013;190(4):1746–57.
pubmed: 23319733 doi: 10.4049/jimmunol.1201213
Barkaway A, Rolas L, Joulia R, Bodkin J, Lenn T, Owen-Woods C, et al. Age-related changes in the local milieu of inflamed tissues cause aberrant neutrophil trafficking and subsequent remote organ damage. Immunity. 2021;54(7):1494–e5107.
pubmed: 34033752 pmcid: 8284598 doi: 10.1016/j.immuni.2021.04.025
Van Avondt K, Strecker JK, Tulotta C, Minnerup J, Schulz C, Soehnlein O. Neutrophils in aging and aging-related pathologies. Immunol Rev. 2023;314(1):357–75.
pubmed: 36315403 doi: 10.1111/imr.13153
Ley K, Hoffman HM, Kubes P, Cassatella MA, Zychlinsky A, Hedrick CC, Catz SD. Neutrophils: new insights and open questions. Sci Immunol. 2018;3(30).
Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464(7285):104–7.
pubmed: 20203610 pmcid: 2843437 doi: 10.1038/nature08780
Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 2013;13(3):159–75.
pubmed: 23435331 doi: 10.1038/nri3399
Junger WG. Immune cell regulation by autocrine purinergic signalling. Nat Rev Immunol. 2011;11(3):201–12.
pubmed: 21331080 pmcid: 4209705 doi: 10.1038/nri2938
Khakh BS, Burnstock G. The double life of ATP. Sci Am. 2009;301(6):84–90. 2.
pubmed: 20058644 pmcid: 2877495 doi: 10.1038/scientificamerican1209-84
Ralevic V, Burnstock G. Receptors for purines and pyrimidines. Pharmacol Rev. 1998;50(3):413–92.
pubmed: 9755289
Chen Y, Yao Y, Sumi Y, Li A, To UK, Elkhal A, et al. Purinergic signaling: a fundamental mechanism in neutrophil activation. Sci Signal. 2010;3(125):ra45.
pubmed: 20530802 pmcid: 4209711 doi: 10.1126/scisignal.2000549
Yegutkin GG. Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade. Biochim Biophys Acta. 2008;1783(5):673–94.
pubmed: 18302942 doi: 10.1016/j.bbamcr.2008.01.024
Bao Y, Ledderose C, Seier T, Graf AF, Brix B, Chong E, Junger WG. Mitochondria regulate neutrophil activation by generating ATP for autocrine purinergic signaling. J Biol Chem. 2014;289(39):26794–803.
pubmed: 25104353 pmcid: 4175322 doi: 10.1074/jbc.M114.572495
Chen Y, Corriden R, Inoue Y, Yip L, Hashiguchi N, Zinkernagel A, et al. ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science. 2006;314(5806):1792–5.
pubmed: 17170310 doi: 10.1126/science.1132559
Bao Y, Chen Y, Ledderose C, Li L, Junger WG. Pannexin 1 channels link chemoattractant receptor signaling to local excitation and global inhibition responses at the front and back of polarized neutrophils. J Biol Chem. 2013;288(31):22650–7.
pubmed: 23798685 pmcid: 3829350 doi: 10.1074/jbc.M113.476283
Li X, Kondo Y, Bao Y, Staudenmaier L, Lee A, Zhang J, et al. Systemic adenosine triphosphate impairs neutrophil chemotaxis and Host Defense in Sepsis. Crit Care Med. 2017;45(1):e97–104.
pubmed: 27548819 pmcid: 5546305 doi: 10.1097/CCM.0000000000002052
Kondo Y, Ledderose C, Slubowski CJ, Fakhari M, Sumi Y, Sueyoshi K, et al. Frontline Science: Escherichia coli use LPS as decoy to impair neutrophil chemotaxis and defeat antimicrobial host defense. J Leukoc Biol. 2019;106(6):1211–9.
pubmed: 31392789 doi: 10.1002/JLB.4HI0319-109R
Brown KA, Brain SD, Pearson JD, Edgeworth JD, Lewis SM, Treacher DF. Neutrophils in development of multiple organ failure in sepsis. Lancet. 2006;368(9530):157–69.
pubmed: 16829300 doi: 10.1016/S0140-6736(06)69005-3
Kangelaris KN, Prakash A, Liu KD, Aouizerat B, Woodruff PG, Erle DJ, et al. Increased expression of neutrophil-related genes in patients with early sepsis-induced ARDS. Am J Physiol Lung Cell Mol Physiol. 2015;308(11):L1102–13.
pubmed: 25795726 pmcid: 4451399 doi: 10.1152/ajplung.00380.2014
McKenna E, Wubben R, Isaza-Correa JM, Melo AM, Mhaonaigh AU, Conlon N, et al. Neutrophils in COVID-19: not innocent bystanders. Front Immunol. 2022;13:864387.
pubmed: 35720378 pmcid: 9199383 doi: 10.3389/fimmu.2022.864387
Dunning J, Blankley S, Hoang LT, Cox M, Graham CM, James PL, et al. Progression of whole-blood transcriptional signatures from interferon-induced to neutrophil-associated patterns in severe influenza. Nat Immunol. 2018;19(6):625–35.
pubmed: 29777224 pmcid: 5985949 doi: 10.1038/s41590-018-0111-5
Grudzinska FS, Brodlie M, Scholefield BR, Jackson T, Scott A, Thickett DR, Sapey E. Neutrophils in community-acquired pneumonia: parallels in dysfunction at the extremes of age. Thorax. 2020;75(2):164–71.
pubmed: 31732687 doi: 10.1136/thoraxjnl-2018-212826
Akbar AN, Gilroy DW. Aging immunity may exacerbate COVID-19. Science. 2020;369(6501):256–7.
pubmed: 32675364 doi: 10.1126/science.abb0762
Kulkarni U, Zemans RL, Smith CA, Wood SC, Deng JC, Goldstein DR. Excessive neutrophil levels in the lung underlie the age-associated increase in influenza mortality. Mucosal Immunol. 2019;12(2):545–54.
pubmed: 30617300 pmcid: 6375784 doi: 10.1038/s41385-018-0115-3
Sapey E, Patel JM, Greenwood HL, Walton GM, Hazeldine J, Sadhra C, et al. Pulmonary infections in the Elderly lead to impaired neutrophil targeting, which is improved by Simvastatin. Am J Respir Crit Care Med. 2017;196(10):1325–36.
pubmed: 28657793 pmcid: 5694832 doi: 10.1164/rccm.201704-0814OC
Ledderose C, Hashiguchi N, Valsami EA, Rusu C, Junger WG. Optimized flow cytometry assays to monitor neutrophil activation in human and mouse whole blood samples. J Immunol Methods. 2023;512:113403.
pubmed: 36502881 doi: 10.1016/j.jim.2022.113403
Ledderose C, Valsami EA, Junger WG. Optimized HPLC method to elucidate the complex purinergic signaling dynamics that regulate ATP, ADP, AMP, and adenosine levels in human blood. Purinergic Signal. 2022;18(2):223–39.
pubmed: 35132577 pmcid: 9123122 doi: 10.1007/s11302-022-09842-w
Ledderose C, Valsami EA, Elevado M, Junger WG. ATP release from influenza-infected lungs enhances neutrophil activation and promotes disease progression. J Infect Dis. 2023.
Sumi Y, Ledderose C, Li L, Inoue Y, Okamoto K, Kondo Y, et al. Plasma adenylate levels are elevated in cardiopulmonary arrest patients and May Predict Mortality. Shock. 2019;51(6):698–705.
pubmed: 30052576 pmcid: 6347542 doi: 10.1097/SHK.0000000000001227
Sumi Y, Woehrle T, Chen Y, Bao Y, Li X, Yao Y, et al. Plasma ATP is required for neutrophil activation in a mouse sepsis model. Shock. 2014;42(2):142–7.
pubmed: 24675414 pmcid: 4107005 doi: 10.1097/SHK.0000000000000180
Junger WG. Purinergic regulation of neutrophil chemotaxis. Cell Mol Life Sci. 2008;65(16):2528–40.
pubmed: 18463789 pmcid: 4214070 doi: 10.1007/s00018-008-8095-1
Rørvig S, Østergaard O, Heegaard NH, Borregaard N. Proteome profiling of human neutrophil granule subsets, secretory vesicles, and cell membrane: correlation with transcriptome profiling of neutrophil precursors. J Leukoc Biol. 2013;94(4):711–21.
pubmed: 23650620 doi: 10.1189/jlb.1212619
Othman A, Sekheri M, Filep JG. Roles of neutrophil granule proteins in orchestrating inflammation and immunity. Febs J. 2022;289(14):3932–53.
pubmed: 33683814 doi: 10.1111/febs.15803
Herrero-Cervera A, Soehnlein O, Kenne E. Neutrophils in chronic inflammatory diseases. Cell Mol Immunol. 2022;19(2):177–91.
pubmed: 35039631 pmcid: 8803838 doi: 10.1038/s41423-021-00832-3
Wang X, Chen D. Purinergic regulation of neutrophil function. Front Immunol. 2018;9:399.
pubmed: 29545806 pmcid: 5837999 doi: 10.3389/fimmu.2018.00399
Bao Y, Ledderose C, Graf AF, Brix B, Birsak T, Lee A, et al. mTOR and differential activation of mitochondria orchestrate neutrophil chemotaxis. J Cell Biol. 2015;210(7):1153–64.
pubmed: 26416965 pmcid: 4586745 doi: 10.1083/jcb.201503066
Borza R, Salgado-Polo F, Moolenaar WH, Perrakis A. Structure and function of the ecto-nucleotide pyrophosphatase/phosphodiesterase (ENPP) family: tidying up diversity. J Biol Chem. 2022;298(2):101526.
pubmed: 34958798 doi: 10.1016/j.jbc.2021.101526
Takeda TA, Miyazaki S, Kobayashi M, Nishino K, Goto T, Matsunaga M, et al. Zinc deficiency causes delayed ATP clearance and adenosine generation in rats and cell culture models. Commun Biol. 2018;1:113.
pubmed: 30271993 pmcid: 6123718 doi: 10.1038/s42003-018-0118-3
Yegutkin GG, Samburski SS, Jalkanen S. Soluble purine-converting enzymes circulate in human blood and regulate extracellular ATP level via counteracting pyrophosphatase and phosphotransfer reactions. Faseb j. 2003;17(10):1328–30.
pubmed: 12759341 doi: 10.1096/fj.02-1136fje
Stefan C, Jansen S, Bollen M. NPP-type ectophosphodiesterases: unity in diversity. Trends Biochem Sci. 2005;30(10):542–50.
pubmed: 16125936 doi: 10.1016/j.tibs.2005.08.005
Zimmermann H. Ectonucleoside triphosphate diphosphohydrolases and ecto-5’-nucleotidase in purinergic signaling: how the field developed and where we are now. Purinergic Signal. 2021;17(1):117–25.
pubmed: 33336318 doi: 10.1007/s11302-020-09755-6
Wright HL, Moots RJ, Bucknall RC, Edwards SW. Neutrophil function in inflammation and inflammatory diseases. Rheumatology (Oxford). 2010;49(9):1618–31.
pubmed: 20338884 doi: 10.1093/rheumatology/keq045
Rubenich DS, de Souza PO, Omizzollo N, Lenz GS, Sevigny J, Braganhol E. Neutrophils: fast and furious-the nucleotide pathway. Purinergic Signal. 2021;17(3):371–83.
pubmed: 33913070 pmcid: 8410927 doi: 10.1007/s11302-021-09786-7
Simard T, Jung R, Labinaz A, Faraz MA, Ramirez FD, Di Santo P, et al. Evaluation of Plasma Adenosine as a marker of Cardiovascular Risk: Analytical and Biological considerations. J Am Heart Assoc. 2019;8(15):e012228.
pubmed: 31379241 pmcid: 6761640 doi: 10.1161/JAHA.119.012228
Ledderose C, Valsami EA, Newhams M, Elevado MJ, Novak T, Randolph AG, Junger WG. ATP breakdown in plasma of children limits the antimicrobial effectiveness of their neutrophils. Purinergic Signal. 2023;19(4):651–62.
pubmed: 36596963 pmcid: 10754799 doi: 10.1007/s11302-022-09915-w
Bowers SM, Gibson KM, Cabral DA, Brown KL. Adenosine deaminase 2 activity negatively correlates with age during childhood. Pediatr Rheumatol Online J. 2020;18(1):54.
pubmed: 32650798 pmcid: 7350767 doi: 10.1186/s12969-020-00446-5
Crooke A, Martínez-Henández J, Martínez-López J, Cruz-Jentoft A, Huete-Toral F, Pintor J. Low expression of CD39 and CD73 genes in centenarians compared with octogenarians. Immun Ageing. 2017;14:11.
pubmed: 28529533 pmcid: 5437401 doi: 10.1186/s12979-017-0094-3
Winther M, Dahlgren C, Forsman H. Formyl peptide receptors in mice and men: similarities and differences in Recognition of Conventional Ligands and modulating Lipopeptides. Basic Clin Pharmacol Toxicol. 2018;122(2):191–8.
pubmed: 28881079 doi: 10.1111/bcpt.12903
Bidula S, Dhuna K, Helliwell R, Stokes L. Positive allosteric modulation of P2X7 promotes apoptotic cell death over lytic cell death responses in macrophages. Cell Death Dis. 2019;10(12):882.
pubmed: 31767863 pmcid: 6877589 doi: 10.1038/s41419-019-2110-3
Vaughan KR, Stokes L, Prince LR, Marriott HM, Meis S, Kassack MU, et al. Inhibition of neutrophil apoptosis by ATP is mediated by the P2Y11 receptor. J Immunol. 2007;179(12):8544–53.
pubmed: 18056402 doi: 10.4049/jimmunol.179.12.8544
Kronlage M, Song J, Sorokin L, Isfort K, Schwerdtle T, Leipziger J, et al. Autocrine purinergic receptor signaling is essential for macrophage chemotaxis. Sci Signal. 2010;3(132):ra55.
pubmed: 20664064 doi: 10.1126/scisignal.2000588
Di Virgilio F, Dal Ben D, Sarti AC, Giuliani AL, Falzoni S. The P2X7 Receptor in Infection and Inflammation. Immunity. 2017;47(1):15–31.
pubmed: 28723547 doi: 10.1016/j.immuni.2017.06.020
Csóka B, Németh ZH, Szabó I, Davies DL, Varga ZV, Pálóczi J et al. Macrophage P2X4 receptors augment bacterial killing and protect against sepsis. JCI Insight. 2018;3(11).
Moss CE, Phipps H, Wilson HL, Kiss-Toth E. Markers of the ageing macrophage: a systematic review and meta-analysis. Front Immunol. 2023;14:1222308.
pubmed: 37520567 pmcid: 10373068 doi: 10.3389/fimmu.2023.1222308
Zimmermann H, Zebisch M, Sträter N. Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal. 2012;8(3):437–502.
pubmed: 22555564 pmcid: 3360096 doi: 10.1007/s11302-012-9309-4
Wang TF, Guidotti G. CD39 is an ecto-(Ca2+,Mg2+)-apyrase. J Biol Chem. 1996;271(17):9898–901.
pubmed: 8626624 doi: 10.1074/jbc.271.17.9898
Zebisch M, Krauss M, Schäfer P, Lauble P, Sträter N. Crystallographic snapshots along the reaction pathway of nucleoside triphosphate diphosphohydrolases. Structure. 2013;21(8):1460–75.
pubmed: 23830739 doi: 10.1016/j.str.2013.05.016
ter Borg S, Verlaan S, Hemsworth J, Mijnarends DM, Schols JM, Luiking YC, de Groot LC. Micronutrient intakes and potential inadequacies of community-dwelling older adults: a systematic review. Br J Nutr. 2015;113(8):1195–206.
pubmed: 25822905 pmcid: 4531469 doi: 10.1017/S0007114515000203
Bao S, Liu MJ, Lee B, Besecker B, Lai JP, Guttridge DC, Knoell DL. Zinc modulates the innate immune response in vivo to polymicrobial sepsis through regulation of NF-kappaB. Am J Physiol Lung Cell Mol Physiol. 2010;298(6):L744–54.
pubmed: 20207754 pmcid: 2886607 doi: 10.1152/ajplung.00368.2009
Prasad AS. Zinc: role in immunity, oxidative stress and chronic inflammation. Curr Opin Clin Nutr Metab Care. 2009;12(6):646–52.
pubmed: 19710611 doi: 10.1097/MCO.0b013e3283312956
Kuźmicka W, Manda-Handzlik A, Cieloch A, Mroczek A, Demkow U, Wachowska M, Ciepiela O. Zinc Supplementation Modulates NETs Release and Neutrophils’ Degranulation. Nutrients. 2020;13(1).
Wong CP, Song Y, Elias VD, Magnusson KR, Ho E. Zinc supplementation increases zinc status and thymopoiesis in aged mice. J Nutr. 2009;139(7):1393–7.
pubmed: 19474155 pmcid: 2696991 doi: 10.3945/jn.109.106021
Prasad AS, Beck FW, Bao B, Fitzgerald JT, Snell DC, Steinberg JD, Cardozo LJ. Zinc supplementation decreases incidence of infections in the elderly: effect of zinc on generation of cytokines and oxidative stress. Am J Clin Nutr. 2007;85(3):837–44.
pubmed: 17344507 doi: 10.1093/ajcn/85.3.837

Auteurs

Carola Ledderose (C)

Department of Surgery, University of California, San Diego Health, 9452 Medical Ctr Dr, La Jolla, San Diego, CA, 92037, USA.
Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.

Eleftheria-Angeliki Valsami (EA)

Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.

Mark Elevado (M)

Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.

Qing Liu (Q)

Department of Surgery, University of California, San Diego Health, 9452 Medical Ctr Dr, La Jolla, San Diego, CA, 92037, USA.

Brennan Giva (B)

Department of Surgery, University of California, San Diego Health, 9452 Medical Ctr Dr, La Jolla, San Diego, CA, 92037, USA.

Julian Curatolo (J)

Department of Surgery, University of California, San Diego Health, 9452 Medical Ctr Dr, La Jolla, San Diego, CA, 92037, USA.

Joshua Delfin (J)

Department of Surgery, University of California, San Diego Health, 9452 Medical Ctr Dr, La Jolla, San Diego, CA, 92037, USA.

Reem Abutabikh (R)

Department of Surgery, University of California, San Diego Health, 9452 Medical Ctr Dr, La Jolla, San Diego, CA, 92037, USA.

Wolfgang G Junger (WG)

Department of Surgery, University of California, San Diego Health, 9452 Medical Ctr Dr, La Jolla, San Diego, CA, 92037, USA. wgjunger@health.ucsd.edu.
Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA. wgjunger@health.ucsd.edu.

Classifications MeSH