A dynamic flow fetal membrane organ-on-a-chip system for modeling the effects of amniotic fluid motion.
Amniotic fluid
Dynamic flow cell culture
Fetal membrane
Microphysiological system
Organ-on-chip
Preterm birth
Shear stress
Journal
Biomedical microdevices
ISSN: 1572-8781
Titre abrégé: Biomed Microdevices
Pays: United States
ID NLM: 100887374
Informations de publication
Date de publication:
04 Jul 2024
04 Jul 2024
Historique:
accepted:
27
06
2024
medline:
4
7
2024
pubmed:
4
7
2024
entrez:
4
7
2024
Statut:
epublish
Résumé
Fetal membrane (amniochorion), the innermost lining of the intrauterine cavity, surround the fetus and enclose amniotic fluid. Unlike unidirectional blood flow, amniotic fluid subtly rocks back and forth, and thus, the innermost amnion epithelial cells are continuously exposed to low levels of shear stress from fluid undulation. Here, we tested the impact of fluid motion on amnion epithelial cells (AECs) as a bearer of force impact and their potential vulnerability to cytopathologic changes that can destabilize fetal membrane functions. A previously developed amnion membrane (AM) organ-on-chip (OOC) was utilized but with dynamic flow to culture human fetal amnion membrane cells. The applied flow was modulated to perfuse culture media back and forth for 48 h to mimic fluid motion. A static culture condition was used as a negative control, and oxidative stress (OS) condition was used as a positive control representing pathophysiological changes. The impacts of fluidic motion were evaluated by measuring cell viability, cellular transition, and inflammation. Additionally, scanning electron microscopy (SEM) imaging was performed to observe microvilli formation. The results show that regardless of the applied flow rate, AECs and AMCs maintained their viability, morphology, innate meta-state, and low production of pro-inflammatory cytokines. E-cadherin expression and microvilli formation in the AECs were upregulated in a flow rate-dependent fashion; however, this did not impact cellular morphology or cellular transition or inflammation. OS treatment induced a mesenchymal morphology, significantly higher vimentin to cytokeratin 18 (CK-18) ratio, and pro-inflammatory cytokine production in AECs, whereas AMCs did not respond in any significant manner. Fluid motion and shear stress, if any, did not impact AEC cell function and did not cause inflammation. Thus, when using an amnion membrane OOC model, the inclusion of a dynamic flow environment is not necessary to mimic in utero physiologic cellular conditions of an amnion membrane.
Identifiants
pubmed: 38963644
doi: 10.1007/s10544-024-00714-1
pii: 10.1007/s10544-024-00714-1
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
32Subventions
Organisme : National Institute of Child Health and Human Development
ID : R01HD110400
Organisme : National Institute of Child Health and Human Development
ID : 1R01HD100729
Organisme : National Institute of Child Health and Human Development
ID : 1R01HD100729
Organisme : NCATS NIH HHS
ID : UG3TR003283/UH3TR003283
Pays : United States
Organisme : NCATS NIH HHS
ID : UG3TR003283/UH3TR003283
Pays : United States
Organisme : NIEHS NIH HHS
ID : P42ES027704
Pays : United States
Organisme : NIEHS NIH HHS
ID : P42ES027704
Pays : United States
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
J.M. Anderson, C.M. van Itallie, Physiology and function of the tight junction. Cold Spring Harb. Perspect. Biol. 1(2)(2009)
doi: 10.1101/cshperspect.a002584
B.J. Ballermann, A. Dardik, E. Eng, A. Liu, Shear stress and the endothelium. Kidney Int. Suppl. 67, S100-108 (1998)
doi: 10.1046/j.1523-1755.1998.06720.x
M. Basile, L. Centurione, F. Passaretta, G. Stati, O. Soritau, S. Susman, F. Gindraux, A. Silini, O. Parolini, R. Di Pietro, Mapping of the Human Amniotic Membrane: In Situ Detection of Microvesicles Secreted by Amniotic Epithelial Cells. Cell Transplant 32, 9636897231166208 (2003)
A.F. Borgida, A.A. Mills, D.M. Feldman, J.F. Rodis, J.F. Egan, Outcome of pregnancies complicated by ruptured membranes after genetic amniocentesis. Am. J. Obstet. Gynecol. 183(4), 937–939 (2000)
doi: 10.1067/mob.2000.108872
R.A. Brace, Physiology of amniotic fluid volume regulation. Clin. Obstet. Gynecol. 40(2), 280–289 (1997)
doi: 10.1097/00003081-199706000-00005
R.A. Brace, C.Y. Cheung, Amniotic fluid volume and composition after fetal membrane resection in late-gestation sheep. J. Am. Assoc. Lab. Anim. Sci. 50(6), 939–942 (2011)
R.A. Brace, D.F. Anderson, C.Y. Cheung, Regulation of amniotic fluid volume: mathematical model based on intramembranous transport mechanisms. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307(10), R1260–1273 (2014)
doi: 10.1152/ajpregu.00283.2014
S. Bredeson, J. Papaconstantinou, J.H. Deford, T. Kechichian, T.A. Syed, G.R. Saade, R. Menon, HMGB1 promotes a p38MAPK associated non-infectious inflammatory response pathway in human fetal membranes. PLoS ONE 9(12), e113799 (2014)
doi: 10.1371/journal.pone.0113799
U. M. N. Cao, Y. Zhang, J. Chen, D. Sayson, S. Pillai and S. D. Tran, Microfluidic Organ-on-A-chip: A Guide to Biomaterial Choice and Fabrication. Int J Mol Sci 24(4) (2023)
O.C. Colgan, G. Ferguson, N.T. Collins, R.P. Murphy, G. Meade, P.A. Cahill, P.M. Cummins, Regulation of bovine brain microvascular endothelial tight junction assembly and barrier function by laminar shear stress. Am. J. Physiol. Heart Circ. Physiol. 292(6), H3190-3197 (2007)
doi: 10.1152/ajpheart.01177.2006
L. Cucullo, M. Hossain, V. Puvenna, N. Marchi, D. Janigro, The role of shear stress in Blood-Brain Barrier endothelial physiology. BMC Neurosci. 12, 40 (2011)
doi: 10.1186/1471-2202-12-40
L.C. Delon, Z. Guo, A. Oszmiana, C.C. Chien, R. Gibson, C. Prestidge, B. Thierry, A systematic investigation of the effect of the fluid shear stress on Caco-2 cells towards the optimization of epithelial organ-on-chip models. Biomaterials 225, 119521 (2019)
doi: 10.1016/j.biomaterials.2019.119521
D. C. Fernandes, T. L. Araujo, F. R. Laurindo, L. Y. Tanaka, Chapter 7 - Hemodynamic Forces in the Endothelium: From Mechanotransduction to Implications on Development of Atherosclerosis. Endothelium and Cardiovascular Diseases. (2018)
E. D. Fitzsimmons, T. Bajaj, Embryology, Amniotic Fluid. StatPearls. Treasure Island (FL). (2023)
S.J. Fortunato, R. Menon, N.U. Ahmed, M. Bourgeois, G.A. Dildy, Amniotic fluid concentrations of collagenase-1 and collagenase-3 are increased in polyhydramnios. J. Perinat. Med. 32(2), 122–125 (2004)
doi: 10.1515/JPM.2004.022
W.M. Gilbert, R.A. Brace, Amniotic fluid volume and normal flows to and from the amniotic cavity. Semin. Perinatol. 17(3), 150–157 (1993)
M. Kacerovsky, I. Musilova, C. Andrys, M. Drahosova, H. Hornychova, A. Rezac, M. Kostal, B. Jacobsson, Oligohydramnios in women with preterm prelabor rupture of membranes and adverse pregnancy and neonatal outcomes. PLoS ONE 9(8), e105882 (2014)
doi: 10.1371/journal.pone.0105882
S. Kang, S.E. Park, D.D. Huh, Organ-on-a-chip technology for nanoparticle research. Nano Converg 8(1), 20 (2021)
doi: 10.1186/s40580-021-00270-x
S. Kim, L. Richardson, E. Radnaa, Z. Chen, I. Rusyn, R. Menon, A. Han, Molecular mechanisms of environmental toxin cadmium at the feto-maternal interface investigated using an organ-on-chip (FMi-OOC) model. J. Hazard. Mater. 422, 126759 (2022)
doi: 10.1016/j.jhazmat.2021.126759
K. Kobayashi, I. Kadohira, M. Tanaka, Y. Yoshimura, K. Ikeda, M. Yasui, Expression and distribution of tight junction proteins in human amnion during late pregnancy. Placenta 31(2), 158–162 (2010)
doi: 10.1016/j.placenta.2009.11.014
T.C. Lee, A. Moulvi, J.L. James, A.R. Clark, Multi-scale Modelling of Shear Stress on the Syncytiotrophoblast: Could Maternal Blood Flow Impact Placental Function Across Gestation? Ann. Biomed. Eng. 51(6), 1256–1269 (2023)
doi: 10.1007/s10439-022-03129-2
Y. Manabe, N. Himeno, M. Fukumoto, Tensile strength and collagen content of amniotic membrane do not change after the second trimester or during delivery. Obstet. Gynecol. 78(1), 24–27 (1991)
C.B. Martin Jr., Uterine Blood Flow and Placental Circulation. Anesthesiology 26, 447–459 (1965)
doi: 10.1097/00000542-196507000-00009
L. Martin, L. Richardson, R. Menon, Characteristics, Properties, and Functionality of Fetal Membranes: An Overlooked Area in the Field of Parturition. Encyclopedia of Reproduction (Second Edition). M. K. Skinner. Oxford, Academic Press: 387–398 (2018)
R. Menon, Oxidative stress damage as a detrimental factor in preterm birth pathology. Front. Immunol. 5, 567 (2014)
doi: 10.3389/fimmu.2014.00567
R. Menon, I. Boldogh, R. Urrabaz-Garza, J. Polettini, T.A. Syed, G.R. Saade, J. Papaconstantinou, R.N. Taylor, Senescence of primary amniotic cells via oxidative DNA damage. PLoS ONE 8(12), e83416 (2013)
doi: 10.1371/journal.pone.0083416
R. Menon, I. Boldogh, H.K. Hawkins, M. Woodson, J. Polettini, T.A. Syed, S.J. Fortunato, G.R. Saade, J. Papaconstantinou, R.N. Taylor, Histological evidence of oxidative stress and premature senescence in preterm premature rupture of the human fetal membranes recapitulated in vitro. Am. J. Pathol. 184(6), 1740–1751 (2014)
doi: 10.1016/j.ajpath.2014.02.011
R. Menon, L.S. Richardson, M. Lappas, Fetal membrane architecture, aging and inflammation in pregnancy and parturition. Placenta 79, 40–45 (2019)
doi: 10.1016/j.placenta.2018.11.003
R. Menon, E. Radnaa, F. Behnia, R. Urrabaz-Garza, Isolation and characterization human chorion membrane trophoblast and mesenchymal cells. Placenta 101, 139–146 (2020)
doi: 10.1016/j.placenta.2020.09.017
R. Menon, L. Richardson, Organ-on-a-chip for perinatal biology experiments. Placenta Reprod Med. 1 (2022)
S. Miura, K. Sato, M. Kato-Negishi, T. Teshima, S. Takeuchi, Fluid shear triggers microvilli formation via mechanosensitive activation of TRPV6. Nat. Commun. 6, 8871 (2015)
doi: 10.1038/ncomms9871
A.B. Modena, S. Fieni, Amniotic fluid dynamics. Acta Biomed. 75(Suppl 1), 11–13 (2004)
E.S. Park, D. Jang, J. Lee, Y.J. Kim, J. Na, H. Ji, J.W. Choi, G.T. Kim, Maskless optical microscope lithography system. Rev. Sci. Instrum. 80(12), 126101 (2009)
doi: 10.1063/1.3266965
J. Polettini, L.S. Richardson, R. Menon, Oxidative stress induces senescence and sterile inflammation in murine amniotic cavity. Placenta 63, 26–31 (2018)
doi: 10.1016/j.placenta.2018.01.009
F. Prefumo, S. Campbell, E. Jauniaux, Maternal blood flow to the placenta. BJOG 126(8), 972 (2019)
doi: 10.1111/1471-0528.15752
N. Rabie, E. Magann, S. Steelman, S. Ounpraseuth, Oligohydramnios in complicated and uncomplicated pregnancy: a systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 49(4), 442–449 (2017)
doi: 10.1002/uog.15929
E. Radnaa, L.S. Richardson, S. Sheller-Miller, T. Baljinnyam, M. de Castro Silva, A. Kumar Kammala, R. Urrabaz-Garza, T. Kechichian, S. Kim, A. Han, R. Menon, Extracellular vesicle mediated feto-maternal HMGB1 signaling induces preterm birth. Lab Chip 21(10), 1956–1973 (2021)
doi: 10.1039/D0LC01323D
E. Radnaa, R. Urrabaz-Garza, N.D. Elrod, M. de Castro Silva, R. Pyles, A. Han, R. Menon, Generation and characterization of human Fetal membrane and Decidual cell lines for reproductive biology experimentsdagger. Biol. Reprod. 106(3), 568–582 (2022)
doi: 10.1093/biolre/ioab231
L.S. Richardson, K. K. A, M. M. Costantine, S. J. Fortunato, E. Radnaa, S. Kim, R. N. Taylor, A. Han and R. Menon, Testing of drugs using human feto-maternal interface organ-on-chips provide insights into pharmacokinetics and efficacy. Lab Chip 22(23), 4574–4592 (2022)
doi: 10.1039/D2LC00691J
L. Richardson, S. Jeong, S. Kim, A. Han, R. Menon, Amnion membrane organ-on-chip: an innovative approach to study cellular interactions. FASEB J. 33(8), 8945–8960 (2019)
doi: 10.1096/fj.201900020RR
L. Richardson, S. Kim, R. Menon, A. Han, Organ-On-Chip Technology: The Future of Feto-Maternal Interface Research? Front. Physiol. 11, 715 (2020a)
doi: 10.3389/fphys.2020.00715
L.S. Richardson, S. Kim, A. Han, R. Menon, Modeling ascending infection with a feto-maternal interface organ-on-chip. Lab Chip 20(23), 4486–4501 (2020b)
doi: 10.1039/D0LC00875C
L.S. Richardson, N. Emezienna, I. Burd, B.D. Taylor, M.R. Peltier, A. Han, R. Menon, Adapting an organ-on-chip device to study the effect of fetal sex and maternal race/ethnicity on preterm birth related intraamniotic inflammation leading to fetal neuroinflammation. Am. J. Reprod. Immunol. 88(6), e13638 (2022)
doi: 10.1111/aji.13638
L.S. Richardson, A.K. Kammala, S. Kim, P.Y. Lam, N. Truong, E. Radnaa, R. Urrabaz-Garza, A. Han, R. Menon, Development of oxidative stress-associated disease models using feto-maternal interface organ-on-a-chip. FASEB J. 37(7), e23000 (2023)
doi: 10.1096/fj.202300531R
M.G. Ross, M.J. Nijland, Fetal swallowing: relation to amniotic fluid regulation. Clin. Obstet. Gynecol. 40(2), 352–365 (1997)
doi: 10.1097/00003081-199706000-00011
E.J. Ross, E.R. Gordon, H. Sothers, R. Darji, O. Baron, D. Haithcock, B. Prabhakarpandian, K. Pant, R.M. Myers, S.J. Cooper, N.J. Cox, Three dimensional modeling of biologically relevant fluid shear stress in human renal tubule cells mimics in vivo transcriptional profiles. Sci. Rep. 11(1), 14053 (2021)
doi: 10.1038/s41598-021-93570-5
W. Schmidt, The amniotic fluid compartment: the fetal habitat. Adv. Anat. Embryol. Cell Biol. 127, 1–100 (1992)
doi: 10.1007/978-3-642-77300-6_1
S.C. Schutte, R.N. Taylor, A tissue-engineered human endometrial stroma that responds to cues for secretory differentiation, decidualization, and menstruation. Fertil. Steril. 97(4), 997–1003 (2012)
doi: 10.1016/j.fertnstert.2012.01.098
H. Shamsnajafabadi, Z.S. Soheili, Amniotic fluid characteristics and its application in stem cell therapy: A review. Int J Reprod Biomed 20(8), 627–643 (2022)
D.M. Sherer, A review of amniotic fluid dynamics and the enigma of isolated oligohydramnios. Am. J. Perinatol. 19(5), 253–266 (2002)
doi: 10.1055/s-2002-33084
O.A.G. Tantengco, L.S. Richardson, P.M.B. Medina, A. Han, R. Menon, Organ-on-chip of the cervical epithelial layer: A platform to study normal and pathological cellular remodeling of the cervix. FASEB J. 35(4), e21463 (2021)
doi: 10.1096/fj.202002590RRR
N. Truong, R. Menon, L. Richardson, The Role of Fetal Membranes during Gestation, at Term, and Preterm Labor. Placenta Reprod Med. 2 (2023)
S.W. Verbruggen, M.L. Oyen, A.T. Phillips, N.C. Nowlan, Function and failure of the fetal membrane: Modelling the mechanics of the chorion and amnion. PLoS ONE 12(3), e0171588 (2017)
doi: 10.1371/journal.pone.0171588
X. Wang, B. Xu, M. Xiang, X. Yang, Y. Liu, X. Liu, Y. Shen, Advances on fluid shear stress regulating blood-brain barrier. Microvasc. Res. 128, 103930 (2020)
doi: 10.1016/j.mvr.2019.103930
D. Wang, M. Gust, N. Ferrell, Kidney-on-a-Chip: Mechanical Stimulation and Sensor Integration. Sensors (Basel) 22(18) (2022)
G.Z. Yang, Exploring in vivo blood flow dynamics. IEEE Eng Med Biol Mag 17(3), 64–72 (1998). 104
doi: 10.1109/51.677171
Y. Zhao, S. Chien, S. Weinbaum, Dynamic contact forces on leukocyte microvilli and their penetration of the endothelial glycocalyx. Biophys. J. 80(3), 1124–1140 (2001)
doi: 10.1016/S0006-3495(01)76090-0