The use of Guyton's approach to the control of cardiac output for clinical fluid management.

Central venous pressure Means systemic filling pressure Right atrial pressure Right ventricle Stressed volume Vascular volume Venous return

Journal

Annals of intensive care
ISSN: 2110-5820
Titre abrégé: Ann Intensive Care
Pays: Germany
ID NLM: 101562873

Informations de publication

Date de publication:
04 Jul 2024
Historique:
received: 27 03 2024
accepted: 17 05 2024
medline: 4 7 2024
pubmed: 4 7 2024
entrez: 4 7 2024
Statut: epublish

Résumé

Infusion of fluids is one of the most common medical acts when resuscitating critically ill patients. However, fluids most often are given without consideration of how fluid infusion can actually improve tissue perfusion. Arthur Guyton's analysis of the circulation was based on how cardiac output is determined by the interaction of the factors determining the return of blood to the heart, i.e. venous return, and the factors that determine the output from the heart, i.e. pump function. His theoretical approach can be used to understand what fluids can and cannot do. In his graphical analysis, right atrial pressure (RAP) is at the center of this interaction and thus indicates the status of these two functions. Accordingly, trends in RAP and cardiac output (or a surrogate of cardiac output) can provide important guides for the cause of a hemodynamic deterioration, the potential role of fluids, the limits of their use, and when the fluid is given, the response to therapeutic interventions. Use of the trends in these values provide a physiologically grounded approach to clinical fluid management.

Identifiants

pubmed: 38963533
doi: 10.1186/s13613-024-01316-z
pii: 10.1186/s13613-024-01316-z
doi:

Types de publication

Journal Article Review

Langues

eng

Pagination

105

Informations de copyright

© 2024. The Author(s).

Références

Magder S. An Approach to hemodynamic monitoring: Guyton at the beside. Crit Care. 2012;16:236–43.
doi: 10.1186/cc11395 pubmed: 23106914 pmcid: 3682240
Magder S. Right atrial pressure in the critically ill: how to measure, what is the value, what are the limitations. Chest. 2016.
Guyton AC, Polizo D, Armstrong GG. Mean circulatory filling pressure measured immediately after cessation of heart pumping. AmJPhysiol. 1954;179(2):261–7.
Rothe C. Venous system: physiology of the capacitance vessels. In: Shepherd JT, Abboud FM, editors. Handbook of Physiology. The Cardiovascular System. Section 2. III. Bethesda: American Physiological Society; 1983. pp. 397–452.
Magder S, De Varennes B. Clinical death and the measurement of stressed vascular volume. Crit Care Med. 1998;26:1061–4.
doi: 10.1097/00003246-199806000-00028 pubmed: 9635656
Guyton AC, Lindsey AW, Kaufman BN. Effect of mean circulatory filling pressure and other peripheral circulatory factors on cardiac output. Am J Physiol. 1955;180:463–8.
doi: 10.1152/ajplegacy.1955.180.3.463 pubmed: 14376522
Yamamoto J, Trippodo NC, Ishise S, Frohlich ED. Total vascular pressure-volume relationship in the conscious rat. Am J Physiol. 1980;238(6):H823–8.
pubmed: 7386641
Guyton AC, Adkins LH. Quantitative aspects of the collapse factor in relation to venous return. AmJPhysiol. 1954;177(3):523–7.
Permutt S, Riley S. Hemodynamics of collapsible vessels with tone: the vascular waterfall. J Appl Physiol. 1963;18(5):924–32.
doi: 10.1152/jappl.1963.18.5.924 pubmed: 14063262
Jellinek H, Krenn H, Oczenski W, Veit F, Schwarz S, Fitzgerald RD. Influence of positive airway pressure on the pressure gradient for venous return in humans. J ApplPhysiol. 2000;88(3):926–32.
Nanas S, Magder S. Adaptations of the peripheral circulation to PEEP. Am Rev Respiratory Dis. 1992;146:688–93.
doi: 10.1164/ajrccm/146.3.688 pubmed: 1519849
Levick JR, Michel CC. Microvascular fluid exchange and the revised Starling principle. Cardiovasc Res. 2010;87(2):198–210.
doi: 10.1093/cvr/cvq062 pubmed: 20200043
Deschamps A, Magder S. Baroreflex control of regional capacitance and blood flow distribution with or without alpha adrenergic blockade. J Appl Physiol. 1992;263:H1755–63.
Zhang H, Han GW, Batyuk A, Ishchenko A, White KL, Patel N, et al. Structural basis for selectivity and diversity in angiotensin II receptors. Nature. 2017;544(7650):327–32.
doi: 10.1038/nature22035 pubmed: 28379944 pmcid: 5525545
Notarius CF, Erice F, Stewart D, Magder S. Effect of baroreceptor activation and systemic hypotension on plasma endothelin-1 and NPY. Can J Physiol Pharmacol. 1995;73:1136–43.
doi: 10.1139/y95-162 pubmed: 8564881
Deschamps A, Magder SA. Neuropeptide-Y decreases splanchnic vascular capacitance. FASEB J. 1991;5:A774.
Rothe CF. Reflex control of veins and vascular capacitance. Physiol Rev. 1983;63(4):1281–95.
doi: 10.1152/physrev.1983.63.4.1281 pubmed: 6361810
Magder S, Famulari G, Gariepy B. Periodicity, time constants of drainage, and the mechanical determinants of peak cardiac output during exercise. J Appl Physiol (Bethesda Md: 1985). 2019;127(6):1611–9.
doi: 10.1152/japplphysiol.00688.2018
Datta P, Magder S. Hemodynamic response to norepinephrine with and without inhibition of nitric oxide synthase in porcine endotoxemia. AmJRespCritCare Med. 1999;160(6):1987–93.
Green JF. Mechanism of action of isoproterenol on venous return. Am J Physiol. 1977;232(2):H152–6.
pubmed: 842647
Magder S. Phenylephrine and tangible bias. Anesth Analgesia. 2011;113(2):211–3.
doi: 10.1213/ANE.0b013e318220406a
Thiele RH, Nemergut EC, Lynch C III. The clinical implications of isolated alpha 1 adrenergic stimulation. Anesth Analgesia. 2011;113(2):297–304.
doi: 10.1213/ANE.0b013e3182120ca5
Guyton AC. Determination of cardiac output by equating venous return curves with cardiac response curves. PhysiolRev. 1955;35:123–9.
Katz AM. Ernest Henry Starling, his predecessors, and the Law of the heart. Circulation. 2002;106(23):2986–92.
doi: 10.1161/01.CIR.0000040594.96123.55 pubmed: 12460884
Katz AM, Series, Elasticity. Active state. Lenght-Tension Relationship, and Cardiac mechanics. Physiology of the heart. Second ed. New York: Raven; 1992. pp. 196–218.
Magder S, Slobod D, Assanangkornchai N. Right ventricular limitation: a tale of two elastances. Am J Respir Crit Care Med. 2022.
Pesenti A, Slobod D, Magder S. The forgotten relevance of central venous pressure monitoring. Intensive Care Med. 2023;49(7):868–70.
doi: 10.1007/s00134-023-07101-z pubmed: 37294343
Ganz W, Donoso R, Marcus HS, Forrester JS, Swan HJC. A new technique for measurement of cardiac output by thermodilution in man. Am J Cardiol. 1971;27:392–6.
doi: 10.1016/0002-9149(71)90436-X pubmed: 4929422
Hernández G, Ospina-Tascón GA, Damiani LP, Estenssoro E, Dubin A, Hurtado J, et al. Effect of a Resuscitation Strategy Targeting Peripheral Perfusion Status vs serum lactate levels on 28-Day mortality among patients with septic shock: the ANDROMEDA-SHOCK Randomized Clinical Trial. JAMA. 2019;321(7):654–64.
doi: 10.1001/jama.2019.0071 pubmed: 30772908 pmcid: 6439620
Eskesen TG, Wetterslev M. A.Perner. Reanalysis of central venous pressure as an indicator of fluid responsiveness. Intensive Care Med. 2015.

Auteurs

Sheldon Magder (S)

McGill University Health Centre, 1001 Decarie Blvd, H4A 3J1, Montreal, QC, Canada. Sheldon.magder@mcgill.ca.

Classifications MeSH