Macromolecular Interactions of Lipoprotein Lipase (LPL).

Angiopoietin-like protein Apolipoprotein CryoEM Helix Heparin Lipase maturation factor 1 Lipoprotein lipase Syndecan-1 Triglyceride

Journal

Sub-cellular biochemistry
ISSN: 0306-0225
Titre abrégé: Subcell Biochem
Pays: United States
ID NLM: 0316571

Informations de publication

Date de publication:
2024
Historique:
medline: 4 7 2024
pubmed: 4 7 2024
entrez: 4 7 2024
Statut: ppublish

Résumé

Lipoprotein lipase (LPL) is a critical enzyme in humans that provides fuel to peripheral tissues. LPL hydrolyzes triglycerides from the cores of lipoproteins that are circulating in plasma and interacts with receptors to mediate lipoprotein uptake, thus directing lipid distribution via catalytic and non-catalytic functions. Functional losses in LPL or any of its myriad of regulators alter lipid homeostasis and potentially affect the risk of developing cardiovascular disease-either increasing or decreasing the risk depending on the mutated protein. The extensive LPL regulatory network tunes LPL activity to allocate fatty acids according to the energetic needs of the organism and thus is nutritionally responsive and tissue dependent. Multiple pharmaceuticals in development manipulate or mimic these regulators, demonstrating their translational importance. Another facet of LPL biology is that the oligomeric state of the enzyme is also central to its regulation. Recent structural studies have solidified the idea that LPL is regulated not only by interactions with other binding partners but also by self-associations. Here, we review the complexities of the protein-protein and protein-lipid interactions that govern LPL structure and function.

Identifiants

pubmed: 38963487
doi: 10.1007/978-3-031-58843-3_8
doi:

Substances chimiques

Lipoprotein Lipase EC 3.1.1.34
Triglycerides 0

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

139-179

Informations de copyright

© 2024. The Author(s), under exclusive license to Springer Nature Switzerland AG.

Références

Aggerbeck LP, Wetterau JR, Weisgraber KH, Wu CS, Lindgren FT (1988) Human apolipoprotein E3 in aqueous solution. II. Properties of the amino- and carboxyl-terminal domains. J Biol Chem 263(13):6249–6258
doi: 10.1016/S0021-9258(18)68779-4 pubmed: 3360782
Allan CM, Larsson M, Jung RS, Ploug M, Bensadoun A, Beigneux AP, Fong LG, Young SG (2017) Mobility of “HSPG-bound” LPL explains how LPL is able to reach GPIHBP1 on capillaries. J Lipid Res 58(1):216–225. https://doi.org/10.1194/jlr.M072520
doi: 10.1194/jlr.M072520 pubmed: 27811232
Anderson NG, Fawcett B (1950) An antichylomicronemic substance produced by heparin injection. Proc Soc Exp Biol Med 74(4):768–771. https://doi.org/10.3181/00379727-74-18042
doi: 10.3181/00379727-74-18042 pubmed: 14781176
Ando Y, Shimizugawa T, Takeshita S, Ono M, Shimamura M, Koishi R, Furukawa H (2003) A decreased expression of angiopoietin-like 3 is protective against atherosclerosis in apoE-deficient mice. J Lipid Res 44(6):1216–1223. https://doi.org/10.1194/jlr.M300031-JLR200
doi: 10.1194/jlr.M300031-JLR200 pubmed: 12671033
Anfinsen CB, Boyle E, Brown RK (1952) The role of heparin in lipoprotein metabolism. Science 115(2996):583–586. https://doi.org/10.1126/science.115.2996.583
doi: 10.1126/science.115.2996.583 pubmed: 17736085
Argraves KM, Battey FD, MacCalman CD, McCrae KR, Gafvels M, Kozarsky KF, Chappell DA, Strauss JF 3rd, Strickland DK (1995) The very low density lipoprotein receptor mediates the cellular catabolism of lipoprotein lipase and urokinase-plasminogen activator inhibitor type I complexes. J Biol Chem 270(44):26550–26557. https://doi.org/10.1074/jbc.270.44.26550
doi: 10.1074/jbc.270.44.26550 pubmed: 7592875
Arora R, Nimonkar AV, Baird D, Wang C, Chiu CH, Horton PA, Hanrahan S, Cubbon R, Weldon S, Tschantz WR, Mueller S, Brunner R, Lehr P, Meier P, Ottl J, Voznesensky A, Pandey P, Smith TM, Stojanovic A, Flyer A, Benson TE, Romanowski MJ, Trauger JW (2019) Structure of lipoprotein lipase in complex with GPIHBP1. Proc Natl Acad Sci U S A 116(21):10360–10365. https://doi.org/10.1073/pnas.1820171116
doi: 10.1073/pnas.1820171116 pubmed: 31072929 pmcid: 6534989
Babilonia-Rosa M, Neher SB (2014) Purification, cellular levels, and functional domains of LMF1. Biochem Biophys Res Commun. https://doi.org/10.1016/j.bbrc.2014.05.136
Balasubramaniam D, Schroeder O, Russell AM, Fitchett JR, Austin AK, Beyer TP, Chen YQ, Day JW, Ehsani M, Heng AR, Zhen EY, Davies J, Glaesner W, Jones BE, Siegel RW, Qian YW, Konrad RJ (2022) An anti-ANGPTL3/8 antibody decreases circulating triglycerides by binding to a LPL-inhibitory leucine zipper-like motif. J Lipid Res 63(5):100198. https://doi.org/10.1016/j.jlr.2022.100198
doi: 10.1016/j.jlr.2022.100198 pubmed: 35307397 pmcid: 9036128
Bateman A, Sandford R (1999) The PLAT domain: a new piece in the PKD1 puzzle. Curr Biol 9(16):R588–R590. https://doi.org/10.1016/s0960-9822(99)80380-7
doi: 10.1016/s0960-9822(99)80380-7 pubmed: 10469604
Beigneux AP, Davies BS, Gin P, Weinstein MM, Farber E, Qiao X, Peale F, Bunting S, Walzem RL, Wong JS, Blaner WS, Ding ZM, Melford K, Wongsiriroj N, Shu X, de Sauvage F, Ryan RO, Fong LG, Bensadoun A, Young SG (2007) Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 plays a critical role in the lipolytic processing of chylomicrons. Cell Metab 5(4):279–291. https://doi.org/10.1016/j.cmet.2007.02.002
doi: 10.1016/j.cmet.2007.02.002 pubmed: 17403372 pmcid: 1913910
Beigneux AP, Allan CM, Sandoval NP, Cho GW, Heizer PJ, Jung RS, Stanhope KL, Havel PJ, Birrane G, Meiyappan M, Gill JE, Murakami M, Miyashita K, Nakajima K, Ploug M, Fong LG, Young SG (2019) Lipoprotein lipase is active as a monomer. Proc Natl Acad Sci U S A 116(13):6319–6328. https://doi.org/10.1073/pnas.1900983116
doi: 10.1073/pnas.1900983116 pubmed: 30850549 pmcid: 6442593
Beisiegel U, Weber W, Bengtsson-Olivecrona G (1991) Lipoprotein lipase enhances the binding of chylomicrons to low density lipoprotein receptor-related protein. Proc Natl Acad Sci U S A 88(19):8342–8346. https://doi.org/10.1073/pnas.88.19.8342
doi: 10.1073/pnas.88.19.8342 pubmed: 1656440 pmcid: 52504
Ben-Avram CM, Ben-Zeev O, Lee TD, Haaga K, Shively JE, Goers J, Pedersen ME, Reeve JR Jr, Schotz MC (1986) Homology of lipoprotein lipase to pancreatic lipase. Proc Natl Acad Sci U S A 83(12):4185–4189. https://doi.org/10.1073/pnas.83.12.4185
doi: 10.1073/pnas.83.12.4185 pubmed: 3459170 pmcid: 323696
Bengtsson G, Olivecrona T (1979) Binding of deoxycholate to lipoprotein lipase. Biochim Biophys Acta 575(3):471–474
doi: 10.1016/0005-2760(79)90118-8 pubmed: 518898
Bengtsson-Olivecrona G, Olivecrona T, Jornvall H (1986) Lipoprotein lipases from cow, guinea-pig and man. Structural characterization and identification of protease-sensitive internal regions. Eur J Biochem 161(2):281–288. https://doi.org/10.1111/j.1432-1033.1986.tb10444.x
doi: 10.1111/j.1432-1033.1986.tb10444.x pubmed: 3536511
Ben-Zeev O, Stahnke G, Liu G, Davis RC, Doolittle MH (1994) Lipoprotein lipase and hepatic lipase: the role of asparagine-linked glycosylation in the expression of a functional enzyme. J Lipid Res 35(9):1511–1523
doi: 10.1016/S0022-2275(20)41149-6 pubmed: 7806965
Berbee JF, van der Hoogt CC, Sundararaman D, Havekes LM, Rensen PC (2005) Severe hypertriglyceridemia in human APOC1 transgenic mice is caused by apoC-I-induced inhibition of LPL. J Lipid Res 46(2):297–306. https://doi.org/10.1194/jlr.M400301-JLR200
doi: 10.1194/jlr.M400301-JLR200 pubmed: 15576844
Bergmark BA, Marston NA, Bramson CR, Curto M, Ramos V, Jevne A, Kuder JF, Park JG, Murphy SA, Verma S, Wojakowski W, Terra SG, Sabatine MS, Wiviott SD, Investigators T-T (2022) Effect of vupanorsen on non-high-density lipoprotein cholesterol levels in statin-treated patients with elevated cholesterol: TRANSLATE-TIMI 70. Circulation 145(18):1377–1386. https://doi.org/10.1161/CIRCULATIONAHA.122.059266
doi: 10.1161/CIRCULATIONAHA.122.059266 pubmed: 35369705 pmcid: 9047643
Bini S, Pecce V, Di Costanzo A, Polito L, Ghadiri A, Minicocci I, Tambaro F, Covino S, Arca M, D’Erasmo L (2022) The fibrinogen-like domain of ANGPTL3 facilitates lipolysis in 3T3-L1 Cells by activating the intracellular Erk pathway. Biomolecules 12(4). https://doi.org/10.3390/biom12040585
Birrane G, Beigneux AP, Dwyer B, Strack-Logue B, Kristensen KK, Francone OL, Fong LG, Mertens HDT, Pan CQ, Ploug M, Young SG, Meiyappan M (2019) Structure of the lipoprotein lipase-GPIHBP1 complex that mediates plasma triglyceride hydrolysis. Proc Natl Acad Sci U S A 116(5):1723–1732. https://doi.org/10.1073/pnas.1817984116
doi: 10.1073/pnas.1817984116 pubmed: 30559189
Biterova E, Esmaeeli M, Alanen HI, Saaranen M, Ruddock LW (2018) Structures of Angptl3 and Angptl4, modulators of triglyceride levels and coronary artery disease. Sci Rep 8(1):6752. https://doi.org/10.1038/s41598-018-25237-7
doi: 10.1038/s41598-018-25237-7 pubmed: 29713054 pmcid: 5928061
Biunno I, Appierto V, Cattaneo M, Leone BE, Balzano G, Socci C, Saccone S, Letizia A, Della Valle G, Sgaramella V (1997) Isolation of a pancreas-specific gene located on human chromosome 14q31: expression analysis in human pancreatic ductal carcinomas. Genomics 46(2):284–286. https://doi.org/10.1006/geno.1997.5018
doi: 10.1006/geno.1997.5018 pubmed: 9417916
Boyle E, Bragdon JH, Brown RK (1952) Role of heparin in in vitro production of alpha1 lipoproteins in human plasma. Proc Soc Exp Biol Med 81(2):475–477. https://doi.org/10.3181/00379727-81-19915
doi: 10.3181/00379727-81-19915 pubmed: 13027344
Brown WV, Baginsky ML (1972) Inhibition of lipoprotein lipase by an apoprotein of human very low density lipoprotein. Biochem Biophys Res Commun 46(2):375–382
doi: 10.1016/S0006-291X(72)80149-9 pubmed: 5057882
Brown RK, Boyle E, Anfinsen CB (1953) The enzymatic transformation of lipoproteins. J Biol Chem 204(1):423–434
doi: 10.1016/S0021-9258(18)66150-2 pubmed: 13084613
Camenisch G, Pisabarro MT, Sherman D, Kowalski J, Nagel M, Hass P, Xie MH, Gurney A, Bodary S, Liang XH, Clark K, Beresini M, Ferrara N, Gerber HP (2002) ANGPTL3 stimulates endothelial cell adhesion and migration via integrin alpha vbeta 3 and induces blood vessel formation in vivo. J Biol Chem 277(19):17281–17290. https://doi.org/10.1074/jbc.M109768200
doi: 10.1074/jbc.M109768200 pubmed: 11877390
Chappell DA, Fry GL, Waknitz MA, Iverius PH, Williams SE, Strickland DK (1992) The low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor binds and mediates catabolism of bovine milk lipoprotein lipase. J Biol Chem 267(36):25764–25767
doi: 10.1016/S0021-9258(18)35675-8 pubmed: 1281473
Chebotareva NA, Harding SE, Winzor DJ (2001) Ultracentrifugal studies of the effect of molecular crowding by trimethylamine N-oxide on the self-association of muscle glycogen phosphorylase b. Eur J Biochem 268(3):506–513. https://doi.org/10.1046/j.1432-1327.2001.01838.x
doi: 10.1046/j.1432-1327.2001.01838.x pubmed: 11168388
Chen YQ, Pottanat TG, Siegel RW, Ehsani M, Qian YW, Zhen EY, Regmi A, Roell WC, Guo H, Luo MJ, Gimeno RE, Van’t Hooft F, Konrad RJ (2020) Angiopoietin-like protein 8 differentially regulates ANGPTL3 and ANGPTL4 during postprandial partitioning of fatty acids. J Lipid Res 61(8):1203–1220. https://doi.org/10.1194/jlr.RA120000781
doi: 10.1194/jlr.RA120000781 pubmed: 32487544 pmcid: 7397750
Chen YQ, Pottanat TG, Zhen EY, Siegel RW, Ehsani M, Qian YW, Konrad RJ (2021) ApoA5 lowers triglyceride levels via suppression of ANGPTL3/8-mediated LPL inhibition. J Lipid Res 62:100068. https://doi.org/10.1016/j.jlr.2021.100068
doi: 10.1016/j.jlr.2021.100068 pubmed: 33762177 pmcid: 8079461
Cheng CF, Oosta GM, Bensadoun A, Rosenberg RD (1981) Binding of lipoprotein lipase to endothelial cells in culture. J Biol Chem 256(24):12893–12898
doi: 10.1016/S0021-9258(18)42980-8 pubmed: 7309739
Chi X, Britt EC, Shows HW, Hjelmaas AJ, Shetty SK, Cushing EM, Li W, Dou A, Zhang R, Davies BSJ (2017) ANGPTL8 promotes the ability of ANGPTL3 to bind and inhibit lipoprotein lipase. Mol Metab 6(10):1137–1149. https://doi.org/10.1016/j.molmet.2017.06.014
doi: 10.1016/j.molmet.2017.06.014 pubmed: 29031715 pmcid: 5641604
Cohn JS, Tremblay M, Boulet L, Jacques H, Davignon J, Roy M, Bernier L (2003) Plasma concentration and lipoprotein distribution of ApoC-I is dependent on ApoE genotype rather than the Hpa I ApoC-I promoter polymorphism. Atherosclerosis 169(1):63–70. https://doi.org/10.1016/s0021-9150(03)00139-4
doi: 10.1016/s0021-9150(03)00139-4 pubmed: 12860251
Cohn JS, Patterson BW, Uffelman KD, Davignon J, Steiner G (2004) Rate of production of plasma and very-low-density lipoprotein (VLDL) apolipoprotein C-III is strongly related to the concentration and level of production of VLDL triglyceride in male subjects with different body weights and levels of insulin sensitivity. J Clin Endocrinol Metab 89(8):3949–3955. https://doi.org/10.1210/jc.2003-032056
doi: 10.1210/jc.2003-032056 pubmed: 15292332
Conklin D, Gilbertson D, Taft DW, Maurer MF, Whitmore TE, Smith DL, Walker KM, Chen LH, Wattler S, Nehls M, Lewis KB (1999) Identification of a mammalian angiopoietin-related protein expressed specifically in liver. Genomics 62(3):477–482. https://doi.org/10.1006/geno.1999.6041
doi: 10.1006/geno.1999.6041 pubmed: 10644446
Corbo RM, Scacchi R (1999) Apolipoprotein E (APOE) allele distribution in the world. Is APOE*4 a ‘thrifty’ allele? Ann Hum Genet 63 (Pt 4):301-310. https://doi.org/10.1046/j.1469-1809.1999.6340301.x
Davies BS, Beigneux AP, Barnes RH 2nd, Tu Y, Gin P, Weinstein MM, Nobumori C, Nyren R, Goldberg I, Olivecrona G, Bensadoun A, Young SG, Fong LG (2010) GPIHBP1 is responsible for the entry of lipoprotein lipase into capillaries. Cell Metab 12(1):42–52. https://doi.org/10.1016/j.cmet.2010.04.016
doi: 10.1016/j.cmet.2010.04.016 pubmed: 20620994 pmcid: 2913606
Davis RC, Wong H, Nikazy J, Wang K, Han Q, Schotz MC (1992) Chimeras of hepatic lipase and lipoprotein lipase. Domain localization of enzyme-specific properties. J Biol Chem 267(30):21499–21504
doi: 10.1016/S0021-9258(19)36637-2 pubmed: 1400461
Deng M, Kutrolli E, Sadewasser A, Michel S, Joibari MM, Jaschinski F, Olivecrona G, Nilsson SK, Kersten S (2022) ANGPTL4 silencing via antisense oligonucleotides reduces plasma triglycerides and glucose in mice without causing lymphadenopathy. J Lipid Res 63(7):100237. https://doi.org/10.1016/j.jlr.2022.100237
doi: 10.1016/j.jlr.2022.100237 pubmed: 35667416 pmcid: 9270256
Desai U, Lee EC, Chung K, Gao C, Gay J, Key B, Hansen G, Machajewski D, Platt KA, Sands AT, Schneider M, Van Sligtenhorst I, Suwanichkul A, Vogel P, Wilganowski N, Wingert J, Zambrowicz BP, Landes G, Powell DR (2007) Lipid-lowering effects of anti-angiopoietin-like 4 antibody recapitulate the lipid phenotype found in angiopoietin-like 4 knockout mice. Proc Natl Acad Sci U S A 104(28):11766–11771. https://doi.org/10.1073/pnas.0705041104
doi: 10.1073/pnas.0705041104 pubmed: 17609370 pmcid: 1913890
Dewey FE, Gusarova V, O’Dushlaine C, Gottesman O, Trejos J, Hunt C, Van Hout CV, Habegger L, Buckler D, Lai KM, Leader JB, Murray MF, Ritchie MD, Kirchner HL, Ledbetter DH, Penn J, Lopez A, Borecki IB, Overton JD, Reid JG, Carey DJ, Murphy AJ, Yancopoulos GD, Baras A, Gromada J, Shuldiner AR (2016) Inactivating variants in ANGPTL4 and risk of coronary artery disease. N Engl J Med 374(12):1123–1133. https://doi.org/10.1056/NEJMoa1510926
doi: 10.1056/NEJMoa1510926 pubmed: 26933753 pmcid: 4900689
Dewey FE, Gusarova V, Dunbar RL, O’Dushlaine C, Schurmann C, Gottesman O, McCarthy S, Van Hout CV, Bruse S, Dansky HM, Leader JB, Murray MF, Ritchie MD, Kirchner HL, Habegger L, Lopez A, Penn J, Zhao A, Shao W, Stahl N, Murphy AJ, Hamon S, Bouzelmat A, Zhang R, Shumel B, Pordy R, Gipe D, Herman GA, Sheu WHH, Lee IT, Liang KW, Guo X, Rotter JI, Chen YI, Kraus WE, Shah SH, Damrauer S, Small A, Rader DJ, Wulff AB, Nordestgaard BG, Tybjaerg-Hansen A, van den Hoek AM, Princen HMG, Ledbetter DH, Carey DJ, Overton JD, Reid JG, Sasiela WJ, Banerjee P, Shuldiner AR, Borecki IB, Teslovich TM, Yancopoulos GD, Mellis SJ, Gromada J, Baras A (2017) Genetic and pharmacologic inactivation of ANGPTL3 and cardiovascular disease. N Engl J Med 377(3):211–221. https://doi.org/10.1056/NEJMoa1612790
doi: 10.1056/NEJMoa1612790 pubmed: 28538136 pmcid: 5800308
Dichek HL, Parrott C, Ronan R, Brunzell JD, Brewer HB Jr, Santamarina-Fojo S (1993) Functional characterization of a chimeric lipase genetically engineered from human lipoprotein lipase and human hepatic lipase. J Lipid Res 34(8):1393–1340
doi: 10.1016/S0022-2275(20)36968-6 pubmed: 8409770
Dijk W, Kersten S (2016) Regulation of lipid metabolism by angiopoietin-like proteins. Curr Opin Lipidol 27(3):249–256. https://doi.org/10.1097/MOL.0000000000000290
doi: 10.1097/MOL.0000000000000290 pubmed: 27023631
Dijk W, Ruppert PMM, Oost LJ, Kersten S (2018) Angiopoietin-like 4 promotes the intracellular cleavage of lipoprotein lipase by PCSK3/furin in adipocytes. J Biol Chem. https://doi.org/10.1074/jbc.RA118.002426
Dugi KA, Dichek HL, Santamarina-Fojo S (1995) Human hepatic and lipoprotein lipase: the loop covering the catalytic site mediates lipase substrate specificity. J Biol Chem 270(43):25396–25401. https://doi.org/10.1074/jbc.270.43.25396
doi: 10.1074/jbc.270.43.25396 pubmed: 7592706
Emmerich J, Beg OU, Peterson J, Previato L, Brunzell JD, Brewer HB Jr, Santamarina-Fojo S (1992) Human lipoprotein lipase. Analysis of the catalytic triad by site-directed mutagenesis of Ser-132, Asp-156, and His-241. J Biol Chem 267(6):4161–4165
doi: 10.1016/S0021-9258(19)50642-1 pubmed: 1371284
Enerback S, Semb H, Bengtsson-Olivecrona G, Carlsson P, Hermansson ML, Olivecrona T, Bjursell G (1987) Molecular cloning and sequence analysis of cDNA encoding lipoprotein lipase of guinea pig. Gene 58(1):1–12. https://doi.org/10.1016/0378-1119(87)90023-0
doi: 10.1016/0378-1119(87)90023-0 pubmed: 3692172
Felts JM, Itakura H, Crane RT (1975) The mechanism of assimilation of constituents of chylomicrons, very low density lipoproteins and remnants - a new theory. Biochem Biophys Res Commun 66(4):1467–1475. https://doi.org/10.1016/0006-291x(75)90524-0
doi: 10.1016/0006-291x(75)90524-0 pubmed: 172080
Fiamoncini J, Yiorkas AM, Gedrich K, Rundle M, Alsters SI, Roeselers G, van den Broek TJ, Clavel T, Lagkouvardos I, Wopereis S, Frost G, van Ommen B, Blakemore AI, Daniel H (2017) Determinants of postprandial plasma bile acid kinetics in human volunteers. Am J Physiol Gastrointest Liver Physiol 313(4):G300–G312. https://doi.org/10.1152/ajpgi.00157.2017
doi: 10.1152/ajpgi.00157.2017 pubmed: 28663304
Fielding CJ (1969) Purification of lipoprotein lipase from rat post-heparin plasma. Biochim Biophys Acta 178(3):499–507. https://doi.org/10.1016/0005-2744(69)90219-8
doi: 10.1016/0005-2744(69)90219-8 pubmed: 5784902
Fitzgerald ML, Wang Z, Park PW, Murphy G, Bernfield M (2000) Shedding of syndecan-1 and -4 ectodomains is regulated by multiple signaling pathways and mediated by a TIMP-3-sensitive metalloproteinase. J Cell Biol 148(4):811–824. https://doi.org/10.1083/jcb.148.4.811
doi: 10.1083/jcb.148.4.811 pubmed: 10684261 pmcid: 2169376
Forte TM, Ryan RO (2015) Apolipoprotein A5: extracellular and intracellular roles in triglyceride metabolism. Curr Drug Targets 16(12):1274–1280. https://doi.org/10.2174/1389450116666150531161138
doi: 10.2174/1389450116666150531161138 pubmed: 26028042 pmcid: 6594035
Francisco AB, Singh R, Li S, Vani AK, Yang L, Munroe RJ, Diaferia G, Cardano M, Biunno I, Qi L, Schimenti JC, Long Q (2010) Deficiency of suppressor enhancer Lin12 1 like (SEL1L) in mice leads to systemic endoplasmic reticulum stress and embryonic lethality. J Biol Chem 285(18):13694–13703. https://doi.org/10.1074/jbc.M109.085340
doi: 10.1074/jbc.M109.085340 pubmed: 20197277 pmcid: 2859532
Frommherz L, Bub A, Hummel E, Rist MJ, Roth A, Watzl B, Kulling SE (2016) Age-related changes of plasma bile acid concentrations in healthy adults—results from the cross-sectional KarMeN study. PLoS One 11(4):e0153959. https://doi.org/10.1371/journal.pone.0153959
doi: 10.1371/journal.pone.0153959 pubmed: 27092559 pmcid: 4836658
Fruchart-Najib J, Bauge E, Niculescu LS, Pham T, Thomas B, Rommens C, Majd Z, Brewer B, Pennacchio LA, Fruchart JC (2004) Mechanism of triglyceride lowering in mice expressing human apolipoprotein A5. Biochem Biophys Res Commun 319(2):397–404. https://doi.org/10.1016/j.bbrc.2004.05.003
doi: 10.1016/j.bbrc.2004.05.003 pubmed: 15178420
Fuior EV, Gafencu AV (2019) Apolipoprotein C1: its pleiotropic effects in lipid metabolism and beyond. Int J Mol Sci 20(23). https://doi.org/10.3390/ijms20235939
Garfinkel AS, Kempner ES, Ben-Zeev O, Nikazy J, James SJ, Schotz MC (1983) Lipoprotein lipase: size of the functional unit determined by radiation inactivation. J Lipid Res 24(6):775–780
doi: 10.1016/S0022-2275(20)37945-1 pubmed: 6350518
Gaudet D, Brisson D, Tremblay K, Alexander VJ, Singleton W, Hughes SG, Geary RS, Baker BF, Graham MJ, Crooke RM, Witztum JL (2014) Targeting APOC3 in the familial chylomicronemia syndrome. N Engl J Med 371(23):2200–2206. https://doi.org/10.1056/NEJMoa1400284
doi: 10.1056/NEJMoa1400284 pubmed: 25470695
Gautier T, Masson D, de Barros JP, Athias A, Gambert P, Aunis D, Metz-Boutigue MH, Lagrost L (2000) Human apolipoprotein C-I accounts for the ability of plasma high density lipoproteins to inhibit the cholesteryl ester transfer protein activity. J Biol Chem 275(48):37504–37509. https://doi.org/10.1074/jbc.M007210200
doi: 10.1074/jbc.M007210200 pubmed: 10978346
Ge H, Yang G, Yu X, Pourbahrami T, Li C (2004) Oligomerization state-dependent hyperlipidemic effect of angiopoietin-like protein 4. J Lipid Res 45(11):2071–2079. https://doi.org/10.1194/jlr.M400138-JLR200
doi: 10.1194/jlr.M400138-JLR200 pubmed: 15292369
Ge H, Cha JY, Gopal H, Harp C, Yu X, Repa JJ, Li C (2005) Differential regulation and properties of angiopoietin-like proteins 3 and 4. J Lipid Res 46(7):1484–1490. https://doi.org/10.1194/jlr.M500005-JLR200
doi: 10.1194/jlr.M500005-JLR200 pubmed: 15863837
Ginsberg HN, Le NA, Goldberg IJ, Gibson JC, Rubinstein A, Wang-Iverson P, Norum R, Brown WV (1986) Apolipoprotein B metabolism in subjects with deficiency of apolipoproteins CIII and AI. Evidence that apolipoprotein CIII inhibits catabolism of triglyceride-rich lipoproteins by lipoprotein lipase in vivo. J Clin Invest 78(5):1287–1295. https://doi.org/10.1172/JCI112713
doi: 10.1172/JCI112713 pubmed: 3095375 pmcid: 423815
Gordts PL, Nock R, Son NH, Ramms B, Lew I, Gonzales JC, Thacker BE, Basu D, Lee RG, Mullick AE, Graham MJ, Goldberg IJ, Crooke RM, Witztum JL, Esko JD (2016) ApoC-III inhibits clearance of triglyceride-rich lipoproteins through LDL family receptors. J Clin Invest 126(8):2855–2866. https://doi.org/10.1172/JCI86610
doi: 10.1172/JCI86610 pubmed: 27400128 pmcid: 4966320
Graham DM, Lyon TP, Gofman JW, Jones HB, Yankley A, Simonton J, White S (1951) Blood lipids and human atherosclerosis. II. The influence of heparin upon lipoprotein metabolism. Circulation 4(5):666–673. https://doi.org/10.1161/01.cir.4.5.666
doi: 10.1161/01.cir.4.5.666 pubmed: 14870278
Grochulski P, Bouthillier F, Kazlauskas RJ, Serreqi AN, Schrag JD, Ziomek E, Cygler M (1994) Analogs of reaction intermediates identify a unique substrate binding site in Candida rugosa lipase. Biochemistry 33(12):3494–3500. https://doi.org/10.1021/bi00178a005
doi: 10.1021/bi00178a005 pubmed: 8142346
Guardiola M, Ribalta J (2017) Update on APOA5 genetics: toward a better understanding of its physiological impact. Curr Atheroscler Rep 19(7):30. https://doi.org/10.1007/s11883-017-0665-y
doi: 10.1007/s11883-017-0665-y pubmed: 28500476
Gunn KH, Neher SB (2023) Structure of dimeric lipoprotein lipase reveals a pore adjacent to the active site. Nat Commun 14(1):2569. https://doi.org/10.1038/s41467-023-38243-9
doi: 10.1038/s41467-023-38243-9 pubmed: 37142573 pmcid: 10160067
Gunn KH, Roberts BS, Wang F, Strauss JD, Borgnia MJ, Egelman EH, Neher SB (2020) The structure of helical lipoprotein lipase reveals an unexpected twist in lipase storage. Proc Natl Acad Sci U S A 117(19):10254–10264. https://doi.org/10.1073/pnas.1916555117
doi: 10.1073/pnas.1916555117 pubmed: 32332168 pmcid: 7229681
Gunn KH, Gutgsell A, Xu Y, Johnson CV, Liu J, Neher SB (2021) Mechanistic Insight into ANGPTL3 Inhibition of LPL. J Biol Chem
Gutgsell AR, Ghodge SV, Bowers AA, Neher SB (2019) Mapping the sites of the lipoprotein lipase (LPL)-angiopoietin-like protein 4 (ANGPTL4) interaction provides mechanistic insight into LPL inhibition. J Biol Chem 294(8):2678–2689. https://doi.org/10.1074/jbc.RA118.005932
doi: 10.1074/jbc.RA118.005932 pubmed: 30591589
Hahn PF (1943) Abolishment of alimentary lipemia following injection of heparin. Science 98(2531):19–20. https://doi.org/10.1126/science.98.2531.19
doi: 10.1126/science.98.2531.19 pubmed: 17747326
Haller JF, Mintah IJ, Shihanian LM, Stevis P, Buckler D, Alexa-Braun CA, Kleiner S, Banfi S, Cohen JC, Hobbs HH, Yancopoulos GD, Murphy AJ, Gusarova V, Gromada J (2017) ANGPTL8 requires ANGPTL3 to inhibit lipoprotein lipase and plasma triglyceride clearance. J Lipid Res 58. https://doi.org/10.1194/JLR.M075689
Hata A, Ridinger DN, Sutherland S, Emi M, Shuhua Z, Myers RL, Ren K, Cheng T, Inoue I, Wilson DE et al (1993) Binding of lipoprotein lipase to heparin. Identification of five critical residues in two distinct segments of the amino-terminal domain. J Biol Chem 268(12):8447–8457
doi: 10.1016/S0021-9258(18)52896-9 pubmed: 8473288
Havel RJ, Fielding CJ, Olivecrona T, Shore VG, Fielding PE, Egelrud T (1973) Cofactor activity of protein components of human very low density lipoproteins in the hydrolysis of triglycerides by lipoproteins lipase from different sources. Biochemistry 12(9):1828–1833. https://doi.org/10.1021/bi00733a026
doi: 10.1021/bi00733a026 pubmed: 4349259
Hayne CK, Yumerefendi H, Cao L, Gauer JW, Lafferty MJ, Kuhlman B, Erie DA, Neher SB (2018) We FRET so you don’t have to: new models of the lipoprotein lipase dimer. Biochemistry 57(2):241–254. https://doi.org/10.1021/acs.biochem.7b01009
doi: 10.1021/acs.biochem.7b01009 pubmed: 29303250
Hill JS, Yang D, Nikazy J, Curtiss LK, Sparrow JT, Wong H (1998) Subdomain chimeras of hepatic lipase and lipoprotein lipase. Localization of heparin and cofactor binding. J Biol Chem 273(47):30979–30984. https://doi.org/10.1074/jbc.273.47.30979
doi: 10.1074/jbc.273.47.30979 pubmed: 9812994
Hollett C, Meng HC (1956) Purification and characterization of the lipemia-clearing factor of postheparin plasma. Biochim Biophys Acta 20(2):421–422. https://doi.org/10.1016/0006-3002(56)90322-5
doi: 10.1016/0006-3002(56)90322-5 pubmed: 13328884
Hortin GL, Sviridov D, Anderson NL (2008) High-abundance polypeptides of the human plasma proteome comprising the top 4 logs of polypeptide abundance. Clin Chem 54(10):1608–1616. https://doi.org/10.1373/clinchem.2008.108175
doi: 10.1373/clinchem.2008.108175 pubmed: 18687737
Hsu LA, Ko YL, Chang CJ, Hu CF, Wu S, Teng MS, Wang CL, Ho WJ, Ko YS, Hsu TS, Lee YS (2006) Genetic variations of apolipoprotein A5 gene is associated with the risk of coronary artery disease among Chinese in Taiwan. Atherosclerosis 185(1):143–149. https://doi.org/10.1016/j.atherosclerosis.2005.05.031
doi: 10.1016/j.atherosclerosis.2005.05.031 pubmed: 16054149
Hsu CC, Kanter JE, Kothari V, Bornfeldt KE (2023) Quartet of APOCs and the different roles they play in diabetes. Arterioscler Thromb Vasc Biol 43(7):1124–1133. https://doi.org/10.1161/ATVBAHA.122.318290
doi: 10.1161/ATVBAHA.122.318290 pubmed: 37226733
Huff MW, Hegele RA (2013) Apolipoprotein C-III: going back to the future for a lipid drug target. Circ Res 112(11):1405–1408. https://doi.org/10.1161/CIRCRESAHA.113.301464
doi: 10.1161/CIRCRESAHA.113.301464 pubmed: 23704213
Ioka RX, Kang MJ, Kamiyama S, Kim DH, Magoori K, Kamataki A, Ito Y, Takei YA, Sasaki M, Suzuki T, Sasano H, Takahashi S, Sakai J, Fujino T, Yamamoto TT (2003) Expression cloning and characterization of a novel glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein, GPI-HBP1. J Biol Chem 278(9):7344–7349. https://doi.org/10.1074/jbc.M211932200
doi: 10.1074/jbc.M211932200 pubmed: 12496272
Ito Y, Azrolan N, O’Connell A, Walsh A, Breslow JL (1990) Hypertriglyceridemia as a result of human apo CIII gene expression in transgenic mice. Science 249(4970):790–793. https://doi.org/10.1126/science.2167514
doi: 10.1126/science.2167514 pubmed: 2167514
Jin N, Matter WF, Michael LF, Qian Y, Gheyi T, Cano L, Perez C, Lafuente C, Broughton HB, Espada A (2021) The angiopoietin-like protein 3 and 8 complex interacts with lipoprotein lipase and induces LPL cleavage. ACS Chem Biol 16(3):457–462. https://doi.org/10.1021/acschembio.0c00954
doi: 10.1021/acschembio.0c00954 pubmed: 33656326
Kane JP, Hardman DA, Paulus HE (1980) Heterogeneity of apolipoprotein B: isolation of a new species from human chylomicrons. Proc Natl Acad Sci U S A 77(5):2465–2469. https://doi.org/10.1073/pnas.77.5.2465
doi: 10.1073/pnas.77.5.2465 pubmed: 6930644 pmcid: 349420
Kersten S (2014) Physiological regulation of lipoprotein lipase. Biochim Biophys Acta 1841(7):919–933. https://doi.org/10.1016/j.bbalip.2014.03.013
doi: 10.1016/j.bbalip.2014.03.013 pubmed: 24721265
Kersten S, Mandard S, Tan NS, Escher P, Metzger D, Chambon P, Gonzalez FJ, Desvergne B, Wahli W (2000) Characterization of the fasting-induced adipose factor FIAF, a novel peroxisome proliferator-activated receptor target gene. J Biol Chem 275(37):28488–28493. https://doi.org/10.1074/jbc.M004029200
doi: 10.1074/jbc.M004029200 pubmed: 10862772
Khan FI, Lan D, Durrani R, Huan W, Zhao Z, Wang Y (2017) The lid domain in lipases: structural and functional determinant of enzymatic properties. Front Bioeng Biotechnol 5:16. https://doi.org/10.3389/fbioe.2017.00016
doi: 10.3389/fbioe.2017.00016 pubmed: 28337436 pmcid: 5343024
Kim I, Kim HG, Kim H, Kim HH, Park SK, Uhm CS, Lee ZH, Koh GY (2000) Hepatic expression, synthesis and secretion of a novel fibrinogen/angiopoietin-related protein that prevents endothelial-cell apoptosis. Biochem J 346 Pt 3(Pt 3):603–610
doi: 10.1042/bj3460603 pubmed: 10698685
Kingsley LJ, Lill MA (2015) Substrate tunnels in enzymes: structure-function relationships and computational methodology. Proteins 83(4):599–611. https://doi.org/10.1002/prot.24772
doi: 10.1002/prot.24772 pubmed: 25663659 pmcid: 4404149
Kobayashi Y, Nakajima T, Inoue I (2002) Molecular modeling of the dimeric structure of human lipoprotein lipase and functional studies of the carboxyl-terminal domain. Eur J Biochem 269(18):4701–4710. https://doi.org/10.1046/j.1432-1033.2002.03179.x
doi: 10.1046/j.1432-1033.2002.03179.x pubmed: 12230584
Kolovou G, Kolovou V, Katsiki N (2022) Volanesorsen: a new era in the treatment of severe hypertriglyceridemia. J Clin Med 11(4). https://doi.org/10.3390/jcm11040982
Korn ED (1954) Properties of clearing factor obtained from rat heart acetone powder. Science 120(3114):399–400. https://doi.org/10.1126/science.120.3114.399-a
doi: 10.1126/science.120.3114.399-a pubmed: 13186871
Korn ED (1955) Clearing factor, a heparin-activated lipoprotein lipase. I. Isolation and characterization of the enzyme from normal rat heart. J Biol Chem 215(1):1–14
doi: 10.1016/S0021-9258(18)66011-9 pubmed: 14392137
Krauss RM, Herbert PN, Levy RI, Fredrickson DS (1973) Further observations on the activation and inhibition of lipoprotein lipase by apolipoproteins. Circ Res 33(4):403–411. https://doi.org/10.1161/01.res.33.4.403
doi: 10.1161/01.res.33.4.403 pubmed: 4355035
Kristensen KK, Leth-Espensen KZ, Mertens HDT, Birrane G, Meiyappan M, Olivecrona G, Jorgensen TJD, Young SG, Ploug M (2020) Unfolding of monomeric lipoprotein lipase by ANGPTL4: insight into the regulation of plasma triglyceride metabolism. Proc Natl Acad Sci U S A 117(8):4337–4346. https://doi.org/10.1073/pnas.1920202117
doi: 10.1073/pnas.1920202117 pubmed: 32034094 pmcid: 7049152
Kumari A, Gronnemose AL, Kristensen KK, Winther AL, Young SG, Jorgensen TJD, Ploug M (2023) Inverse effects of APOC2 and ANGPTL4 on the conformational dynamics of lid-anchoring structures in lipoprotein lipase. Proc Natl Acad Sci U S A 120(18):e2221888120. https://doi.org/10.1073/pnas.2221888120
doi: 10.1073/pnas.2221888120 pubmed: 37094117 pmcid: 10160976
Lafferty MJ, Bradford KC, Erie DA, Neher SB (2013) Angiopoietin-like protein 4 inhibition of lipoprotein lipase: evidence for reversible complex formation. J Biol Chem 288(40):28524–28534. https://doi.org/10.1074/jbc.M113.497602
doi: 10.1074/jbc.M113.497602 pubmed: 23960078 pmcid: 3789953
Lalazar A, Mahley RW (1989) Human apolipoprotein E. Receptor binding activity of truncated variants with carboxyl-terminal deletions. J Biol Chem 264(15):8447–8450
doi: 10.1016/S0021-9258(18)81806-3 pubmed: 2542277
Larsson M, Vorrsjo E, Talmud P, Lookene A, Olivecrona G (2013) Apolipoproteins C-I and C-III inhibit lipoprotein lipase activity by displacement of the enzyme from lipid droplets. J Biol Chem 288(47):33997–34008. https://doi.org/10.1074/jbc.M113.495366
doi: 10.1074/jbc.M113.495366 pubmed: 24121499 pmcid: 3837139
Le NA, Walter MF (2007) The role of hypertriglyceridemia in atherosclerosis. Curr Atheroscler Rep 9(2):110–115. https://doi.org/10.1007/s11883-007-0006-7
doi: 10.1007/s11883-007-0006-7 pubmed: 17877919
Lee EC, Desai U, Gololobov G, Hong S, Feng X, Yu XC, Gay J, Wilganowski N, Gao C, Du LL, Chen J, Hu Y, Zhao S, Kirkpatrick L, Schneider M, Zambrowicz BP, Landes G, Powell DR, Sonnenburg WK (2009) Identification of a new functional domain in angiopoietin-like 3 (ANGPTL3) and angiopoietin-like 4 (ANGPTL4) involved in binding and inhibition of lipoprotein lipase (LPL). J Biol Chem 284(20):13735–13745. https://doi.org/10.1074/jbc.M807899200
doi: 10.1074/jbc.M807899200 pubmed: 19318355 pmcid: 2679475
Lei X, Shi F, Basu D, Huq A, Routhier S, Day R, Jin W (2011) Proteolytic processing of angiopoietin-like protein 4 by proprotein convertases modulates its inhibitory effects on lipoprotein lipase activity. J Biol Chem 286(18):15747–15756. https://doi.org/10.1074/jbc.M110.217638
doi: 10.1074/jbc.M110.217638 pubmed: 21398697 pmcid: 3091183
Levi V, Gonzalez Flecha FL (2002) Reversible fast-dimerization of bovine serum albumin detected by fluorescence resonance energy transfer. Biochim Biophys Acta 1599(1-2):141–148. https://doi.org/10.1016/s1570-9639(02)00414-4
doi: 10.1016/s1570-9639(02)00414-4 pubmed: 12479415
Loeffler B, Heeren J, Blaeser M, Radner H, Kayser D, Aydin B, Merkel M (2007) Lipoprotein lipase-facilitated uptake of LDL is mediated by the LDL receptor. J Lipid Res 48(2):288–298. https://doi.org/10.1194/jlr.M600292-JLR200
doi: 10.1194/jlr.M600292-JLR200 pubmed: 17090659
Lookene A, Chevreuil O, Ostergaard P, Olivecrona G (1996) Interaction of lipoprotein lipase with heparin fragments and with heparan sulfate: stoichiometry, stabilization, and kinetics. Biochemistry 35(37):12155–12163. https://doi.org/10.1021/bi960008e
doi: 10.1021/bi960008e pubmed: 8810923
Lookene A, Groot NB, Kastelein JJ, Olivecrona G, Bruin T (1997) Mutation of tryptophan residues in lipoprotein lipase. Effects on stability, immunoreactivity, and catalytic properties. J Biol Chem 272(2):766–772. https://doi.org/10.1074/jbc.272.2.766
doi: 10.1074/jbc.272.2.766 pubmed: 8995362
Lookene A, Zhang L, Hultin M, Olivecrona G (2004) Rapid subunit exchange in dimeric lipoprotein lipase and properties of the inactive monomer. J Biol Chem 279(48):49964–49972. https://doi.org/10.1074/jbc.M407419200
doi: 10.1074/jbc.M407419200 pubmed: 15385564
Lookene A, Beckstead JA, Nilsson S, Olivecrona G, Ryan RO (2005) Apolipoprotein A-V-heparin interactions: implications for plasma lipoprotein metabolism. J Biol Chem 280(27):25383–25387. https://doi.org/10.1074/jbc.M501589200
doi: 10.1074/jbc.M501589200 pubmed: 15878877
Lutz EP, Merkel M, Kako Y, Melford K, Radner H, Breslow JL, Bensadoun A, Goldberg IJ (2001) Heparin-binding defective lipoprotein lipase is unstable and causes abnormalities in lipid delivery to tissues. J Clin Invest 107(9):1183–1192. https://doi.org/10.1172/JCI11774
doi: 10.1172/JCI11774 pubmed: 11342582 pmcid: 209279
MacRaild CA, Howlett GJ, Gooley PR (2004) The structure and interactions of human apolipoprotein C-II in dodecyl phosphocholine. Biochemistry 43(25):8084–8093. https://doi.org/10.1021/bi049817l
doi: 10.1021/bi049817l pubmed: 15209504
Maeda N, Li H, Lee D, Oliver P, Quarfordt SH, Osada J (1994) Targeted disruption of the apolipoprotein C-III gene in mice results in hypotriglyceridemia and protection from postprandial hypertriglyceridemia. J Biol Chem 269(38):23610–23616
doi: 10.1016/S0021-9258(17)31559-4 pubmed: 8089130
Mahley RW (2016) Apolipoprotein E: from cardiovascular disease to neurodegenerative disorders. J Mol Med (Berl) 94(7):739–746. https://doi.org/10.1007/s00109-016-1427-y
doi: 10.1007/s00109-016-1427-y pubmed: 27277824
Mahley RW, Innerarity TL, Rall SC Jr, Weisgraber KH (1984) Plasma lipoproteins: apolipoprotein structure and function. J Lipid Res 25(12):1277–1294
doi: 10.1016/S0022-2275(20)34443-6 pubmed: 6099394
Mao HZ, Ehrhardt N, Bedoya C, Gomez JA, DeZwaan-McCabe D, Mungrue IN, Kaufman RJ, Rutkowski DT, Peterfy M (2014) Lipase maturation factor 1 (lmf1) is induced by endoplasmic reticulum stress through activating transcription factor 6alpha (Atf6alpha) signaling. J Biol Chem 289(35):24417–24427. https://doi.org/10.1074/jbc.M114.588764
doi: 10.1074/jbc.M114.588764 pubmed: 25035425 pmcid: 4148868
Masuno H, Blanchette-Mackie EJ, Chernick SS, Scow RO (1990) Synthesis of inactive nonsecretable high mannose-type lipoprotein lipase by cultured brown adipocytes of combined lipase-deficient cld/cld mice. J Biol Chem 265(3):1628–1638
doi: 10.1016/S0021-9258(19)40063-X pubmed: 2104849
McConathy WJ, Gesquiere JC, Bass H, Tartar A, Fruchart JC, Wang CS (1992) Inhibition of lipoprotein lipase activity by synthetic peptides of apolipoprotein C-III. J Lipid Res 33(7):995–1003
doi: 10.1016/S0022-2275(20)41415-4 pubmed: 1431591
McIlhargey TL, Yang Y, Wong H, Hill JS (2003) Identification of a lipoprotein lipase cofactor-binding site by chemical cross-linking and transfer of apolipoprotein C-II-responsive lipolysis from lipoprotein lipase to hepatic lipase. J Biol Chem 278(25):23027–23035. https://doi.org/10.1074/jbc.M300315200
doi: 10.1074/jbc.M300315200 pubmed: 12682050
McQueen AE, Kanamaluru D, Yan K, Gray NE, Wu L, Li ML, Chang A, Hasan A, Stifler D, Koliwad SK, Wang JC (2017) The C-terminal fibrinogen-like domain of angiopoietin-like 4 stimulates adipose tissue lipolysis and promotes energy expenditure. J Biol Chem 292(39):16122–16134. https://doi.org/10.1074/jbc.M117.803973
doi: 10.1074/jbc.M117.803973 pubmed: 28842503 pmcid: 5625043
Meneghetti MC, Hughes AJ, Rudd TR, Nader HB, Powell AK, Yates EA, Lima MA (2015) Heparan sulfate and heparin interactions with proteins. J R Soc Interface 12(110):0589. https://doi.org/10.1098/rsif.2015.0589
doi: 10.1098/rsif.2015.0589 pubmed: 26289657
Merkel M, Loeffler B, Kluger M, Fabig N, Geppert G, Pennacchio LA, Laatsch A, Heeren J (2005) Apolipoprotein AV accelerates plasma hydrolysis of triglyceride-rich lipoproteins by interaction with proteoglycan-bound lipoprotein lipase. J Biol Chem 280(22):21553–21560. https://doi.org/10.1074/jbc.M411412200
doi: 10.1074/jbc.M411412200 pubmed: 15774484
Meyers NL, Larsson M, Olivecrona G, Small DM (2015) A pressure-dependent model for the regulation of lipoprotein lipase by apolipoprotein C-II. J Biol Chem 290(29):18029–18044. https://doi.org/10.1074/jbc.M114.629865
doi: 10.1074/jbc.M114.629865 pubmed: 26026161 pmcid: 4505049
Miller NE (1990) HDL metabolism and its role in lipid transport. Eur Heart J 11(Suppl H):1–3. https://doi.org/10.1093/eurheartj/11.suppl_h.1
doi: 10.1093/eurheartj/11.suppl_h.1 pubmed: 2073908
Mirdita M, Schutze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M (2022) ColabFold: making protein folding accessible to all. Nat Methods 19(6):679–682. https://doi.org/10.1038/s41592-022-01488-1
doi: 10.1038/s41592-022-01488-1 pubmed: 35637307 pmcid: 9184281
Mueller B, Lilley BN, Ploegh HL (2006) SEL1L, the homologue of yeast Hrd3p, is involved in protein dislocation from the mammalian ER. J Cell Biol 175(2):261–270. https://doi.org/10.1083/jcb.200605196
doi: 10.1083/jcb.200605196 pubmed: 17043138 pmcid: 2064567
Mueller B, Klemm EJ, Spooner E, Claessen JH, Ploegh HL (2008) SEL1L nucleates a protein complex required for dislocation of misfolded glycoproteins. Proc Natl Acad Sci U S A 105(34):12325–12330. https://doi.org/10.1073/pnas.0805371105
doi: 10.1073/pnas.0805371105 pubmed: 18711132 pmcid: 2527910
Mysling S, Kristensen KK, Larsson M, Beigneux AP, Gardsvoll H, Fong LG, Bensadouen A, Jorgensen TJ, Young SG, Ploug M (2016a) The acidic domain of the endothelial membrane protein GPIHBP1 stabilizes lipoprotein lipase activity by preventing unfolding of its catalytic domain. Elife 5:e12095. https://doi.org/10.7554/eLife.12095
doi: 10.7554/eLife.12095 pubmed: 26725083 pmcid: 4755760
Mysling S, Kristensen KK, Larsson M, Kovrov O, Bensadouen A, Jorgensen TJ, Olivecrona G, Young SG, Ploug M (2016b) The angiopoietin-like protein ANGPTL4 catalyzes unfolding of the hydrolase domain in lipoprotein lipase and the endothelial membrane protein GPIHBP1 counteracts this unfolding. Elife 5. https://doi.org/10.7554/eLife.20958
Nielsen MS, Brejning J, Garcia R, Zhang H, Hayden MR, Vilaro S, Gliemann J (1997) Segments in the C-terminal folding domain of lipoprotein lipase important for binding to the low density lipoprotein receptor-related protein and to heparan sulfate proteoglycans. J Biol Chem 272(9):5821–5827. https://doi.org/10.1074/jbc.272.9.5821
doi: 10.1074/jbc.272.9.5821 pubmed: 9038197
Niemeier A, Gafvels M, Heeren J, Meyer N, Angelin B, Beisiegel U (1996) VLDL receptor mediates the uptake of human chylomicron remnants in vitro. J Lipid Res 37(8):1733–1742
doi: 10.1016/S0022-2275(20)39116-1 pubmed: 8864957
Nilsson SK, Lookene A, Beckstead JA, Gliemann J, Ryan RO, Olivecrona G (2007) Apolipoprotein A-V interaction with members of the low density lipoprotein receptor gene family. Biochemistry 46(12):3896–3904. https://doi.org/10.1021/bi7000533
doi: 10.1021/bi7000533 pubmed: 17326667
Nykjaer A, Bengtsson-Olivecrona G, Lookene A, Moestrup SK, Petersen CM, Weber W, Beisiegel U, Gliemann J (1993) The alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein binds lipoprotein lipase and beta-migrating very low density lipoprotein associated with the lipase. J Biol Chem 268(20):15048–15055
doi: 10.1016/S0021-9258(18)82436-X pubmed: 7686910
O’Brien PJ, Alborn WE, Sloan JH, Ulmer M, Boodhoo A, Knierman MD, Schultze AE, Konrad RJ (2005) The novel apolipoprotein A5 is present in human serum, is associated with VLDL, HDL, and chylomicrons, and circulates at very low concentrations compared with other apolipoproteins. Clin Chem 51(2):351–359. https://doi.org/10.1373/clinchem.2004.040824
doi: 10.1373/clinchem.2004.040824 pubmed: 15528295
Oka K, Wang-Iverson P, Paterniti JR Jr, Brown WV (1989a) Interaction of lipoprotein lipase with heparin. Ann N Y Acad Sci 556:173–180. https://doi.org/10.1111/j.1749-6632.1989.tb22501.x
doi: 10.1111/j.1749-6632.1989.tb22501.x pubmed: 2735657
Oka K, Yuan JG, Senda M, Masibay AS, Qasba PK, Masuno H, Scow RO, Paterniti JR Jr, Brown WV (1989b) Expression of lipoprotein lipase gene in combined lipase deficiency. Biochim Biophys Acta 1008(3):351–354. https://doi.org/10.1016/0167-4781(89)90027-4
doi: 10.1016/0167-4781(89)90027-4 pubmed: 2474325
Olivecrona T, Egelrud T, Iverius PH, Lindahl U (1971) Evidence for an ionic binding of lipoprotein lipase to heparin. Biochem Biophys Res Commun 43(3):524–529. https://doi.org/10.1016/0006-291x(71)90645-0
doi: 10.1016/0006-291x(71)90645-0 pubmed: 5563304
Olivecrona T, Bengtsson-Olivecrona G, Chernick SS, Scow RO (1986) Effect of combined lipase deficiency (cld/cld) on hepatic and lipoprotein lipase activities in liver and plasma of newborn mice. Biochim Biophys Acta 876(2):243–248
doi: 10.1016/0005-2760(86)90280-8 pubmed: 3955063
Ollila OH, Lamberg A, Lehtivaara M, Koivuniemi A, Vattulainen I (2012) Interfacial tension and surface pressure of high density lipoprotein, low density lipoprotein, and related lipid droplets. Biophys J 103(6):1236–1244. https://doi.org/10.1016/j.bpj.2012.08.023
doi: 10.1016/j.bpj.2012.08.023 pubmed: 22995496 pmcid: 3446698
Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, Harel M, Remington SJ, Silman I, Schrag J et al (1992) The alpha/beta hydrolase fold. Protein Eng 5(3):197–211. https://doi.org/10.1093/protein/5.3.197
doi: 10.1093/protein/5.3.197 pubmed: 1409539
Ono M, Shimizugawa T, Shimamura M, Yoshida K, Noji-Sakikawa C, Ando Y, Koishi R, Furukawa H (2003) Protein region important for regulation of lipid metabolism in angiopoietin-like 3 (ANGPTL3): ANGPTL3 is cleaved and activated in vivo. J Biol Chem 278(43):41804–41809. https://doi.org/10.1074/jbc.M302861200
doi: 10.1074/jbc.M302861200 pubmed: 12909640
Osborne JC Jr, Bengtsson-Olivecrona G, Lee NS, Olivecrona T (1985) Studies on inactivation of lipoprotein lipase: role of the dimer to monomer dissociation. Biochemistry 24(20):5606–5611. https://doi.org/10.1021/bi00341a048
doi: 10.1021/bi00341a048 pubmed: 4074716
Paterniti JR Jr, Brown WV, Ginsberg HN, Artzt K (1983) Combined lipase deficiency (cld): a lethal mutation on chromosome 17 of the mouse. Science 221(4606):167–169
doi: 10.1126/science.6857276 pubmed: 6857276
Pennacchio LA, Olivier M, Hubacek JA, Cohen JC, Cox DR, Fruchart JC, Krauss RM, Rubin EM (2001) An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing. Science 294(5540):169–173. https://doi.org/10.1126/science.1064852
doi: 10.1126/science.1064852 pubmed: 11588264
Peterfy M, Ben-Zeev O, Mao HZ, Weissglas-Volkov D, Aouizerat BE, Pullinger CR, Frost PH, Kane JP, Malloy MJ, Reue K, Pajukanta P, Doolittle MH (2007) Mutations in LMF1 cause combined lipase deficiency and severe hypertriglyceridemia. Nat Genet 39(12):1483–1487. https://doi.org/10.1038/ng.2007.24
doi: 10.1038/ng.2007.24 pubmed: 17994020
Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, Morris JH, Ferrin TE (2021) UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci 30(1):70–82. https://doi.org/10.1002/pro.3943
doi: 10.1002/pro.3943 pubmed: 32881101
Pollin TI, Damcott CM, Shen H, Ott SH, Shelton J, Horenstein RB, Post W, McLenithan JC, Bielak LF, Peyser PA, Mitchell BD, Miller M, O’Connell JR, Shuldiner AR (2008) A null mutation in human APOC3 confers a favorable plasma lipid profile and apparent cardioprotection. Science 322(5908):1702–1705. https://doi.org/10.1126/science.1161524
doi: 10.1126/science.1161524 pubmed: 19074352 pmcid: 2673993
Pradines-Figuères A, Vannier C, Ailhaud G (1990) Lipoprotein lipase stored in adipocytes and muscle cells is a cryptic enzyme. J Lipid Res 31(8):1467–1476
doi: 10.1016/S0022-2275(20)42617-3 pubmed: 2280186
Quagliarini F, Wang Y, Kozlitina J, Grishin NV, Hyde R, Boerwinkle E, Valenzuela DM, Murphy AJ, Cohen JC, Hobbs HH (2012) Atypical angiopoietin-like protein that regulates ANGPTL3. Proc Natl Acad Sci U S A 109(48):19751–19756. https://doi.org/10.1073/pnas.1217552109
doi: 10.1073/pnas.1217552109 pubmed: 23150577 pmcid: 3511699
Rapraeger AC (2001) Molecular interactions of syndecans during development. Semin Cell Dev Biol 12(2):107–116. https://doi.org/10.1006/scdb.2000.0239
doi: 10.1006/scdb.2000.0239 pubmed: 11292376
Razzaghi H, Day BW, McClure RJ, Kamboh MI (2001) Structure-function analysis of D9N and N291S mutations in human lipoprotein lipase using molecular modelling. J Mol Graph Model 19(6):487–494, 587–490. https://doi.org/10.1016/s1093-3263(00)00096-6
doi: 10.1016/s1093-3263(00)00096-6
Reddy MN, Maraganore JM, Meredith SC, Heinrikson RL, Kezdy FJ (1986) Isolation of an active-site peptide of lipoprotein lipase from bovine milk and determination of its amino acid sequence. J Biol Chem 261(21):9678–9683
doi: 10.1016/S0021-9258(18)67568-4 pubmed: 3525532
Reichl D (1969) Stabilization and partial purification of lipoprotein lipase. Biochem J 114(4):71P. https://doi.org/10.1042/bj1140071p
doi: 10.1042/bj1140071p pubmed: 5343773 pmcid: 1185022
Reimund M, Larsson M, Kovrov O, Kasvandik S, Olivecrona G, Lookene A (2015) Evidence for two distinct binding sites for lipoprotein lipase on glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1). J Biol Chem 290(22):13919–13934. https://doi.org/10.1074/jbc.M114.634626
doi: 10.1074/jbc.M114.634626 pubmed: 25873395 pmcid: 4447966
Reimund M, Kovrov O, Olivecrona G, Lookene A (2017) Lipoprotein lipase activity and interactions studied in human plasma by isothermal titration calorimetry. J Lipid Res 58(1):279–288. https://doi.org/10.1194/jlr.D071787
doi: 10.1194/jlr.D071787 pubmed: 27845686
Reizes O, Goldberger O, Smith AC, Xu Z, Bernfield M, Bickel PE (2006) Insulin promotes shedding of syndecan ectodomains from 3T3-L1 adipocytes: a proposed mechanism for stabilization of extracellular lipoprotein lipase. Biochemistry 45(18):5703–5711. https://doi.org/10.1021/bi052263h
doi: 10.1021/bi052263h pubmed: 16669614
Rensen PC, van Berkel TJ (1996) Apolipoprotein E effectively inhibits lipoprotein lipase-mediated lipolysis of chylomicron-like triglyceride-rich lipid emulsions in vitro and in vivo. J Biol Chem 271(25):14791–14799. https://doi.org/10.1074/jbc.271.25.14791
doi: 10.1074/jbc.271.25.14791 pubmed: 8662966
Reyes-Soffer G, Sztalryd C, Horenstein RB, Holleran S, Matveyenko A, Thomas T, Nandakumar R, Ngai C, Karmally W, Ginsberg HN, Ramakrishnan R, Pollin TI (2019) Effects of APOC3 heterozygous deficiency on plasma lipid and lipoprotein metabolism. Arterioscler Thromb Vasc Biol 39(1):63–72. https://doi.org/10.1161/ATVBAHA.118.311476
doi: 10.1161/ATVBAHA.118.311476 pubmed: 30580564 pmcid: 6309928
Risti R, Gunn KH, Hiis-Hommuk K, Seeba NN, Karimi H, Villo L, Vendelin M, Neher SB, Lookene A (2023) Combined action of albumin and heparin regulates lipoprotein lipase oligomerization, stability, and ligand interactions. PLoS One 18(4):e0283358. https://doi.org/10.1371/journal.pone.0283358
doi: 10.1371/journal.pone.0283358 pubmed: 37043509 pmcid: 10096250
Roberts BS, Babilonia-Rosa MA, Broadwell LJ, Wu MJ, Neher SB (2018) Lipase maturation factor 1 affects redox homeostasis in the endoplasmic reticulum. EMBO J 37(19). https://doi.org/10.15252/embj.201797379
Romeo S, Pennacchio LA, Fu Y, Boerwinkle E, Tybjaerg-Hansen A, Hobbs HH, Cohen JC (2007) Population-based resequencing of ANGPTL4 uncovers variations that reduce triglycerides and increase HDL. Nat Genet 39(4):513–516. https://doi.org/10.1038/ng1984
doi: 10.1038/ng1984 pubmed: 17322881 pmcid: 2762948
Sarrazin S, Lamanna WC, Esko JD (2011) Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol 3(7). https://doi.org/10.1101/cshperspect.a004952
Segrest JP, Jones MK, De Loof H, Brouillette CG, Venkatachalapathi YV, Anantharamaiah GM (1992) The amphipathic helix in the exchangeable apolipoproteins: a review of secondary structure and function. J Lipid Res 33(2):141–166
doi: 10.1016/S0022-2275(20)41536-6 pubmed: 1569369
Sehayek E, Eisenberg S (1991) Mechanisms of inhibition by apolipoprotein C of apolipoprotein E-dependent cellular metabolism of human triglyceride-rich lipoproteins through the low density lipoprotein receptor pathway. J Biol Chem 266(27):18259–18267
doi: 10.1016/S0021-9258(18)55263-7 pubmed: 1917954
Sendak RA, Bensadoun A (1998) Identification of a heparin-binding domain in the distal carboxyl-terminal region of lipoprotein lipase by site-directed mutagenesis. J Lipid Res 39(6):1310–1315
doi: 10.1016/S0022-2275(20)32557-8 pubmed: 9643364
Sha H, Sun S, Francisco AB, Ehrhardt N, Xue Z, Liu L, Lawrence P, Mattijssen F, Guber RD, Panhwar MS, Brenna JT, Shi H, Xue B, Kersten S, Bensadoun A, Peterfy M, Long Q, Qi L (2014) The ER-associated degradation adaptor protein Sel1L regulates LPL secretion and lipid metabolism. Cell Metab 20(3):458–470. https://doi.org/10.1016/j.cmet.2014.06.015
doi: 10.1016/j.cmet.2014.06.015 pubmed: 25066055 pmcid: 4156539
Shan L, Yu XC, Liu Z, Hu Y, Sturgis LT, Miranda ML, Liu Q (2009) The angiopoietin-like proteins ANGPTL3 and ANGPTL4 inhibit lipoprotein lipase activity through distinct mechanisms. J Biol Chem 284(3):1419–1424. https://doi.org/10.1074/jbc.M808477200
doi: 10.1074/jbc.M808477200 pubmed: 19028676
Shen Y, Lookene A, Nilsson S, Olivecrona G (2002) Functional analyses of human apolipoprotein CII by site-directed mutagenesis: identification of residues important for activation of lipoprotein lipase. J Biol Chem 277(6):4334–4342. https://doi.org/10.1074/jbc.M105421200
doi: 10.1074/jbc.M105421200 pubmed: 11719505
Shetty SK, Walzem RL, Davies BSJ (2020) A novel NanoBiT-based assay monitors the interaction between lipoprotein lipase and GPIHBP1 in real time. J Lipid Res 61(4):546–559. https://doi.org/10.1194/jlr.D119000388
doi: 10.1194/jlr.D119000388 pubmed: 32029511 pmcid: 7112140
Shimada K, Gill PJ, Silbert JE, Douglas WH, Fanburg BL (1981) Involvement of cell surface heparin sulfate in the binding of lipoprotein lipase to cultured bovine endothelial cells. J Clin Invest 68(4):995–1002. https://doi.org/10.1172/jci110354
doi: 10.1172/jci110354 pubmed: 6457061 pmcid: 370886
Shimizugawa T, Ono M, Shimamura M, Yoshida K, Ando Y, Koishi R, Ueda K, Inaba T, Minekura H, Kohama T, Furukawa H (2002) ANGPTL3 decreases very low density lipoprotein triglyceride clearance by inhibition of lipoprotein lipase. J Biol Chem 277(37):33742–33748. https://doi.org/10.1074/jbc.M203215200
doi: 10.1074/jbc.M203215200 pubmed: 12097324
Song W, Beigneux AP, Winther AL, Kristensen KK, Gronnemose AL, Yang Y, Tu Y, Munguia P, Morales J, Jung H, de Jong PJ, Jung CJ, Miyashita K, Kimura T, Nakajima K, Murakami M, Birrane G, Jiang H, Tontonoz P, Ploug M, Fong LG, Young SG (2022) Electrostatic sheathing of lipoprotein lipase is essential for its movement across capillary endothelial cells. J Clin Invest 132(5). https://doi.org/10.1172/JCI157500
Sonnenburg WK, Yu D, Lee EC, Xiong W, Gololobov G, Key B, Gay J, Wilganowski N, Hu Y, Zhao S, Schneider M, Ding ZM, Zambrowicz BP, Landes G, Powell DR, Desai U (2009) GPIHBP1 stabilizes lipoprotein lipase and prevents its inhibition by angiopoietin-like 3 and angiopoietin-like 4. J Lipid Res 50(12):2421–2429. https://doi.org/10.1194/jlr.M900145-JLR200
doi: 10.1194/jlr.M900145-JLR200 pubmed: 19542565 pmcid: 2781314
Sosnowska B, Adach W, Surma S, Rosenson RS, Banach M (2022) Evinacumab, an ANGPTL3 Inhibitor, in the treatment of dyslipidemia. J Clin Med 12(1). https://doi.org/10.3390/jcm12010168
Stitziel NO, Khera AV, Wang X, Bierhals AJ, Vourakis AC, Sperry AE, Natarajan P, Klarin D, Emdin CA, Zekavat SM, Nomura A, Erdmann J, Schunkert H, Samani NJ, Kraus WE, Shah SH, Yu B, Boerwinkle E, Rader DJ, Gupta N, Frossard PM, Rasheed A, Danesh J, Lander ES, Gabriel S, Saleheen D, Musunuru K, Kathiresan S, PROMIS and Myocardial Infarction Genetics Consortium Investigators (2017) ANGPTL3 Deficiency and Protection Against Coronary Artery Disease. J Am Coll Cardiol 69(16):2054–2063. https://doi.org/10.1016/j.jacc.2017.02.030
doi: 10.1016/j.jacc.2017.02.030 pubmed: 28385496 pmcid: 5404817
Sukonina V, Lookene A, Olivecrona T, Olivecrona G (2006) Angiopoietin-like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue. Proc Natl Acad Sci U S A 103(46):17450–17455
doi: 10.1073/pnas.0604026103 pubmed: 17088546 pmcid: 1859949
Sundberg EL, Deng Y, Burd CG (2019) Syndecan-1 mediates sorting of soluble lipoprotein lipase with sphingomyelin-rich membrane in the golgi apparatus. Dev Cell 51(3):387–398.e384. https://doi.org/10.1016/j.devcel.2019.08.014
doi: 10.1016/j.devcel.2019.08.014 pubmed: 31543446 pmcid: 6832887
Sviridov D, Dasseux A, Reimund M, Pryor M, Drake SK, Jarin Z, Wolska A, Pastor RW, Remaley AT (2023) Short hydrocarbon stapled ApoC2-mimetic peptides activate lipoprotein lipase and lower plasma triglycerides in mice. Front Cardiovasc Med 10:1223920. https://doi.org/10.3389/fcvm.2023.1223920
doi: 10.3389/fcvm.2023.1223920 pubmed: 37547254 pmcid: 10403075
Sylvers-Davie KL, Segura-Roman A, Salvi AM, Schache KJ, Davies BSJ (2021) Angiopoietin-like 3 inhibition of endothelial lipase is not modulated by angiopoietin-like 8. J Lipid Res 62:100112. https://doi.org/10.1016/j.jlr.2021.100112
doi: 10.1016/j.jlr.2021.100112 pubmed: 34461133 pmcid: 8456055
Talmud PJ, Smart M, Presswood E, Cooper JA, Nicaud V, Drenos F, Palmen J, Marmot MG, Boekholdt SM, Wareham NJ, Khaw KT, Kumari M, Humphries SE, EARSII Consortium; HIFMECH Consortium (2008) ANGPTL4 E40K and T266M: effects on plasma triglyceride and HDL levels, postprandial responses, and CHD risk. Arterioscler Thromb Vasc Biol 28(12):2319–2325. https://doi.org/10.1161/ATVBAHA.108.176917
doi: 10.1161/ATVBAHA.108.176917 pubmed: 18974381
van der Vliet HN, Schaap FG, Levels JH, Ottenhoff R, Looije N, Wesseling JG, Groen AK, Chamuleau RA (2002) Adenoviral overexpression of apolipoprotein A-V reduces serum levels of triglycerides and cholesterol in mice. Biochem Biophys Res Commun 295(5):1156–1159. https://doi.org/10.1016/s0006-291x(02)00808-2
doi: 10.1016/s0006-291x(02)00808-2 pubmed: 12135615
van Tilbeurgh H, Sarda L, Verger R, Cambillau C (1992) Structure of the pancreatic lipase-procolipase complex. Nature 359(6391):159–162. https://doi.org/10.1038/359159a0
doi: 10.1038/359159a0 pubmed: 1522902
van Tilbeurgh H, Egloff MP, Martinez C, Rugani N, Verger R, Cambillau C (1993) Interfacial activation of the lipase-procolipase complex by mixed micelles revealed by X-ray crystallography. Nature 362(6423):814–820. https://doi.org/10.1038/362814a0
doi: 10.1038/362814a0 pubmed: 8479519
van Tilbeurgh H, Roussel A, Lalouel JM, Cambillau C (1994) Lipoprotein lipase. Molecular model based on the pancreatic lipase x-ray structure: consequences for heparin binding and catalysis. J Biol Chem 269(6):4626–4633
doi: 10.1016/S0021-9258(17)41822-9 pubmed: 8308035
Vilella E, Joven J, Fernandez M, Vilaro S, Brunzell JD, Olivecrona T, Bengtsson-Olivecrona G (1993) Lipoprotein lipase in human plasma is mainly inactive and associated with cholesterol-rich lipoproteins. J Lipid Res 34(9):1555–1564
doi: 10.1016/S0022-2275(20)36948-0 pubmed: 8228638
Wang Y, Quagliarini F, Gusarova V, Gromada J, Valenzuela DM, Cohen JC, Hobbs HH (2013) Mice lacking ANGPTL8 (Betatrophin) manifest disrupted triglyceride metabolism without impaired glucose homeostasis. Proc Natl Acad Sci U S A 110(40):16109–16114. https://doi.org/10.1073/pnas.1315292110
doi: 10.1073/pnas.1315292110 pubmed: 24043787 pmcid: 3791734
Whitacre BE, Howles P, Street S, Morris J, Swertfeger D, Davidson WS (2022) Apolipoprotein E content of VLDL limits LPL-mediated triglyceride hydrolysis. J Lipid Res 63(1):100157. https://doi.org/10.1016/j.jlr.2021.100157
doi: 10.1016/j.jlr.2021.100157 pubmed: 34863862
Wilson C, Wardell MR, Weisgraber KH, Mahley RW, Agard DA (1991) Three-dimensional structure of the LDL receptor-binding domain of human apolipoprotein E. Science 252(5014):1817–1822. https://doi.org/10.1126/science.2063194
doi: 10.1126/science.2063194 pubmed: 2063194
Wolska A, Lo L, Sviridov DO, Pourmousa M, Pryor M, Ghosh SS, Kakkar R, Davidson M, Wilson S, Pastor RW, Goldberg IJ, Basu D, Drake SK, Cougnoux A, Wu MJ, Neher SB, Freeman LA, Tang J, Amar M, Devalaraja M, Remaley AT (2020) A dual apolipoprotein C-II mimetic-apolipoprotein C-III antagonist peptide lowers plasma triglycerides. Sci Transl Med 12(528). https://doi.org/10.1126/scitranslmed.aaw7905
Wu X, Siggel M, Ovchinnikov S, Mi W, Svetlov V, Nudler E, Liao M, Hummer G, Rapoport TA (2020) Structural basis of ER-associated protein degradation mediated by the Hrd1 ubiquitin ligase complex. Science 368(6489). https://doi.org/10.1126/science.aaz2449
Wu SA, Kersten S, Qi L (2021) Lipoprotein lipase and its regulators: an unfolding story. Trends Endocrinol Metab 32(1):48–61. https://doi.org/10.1016/j.tem.2020.11.005
doi: 10.1016/j.tem.2020.11.005 pubmed: 33277156
Wu SA, Shen C, Wei X, Zhang X, Wang S, Chen X, Torres M, Lu Y, Lin LL, Wang HH, Hunter AH, Fang D, Sun S, Ivanova MI, Lin Y, Qi L (2023) The mechanisms to dispose of misfolded proteins in the endoplasmic reticulum of adipocytes. Nat Commun 14(1):3132. https://doi.org/10.1038/s41467-023-38690-4
doi: 10.1038/s41467-023-38690-4 pubmed: 37253728 pmcid: 10229581
Yamada N, Murase T (1980) Modulation, by apolipoprotein E, of lipoprotein lipase activity. Biochem Biophys Res Commun 94(2):710–715. https://doi.org/10.1016/0006-291x(80)91290-5
doi: 10.1016/0006-291x(80)91290-5 pubmed: 7396930
Yau MH, Wang Y, Lam KS, Zhang J, Wu D, Xu A (2009) A highly conserved motif within the NH2-terminal coiled-coil domain of angiopoietin-like protein 4 confers its inhibitory effects on lipoprotein lipase by disrupting the enzyme dimerization. J Biol Chem 284(18):11942–11952. https://doi.org/10.1074/jbc.M809802200
doi: 10.1074/jbc.M809802200 pubmed: 19246456 pmcid: 2673263
Yin W, Romeo S, Chang S, Grishin NV, Hobbs HH, Cohen JC (2009) Genetic variation in ANGPTL4 provides insights into protein processing and function. J Biol Chem 284(19):13213–13222. https://doi.org/10.1074/jbc.M900553200
doi: 10.1074/jbc.M900553200 pubmed: 19270337 pmcid: 2676053
Yoon JC, Chickering TW, Rosen ED, Dussault B, Qin Y, Soukas A, Friedman JM, Holmes WE, Spiegelman BM (2000) Peroxisome proliferator-activated receptor gamma target gene encoding a novel angiopoietin-related protein associated with adipose differentiation. Mol Cell Biol 20(14):5343–5349. https://doi.org/10.1128/MCB.20.14.5343-5349.2000
doi: 10.1128/MCB.20.14.5343-5349.2000 pubmed: 10866690 pmcid: 85983
Yoshida K, Shimizugawa T, Ono M, Furukawa H (2002) Angiopoietin-like protein 4 is a potent hyperlipidemia-inducing factor in mice and inhibitor of lipoprotein lipase. J Lipid Res 43(11):1770–1772
doi: 10.1194/jlr.C200010-JLR200 pubmed: 12401877
Zambon A, Schmidt I, Beisiegel U, Brunzell JD (1996) Dimeric lipoprotein lipase is bound to triglyceride-rich plasma lipoproteins. J Lipid Res 37(11):2394–2404
doi: 10.1016/S0022-2275(20)37488-5 pubmed: 8978491
Zdunek J, Martinez GV, Schleucher J, Lycksell PO, Yin Y, Nilsson S, Shen Y, Olivecrona G, Wijmenga S (2003) Global structure and dynamics of human apolipoprotein CII in complex with micelles: evidence for increased mobility of the helix involved in the activation of lipoprotein lipase. Biochemistry 42(7):1872–1889. https://doi.org/10.1021/bi0267184
doi: 10.1021/bi0267184 pubmed: 12590574
Zhang R (2012) Lipasin, a novel nutritionally-regulated liver-enriched factor that regulates serum triglyceride levels. Biochem Biophys Res Commun 424(4):786–792. https://doi.org/10.1016/j.bbrc.2012.07.038
doi: 10.1016/j.bbrc.2012.07.038 pubmed: 22809513
Zhang R (2016) The ANGPTL3-4-8 model, a molecular mechanism for triglyceride trafficking. Open Biol 6(4):150272. https://doi.org/10.1098/rsob.150272
doi: 10.1098/rsob.150272 pubmed: 27053679 pmcid: 4852456
Zhang SH, Reddick RL, Piedrahita JA, Maeda N (1992) Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258(5081):468–471. https://doi.org/10.1126/science.1411543
doi: 10.1126/science.1411543 pubmed: 1411543

Auteurs

Anna Wheless (A)

University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Kathryn H Gunn (KH)

University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Stony Brook University, Stony Brook, USA.

Saskia B Neher (SB)

University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. neher@email.unc.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH