The root-knot nematode effector MiEFF12 targets the host ER quality control system to suppress immune responses and allow parasitism.


Journal

Molecular plant pathology
ISSN: 1364-3703
Titre abrégé: Mol Plant Pathol
Pays: England
ID NLM: 100954969

Informations de publication

Date de publication:
Jul 2024
Historique:
received: 07 06 2024
accepted: 17 06 2024
medline: 4 7 2024
pubmed: 4 7 2024
entrez: 4 7 2024
Statut: ppublish

Résumé

Root-knot nematodes (RKNs) are microscopic parasitic worms able to infest the roots of thousands of plant species, causing massive crop yield losses worldwide. They evade the plant's immune system and manipulate plant cell physiology and metabolism to transform a few root cells into giant cells, which serve as feeding sites for the nematode. RKN parasitism is facilitated by the secretion in planta of effector molecules, mostly proteins that hijack host cellular processes. We describe here a conserved RKN-specific effector, effector 12 (EFF12), that is synthesized exclusively in the oesophageal glands of the nematode, and we demonstrate its function in parasitism. In the plant, MiEFF12 localizes to the endoplasmic reticulum (ER). A combination of RNA-sequencing analysis and immunity-suppression bioassays revealed the contribution of MiEFF12 to the modulation of host immunity. Yeast two-hybrid, split luciferase and co-immunoprecipitation approaches identified an essential component of the ER quality control system, the Solanum lycopersicum plant bap-like (PBL), and basic leucine zipper 60 (BZIP60) proteins as host targets of MiEFF12. Finally, silencing the PBL genes in Nicotiana benthamiana decreased susceptibility to Meloidogyne incognita infection. Our results suggest that EFF12 manipulates PBL function to modify plant immune responses to allow parasitism.

Identifiants

pubmed: 38961768
doi: 10.1111/mpp.13491
doi:

Substances chimiques

Helminth Proteins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e13491

Subventions

Organisme : IDEX UCAJedi
ID : ANR-15-IDEX-0001
Organisme : ANR MASH
ID : ANR-21-CE20-0002
Organisme : LabEx Saclay Plant Sciences
ID : ANR-10-LABX-40
Organisme : National Key Research and Development Program of China
ID : 2023YFD1400400
Organisme : LabEx Signalife
ID : ANR-11-LABX-0028-01

Informations de copyright

© 2024 The Author(s). Molecular Plant Pathology published by British Society for Plant Pathology and John Wiley & Sons Ltd.

Références

Abad, P., Gouzy, J., Aury, J.M., Castagnone‐Sereno, P., Danchin, E.G., Deleury, E. et al. (2008) Genome sequence of the metazoan plant‐parasitic nematode Meloidogyne incognita. Nature Biotechnology, 26, 909–915.
Atabekova, A.K., Pankratenko, A.V., Makarova, S.S., Lazareva, E.A., Owens, R.A., Solovyev, A.G. et al. (2017) Phylogenetic and functional analyses of a plant protein related to human B‐cell receptor‐associated proteins. Biochimie, 132, 28–37.
Bao, Y. & Howell, S.H. (2017) The unfolded protein response supports plant development and defense as well as responses to abiotic stress. Frontiers in Plant Science, 8, 344.
Berger, A., Boscari, A., Horta Araújo, N., Maucourt, M., Hanchi, M., Bernillon, S. et al. (2020) Plant nitrate reductases regulate nitric oxide production and nitrogen‐fixing metabolism during the Medicago truncatula–Sinorhizobium meliloti symbiosis. Frontiers in Plant Science, 11, 1313.
Blanc‐Mathieu, R., Perfus‐Barbeoch, L., Aury, J.‐M.M., Da Rocha, M., Gouzy, J., Sallet, E. et al. (2017) Hybridization and polyploidy enable genomic plasticity without sex in the most devastating plant‐parasitic nematodes. PLoS Genetics, 13, e1006777.
Brandizzi, F. (2021) Maintaining the structural and functional homeostasis of the plant endoplasmic reticulum. Developmental Cell, 56, 919–932.
Breckenridge, D.G., Stojanovic, M., Marcellus, R.C. & Shore, G.C. (2003) Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. Journal of Cell Biology, 160, 1115–1127.
Breeze, E., Vale, V., McLellan, H., Pecrix, Y., Godiard, L., Grant, M. et al. (2023) A tell tail sign: a conserved C‐terminal tail‐anchor domain targets a subset of pathogen effectors to the plant endoplasmic reticulum. Journal of Experimental Botany, 74, 3188–3202.
Caillaud, M.C. & Favery, B. (2016) In vivo imaging of microtubule organization in dividing giant cell. Methods in Molecular Biology, 1370, 137–144.
Carpentier, J., Grenier, E., Esquibet, M., Hamel, L.P., Moffett, P., Manzanares‐Dauleux, M.J. et al. (2013) Evolution and variability of Solanum RanGAP2, a cofactor in the incompatible interaction between the resistance protein GPA2 and the Globodera pallida effector Gp‐RBP‐1. BMC Evolutionary Biology, 13, 87.
Chen, H., Zou, Y., Shang, Y., Lin, H., Wang, Y., Cai, R. et al. (2008) Firefly luciferase complementation imaging assay for protein–protein interactions in plants. Plant Physiology, 146, 368–376.
Chronis, D., Chen, S., Lu, S., Hewezi, T., Carpenter, S.C.D., Loria, R. et al. (2013) A ubiquitin carboxyl extension protein secreted from a plant‐parasitic nematode Globodera rostochiensis is cleaved in planta to promote plant parasitism. The Plant Journal, 74, 185–196.
Costa, A., Navazio, L. & Szabo, I. (2018) The contribution of organelles to plant intracellular calcium signalling. Journal of Experimental Botany, 69, 4175–4193.
da Rocha, M., Bournaud, C., Dazenière, J., Thorpe, P., Bailly‐Bechet, M., Pellegrin, C. et al. (2021) Genome expression dynamics reveal the parasitism regulatory landscape of the root‐knot nematode Meloidogyne incognita and a promoter motif associated with effector genes. Genes, 12, 771.
Eichmann, R. & Schäfer, P. (2012) The endoplasmic reticulum in plant immunity and cell death. Frontiers in Plant Science, 3, 200.
Favery, B., Dubreuil, G., Chen, M.S., Giron, D. & Abad, P. (2020) Gall‐inducing parasites: convergent and conserved strategies of plant manipulation by insects and nematodes. Annual Review of Phytopathology, 58, 1–22.
Fernandez‐Pozo, N., Rosli, H.G., Martin, G.B. & Mueller, L.A. (2015) The SGN VIGS tool: user‐friendly software to design virus‐induced gene silencing (VIGS) constructs for functional genomics. Molecular Plant, 8, 486–488.
Goode, K. & Mitchum, M.G. (2022) Pattern‐triggered immunity against root‐knot nematode infection: a minireview. Physiologia Plantarum, 174, e13680.
Howe, K.L., Bolt, B.J., Cain, S., Chan, J., Chen, W.J., Davis, P. et al. (2016) WormBase 2016: expanding to enable helminth genomic research. Nucleic Acids Research, 44(D1), D774–D780.
Hu, L., Lin, B., Chen, J., Song, H., Zhuo, K. & Liao, J. (2022) The effector MJ‐10A08 of Meloidogyne javanica is required for parasitism that suppressed programmed cell death in Nicotiana benthamiana. Nematology, 24, 939–952.
Huang, L., Yuan, Y., Lewis, C., Kud, J., Kuhl, J.C., Caplan, A. et al. (2023) NILR1 perceives a nematode ascaroside triggering immune signaling and resistance. Current Biology, 33, 3992–3997.
Jaouannet, M., Magliano, M., Arguel, M.J., Gourgues, M., Evangelisti, E., Abad, P. et al. (2013) The root‐knot nematode calreticulin Mi‐CRT is a key effector in plant defense suppression. Molecular Plant–Microbe Interactions, 26, 97–105.
Jaouannet, M., Nguyen, C.N., Quentin, M., Jaubert‐Possamai, S., Rosso, M.N. & Favery, B. (2018) In situ hybridization (ISH) in preparasitic and parasitic stages of the plant‐parasitic nematode Meloidogyne spp. Bio‐Protocol, 8, e2766.
Jing, M., Guo, B., Li, H., Yang, B., Wang, H., Kong, G. et al. (2016) A Phytophthora sojae effector suppresses endoplasmic reticulum stress‐mediated immunity by stabilizing plant binding immunoglobulin proteins. Nature Communications, 7, 11685.
Jing, M. & Wang, Y. (2020) Plant pathogens utilize effectors to hijack the host endoplasmic reticulum as part of their infection strategy. Engineering, 6, 500–504.
Jones, J.D.G. & Dangl, J.L. (2006) The plant immune system. Nature, 444, 323–329.
Jones, J.T., Haegeman, A., Danchin, E.G.J., Gaur, H.S., Helder, J., Jones, M.G.K. et al. (2013) Top 10 plant‐parasitic nematodes. Molecular Plant Pathology, 14, 946–961.
Kaloshian, I. & Teixeira, M. (2019) Advances in plant‐nematode interactions with emphasis on the notorious nematode genus Meloidogyne. Phytopathology, 109, 1988–1996.
Kamaruzzaman, M., Zhao, L.F., Zhang, J.A., Zhu, L.T., Li, Y., Deng, X.D. et al. (2023) MiPDCD6 effector suppresses host PAMP‐triggered immunity to facilitate Meloidogyne incognita parasitism in tomato. Plant Pathology, 72, 195–206.
Kanehara, K., Cho, Y. & Yu, C.Y. (2022) A lipid viewpoint on the plant endoplasmic reticulum stress response. Journal of Experimental Botany, 73, 2835–2847.
Karimi, M., Inzé, D. & Ann, D. (2002) GATEWAYTM vectors for Agrobacterium‐mediated plant transformation. Trends in Plant Science, 7, 193–195.
Kaur, N. & Kaitheri Kandoth, P. (2021) Tomato bZIP60 mRNA undergoes splicing in endoplasmic reticulum stress and in response to environmental stresses. Plant Physiology and Biochemistry, 160, 397–403.
Köster, P., DeFalco, T.A. & Zipfel, C. (2022) Ca2+ signals in plant immunity. The EMBO Journal, 41, e110741.
Kriechbaumer, V. & Brandizzi, F. (2020) The plant endoplasmic reticulum: an organized chaos of tubules and sheets with multiple functions. Journal of Microscopy, 280, 122–133.
Kumar, A., Fitoussi, N., Sanadhya, P., Sichov, N., Bucki, P., Bornstein, M. et al. (2023) Two candidate Meloidogyne javanica effector genes, MjShKT and MjPUT3: a functional investigation of their roles in regulating nematode parasitism. Molecular Plant–Microbe Interactions, 36, 79–94.
Lacomme, C. & Santa Cruz, S. (1999) Bax‐induced cell death in tobacco is similar to the hypersensitive response. Proceedings of the National Academy of Sciences of the United States of America, 96, 7956–7961.
Lee, D.H., Lal, N.K., Lin, Z.J.D., Ma, S., Liu, J., Castro, B. et al. (2020) Regulation of reactive oxygen species during plant immunity through phosphorylation and ubiquitination of RBOHD. Nature Communications, 11, 1838.
Li, J., Zhao‐Hui, C., Batoux, M., Nekrasov, V., Roux, M., Chinchilla, D. et al. (2009) Specific ER quality control components required for biogenesis of the plant innate immune receptor EFR. Proceedings of the National Academy of Science of the United States of America, 106, 15973–15978.
Liu, J., Zhang, J., Wei, Y., Su, W., Li, W., Wang, B. et al. (2024) The nematode effector calreticulin competes with the high mobility group protein OsHMGB1 for binding to the rice calmodulin‐like protein OsCML31 to enhance rice susceptibility to Meloidogyne graminicola. Plant, Cell & Environment, 47, 1732–1746.
Liu, J.X. & Howell, S.H. (2016) Managing the protein folding demands in the endoplasmic reticulum of plants. New Phytologist, 211, 418–428.
Lu, D.P. & Christopher, D.A. (2008) Endoplasmic reticulum stress activates the expression of a sub‐group of protein disulfide isomerase genes and AtbZIP60 modulates the response in Arabidopsis thaliana. Molecular Genetics and Genomics, 280, 199–210.
McLellan, H., Boevink, P.C., Armstrong, M.R., Pritchard, L., Gomez, S., Morales, J. et al. (2013) An RxLR effector from Phytophthora infestans prevents re‐localisation of two plant NAC transcription factors from the endoplasmic reticulum to the nucleus. PLoS Pathogens, 9, e1003670.
Mejias, J., Bazin, J., Truong, N.M., Chen, Y., Marteu, N., Bouteiller, N. et al. (2021) The root‐knot nematode effector MiEFF18 interacts with the plant core spliceosomal protein SmD1 required for giant cell formation. New Phytologist, 229, 3408–3423.
Mejias, J., Chen, Y., Bazin, J., Truong, N.M., Mulet, K., Noureddine, Y. et al. (2022) Silencing the conserved small nuclear ribonucleoprotein SmD1 target gene alters susceptibility to root‐knot nematodes in plants. Plant Physiology, 189, 1741–1756.
Michaud, M. & Jouhet, J. (2019) Lipid trafficking at membrane contact sites during plant development and stress response. Frontiers in Plant Science, 10, 2.
Moreno, A.A., Mukhtar, M.S., Blanco, F., Boatwright, J.L., Moreno, I., Jordan, M.R. et al. (2012) IRE1/bZIP60‐mediated unfolded protein response plays distinct roles in plant immunity and abiotic stress responses. PLoS One, 7, e31944.
Naalden, D., Haegeman, A., de Almeida‐Engler, J., Birhane Eshetu, F., Bauters, L. & Gheysen, G. (2018) The Meloidogyne graminicola effector Mg16820 is secreted in the apoplast and cytoplasm to suppress plant host defense responses. Molecular Plant Pathology, 19, 2416–2430.
Nekrasov, V., Li, J., Batoux, M., Roux, M., Chu, Z.H., Lacombe, S. et al. (2009) Control of the pattern‐recognition receptor EFR by an ER protein complex in plant immunity. The EMBO Journal, 28, 3428–3438.
Nelson, B.K., Cai, X. & Nebenführ, A. (2007) A multicolored set of in vivo organelle markers for co‐localization studies in Arabidopsis and other plants. The Plant Journal, 51, 1126–1136.
Nguyen, C.N., Perfus‐Barbeoch, L., Quentin, M., Zhao, J., Magliano, M., Marteu, N. et al. (2018) A root‐knot nematode small glycine and cysteine‐rich secreted effector, MiSGCR1, is involved in plant parasitism. New Phytologist, 217, 687–699.
Niu, J., Liu, P., Liu, Q., Chen, C., Guo, Q., Yin, J. et al. (2016) Msp40 effector of root‐knot nematode manipulates plant immunity to facilitate parasitism. Scientific Reports, 6, 19443.
Pankratenko, A.V., Atabekova, A.K., Lazareva, E.A., Baksheeva, V.E., Zhironkina, O.A., Zernii, E.Y. et al. (2017) Plant‐specific 4/1 polypeptide interacts with an endoplasmic reticulum protein related to human BAP31. Planta, 245, 193–205.
Park, C.J. & Seo, Y.S. (2015) Heat shock proteins: a review of the molecular chaperones for plant immunity. Plant Pathology Journal, 31, 323–333.
Quistgaard, E.M. (2021) BAP31: physiological functions and roles in disease. Biochimie, 186, 105–129.
Rancurel, C., van Tran, T., Elie, C. & Hilliou, F. (2019) SATQPCR: website for statistical analysis of real‐time quantitative PCR data. Molecular and Cellular Probes, 46, 101418.
Rutter, W.B., Franco, J. & Gleason, C. (2022) Rooting out the mechanisms of root‐knot nematode–plant interactions. Annual Review of Phytopathology, 60, 43–76.
Sacco, M.A., Koropacka, K., Grenier, E., Jaubert, M.J., Blanchard, A., Goverse, A. et al. (2009) The cyst nematode SPRYSEC protein RBP‐1 elicits Gpa2‐ and RanGAP2‐dependent plant cell death. PLoS Pathogens, 5, e1000564.
Sato, K., Kadota, Y. & Shirasu, K. (2019) Plant immune responses to parasitic nematodes. Frontiers in Plant Science, 10, 1165.
Siddique, S., Coomer, A., Baum, T. & Williamson, V.M. (2022) Recognition and response in plant–nematode interactions. Annual Review of Phytopathology, 60, 143–162.
Simoni, E.B., Oliveira, C.C., Fraga, O.T., Reis, P.A.B. & Fontes, E.P.B. (2022) Cell death signaling from endoplasmic reticulum stress: plant‐specific and conserved features. Frontiers in Plant Science, 13, 835738.
Song, H., Lin, B., Huang, Q., Sun, L., Chen, J., Hu, L. et al. (2021) The Meloidogyne graminicola effector MgMO289 targets a novel copper metallochaperone to suppress immunity in rice. Journal of Experimental Botany, 72, 5638–5655.
Strasser, R. (2018) Protein quality control in the endoplasmic reticulum. Current Opinion in Cell Biology, 65, 96–102.
Thompson, J.D., Gibson, T.J. & Higgins, D.G. (2003) Multiple sequence alignment using ClustalW and ClustalX. Current Protocols in Bioinformatics, 1, 2–22.
Tian, T., Liu, Y., Yan, H., You, Q., Yi, X., Du, Z. et al. (2017) AgriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Research, 45, W122–W129.
Truong, N.M., Chen, Y., Mejias, J., Soulé, S., Mulet, K., Jaouannet, M. et al. (2021) The Meloidogyne incognita nuclear effector MiEFF1 interacts with Arabidopsis cytosolic glyceraldehyde‐3‐phosphate dehydrogenases to promote parasitism. Frontiers in Plant Science, 12, 641480.
Vieira, P., Danchin, E.G., Neveu, C., Crozat, C., Jaubert, S., Hussey, R.S. et al. (2011) The plant apoplasm is an important recipient compartment for nematode secreted proteins. Journal of Experimental Botany, 62, 1241–1253.
Vieira, P. & Gleason, C. (2019) Plant‐parasitic nematode effectors—insights into their diversity and new tools for their identification. Current Opinion in Plant Biology, 50, 37–43.
Wakana, Y., Takai, S., Nakajima, K., Tani, K., Yamamoto, A., Watson, P. et al. (2008) Bap31 is an itinerant protein that moves between the peripheral endoplasmic reticulum (ER) and a juxtanuclear compartment related to ER‐associated degradation. Molecular Biology of the Cell, 19, 1825–1836.
Yamaguchi, Y.L., Suzuki, R., Cabrera, J., Nakagami, S., Sagara, T., Ejima, C. et al. (2017) Root‐knot and cyst nematodes activate procambium‐associated genes in Arabidopsis roots. Frontiers in Plant Science, 8, 1195.
Zhang, L., Chen, H., Brandizzi, F., Verchot, J. & Wang, A. (2015) The UPR branch IRE1‐bZIP60 in plants plays an essential role in viral infection and is complementary to the only UPR pathway in yeast. PLoS Genetics, 11, e1005164.
Zhao, J., Huang, K., Liu, R., Lai, Y., Abad, P., Favery, B. et al. (2023) A root‐knot nematode effector Mi2G02 hijacks a host plant trihelix transcription factor for nematode parasitism. Plant Communications, 5, 100723.
Zhao, J., Mejias, J., Quentin, M., Chen, Y., de Almeida‐Engler, J., Mao, Z. et al. (2020) The root‐knot nematode effector MiPDI1 targets a stress‐associated protein (SAP) to establish disease in Solanaceae and Arabidopsis. New Phytologist, 228, 1417–1430.
Zhao, J., Sun, Q., Quentin, M., Ling, J., Abad, P., Zhang, X. et al. (2021) A Meloidogyne incognita C‐type lectin effector targets plant catalases to promote parasitism. New Phytologist, 232, 2124–2137.
Zhuo, K., Chen, J., Lin, B., Wang, J., Sun, F., Hu, L. et al. (2017) A novel Meloidogyne enterolobii effector MeTCTP promotes parasitism by suppressing programmed cell death in host plants. Molecular Plant Pathology, 18, 45–54.

Auteurs

Salomé Soulé (S)

INRAE-Université Côte d'Azur-CNRS, UMR Institut Sophia Agrobiotech, Sophia Antipolis, France.

Kaiwei Huang (K)

State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.

Karine Mulet (K)

INRAE-Université Côte d'Azur-CNRS, UMR Institut Sophia Agrobiotech, Sophia Antipolis, France.

Joffrey Mejias (J)

INRAE-Université Côte d'Azur-CNRS, UMR Institut Sophia Agrobiotech, Sophia Antipolis, France.

Jérémie Bazin (J)

Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université Paris Saclay - Evry, Université de Paris, Gif sur Yvette, France.

Nhat My Truong (NM)

INRAE-Université Côte d'Azur-CNRS, UMR Institut Sophia Agrobiotech, Sophia Antipolis, France.

Junior Lusu Kika (JL)

INRAE-Université Côte d'Azur-CNRS, UMR Institut Sophia Agrobiotech, Sophia Antipolis, France.

Stéphanie Jaubert (S)

INRAE-Université Côte d'Azur-CNRS, UMR Institut Sophia Agrobiotech, Sophia Antipolis, France.

Pierre Abad (P)

INRAE-Université Côte d'Azur-CNRS, UMR Institut Sophia Agrobiotech, Sophia Antipolis, France.

Jianlong Zhao (J)

State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.

Bruno Favery (B)

INRAE-Université Côte d'Azur-CNRS, UMR Institut Sophia Agrobiotech, Sophia Antipolis, France.

Michaël Quentin (M)

INRAE-Université Côte d'Azur-CNRS, UMR Institut Sophia Agrobiotech, Sophia Antipolis, France.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH