Protein degradation by a component of the chaperonin-linked protease ClpP.

ATPase ClpX E. coli Lon proteasome

Journal

Genes to cells : devoted to molecular & cellular mechanisms
ISSN: 1365-2443
Titre abrégé: Genes Cells
Pays: England
ID NLM: 9607379

Informations de publication

Date de publication:
04 Jul 2024
Historique:
revised: 03 06 2024
received: 25 03 2024
accepted: 19 06 2024
medline: 5 7 2024
pubmed: 5 7 2024
entrez: 4 7 2024
Statut: aheadofprint

Résumé

In cells, proteins are synthesized, function, and degraded (dead). Protein synthesis (spring) is important for the life of proteins. However, how proteins die is equally important for organisms. Proteases are secreted from cells and used as nutrients to break down external proteins. Proteases degrade unwanted and harmful cellular proteins. In eukaryotes, a large enzyme complex called the proteasome is primarily responsible for cellular protein degradation. Prokaryotes, such as bacteria, have similar protein degradation systems. In this review, we describe the structure and function of the ClpXP complex in the degradation system, which is an ATP-dependent protease in bacterial cells, with a particular focus on ClpP.

Identifiants

pubmed: 38965067
doi: 10.1111/gtc.13141
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Japan Society for the Promotion of Science
ID : 20H03220

Informations de copyright

© 2024 The Author(s). Genes to Cells published by Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

Références

Akopian, T., Kandror, O., Tsu, C., Lai, J. H., Wu, W., Liu, Y., Zhao, P., Park, A., Wolf, L., Dick, L. R., Rubin, E. J., Bachovchin, W., & Goldberg, A. L. (2015). Cleavage specificity of Mycobacterium tuberculosis ClpP1P2 protease and identification of novel peptide substrates and boronate inhibitors with anti‐bacterial activity. The Journal of Biological Chemistry, 290, 11008–11020.
Arvanitis, M., Li, G., Li, D. D., Cotnoir, D., Ganley‐Leal, L., Carney, D. W., Sello, J. K., & Mylonakis, E. (2016). A conformationally constrained cyclic acyldepsipeptide is highly effective in mice infected with methicillin‐susceptible and ‐resistant Staphylococcus aureus. PLoS One, 11, e0153912.
Baker, T. A., & Sauer, R. T. (2012). ClpXP, an ATP‐powered unfolding and protein‐degradation machine. Biochimica et Biophysica Acta, 1823, 15–28.
Bard, J. A. M., Goodall, E. A., Greene, E. R., Jonsson, E., Dong, K. C., & Martin, A. (2018). Structure and function of the 26S proteasome. Annual Review of Biochemistry, 87, 697–724.
Becker, S. H., & Darwin, K. H. (2017). Bacterial proteasomes: Mechanistic and functional insights. Microbiology and Molecular Biology Reviews, 81, e00036–16.
Binepal, G., Mabanglo, M. F., Goodreid, J. D., Leung, E., Barghash, M. M., Wong, K. S., Lin, F., Cossette, M., Bansagi, J., Song, B., Balasco Serrão, V. H., Pai, E. F., Batey, R. A., Gray‐Owen, S. D., & Houry, W. A. (2020). Development of antibiotics that dysregulate the neisserial ClpP protease. ACS Infectious Diseases, 6, 3224–3236.
Böttcher, T., & Sieber, S. A. (2008). Beta‐lactones as specific inhibitors of ClpP attenuate the production of extracellular virulence factors of Staphylococcus aureus. Journal of the American Chemical Society, 130, 14400–14401.
Böttcher, T., & Sieber, S. A. (2009). Structurally refined beta‐lactones as potent inhibitors of devastating bacterial virulence factors. Chembiochem, 10, 663–666.
Bougdour, A., Cunning, C., Baptiste, P. J., Elliott, T., & Gottesman, S. (2008). Multiple pathways for regulation of sigmaS (RpoS) stability in Escherichia coli via the action of multiple anti‐adaptors. Molecular Microbiology, 68, 298–313.
Bouillet, S., Bauer, T. S., & Gottesman, S. (2024). RpoS and the bacterial general stress response. Microbiology and Molecular Biology Reviews, 88, e0015122.
Brötz‐Oesterhelt, H., Beyer, D., Kroll, H. P., Endermann, R., Ladel, C., Schroeder, W., Hinzen, B., Raddatz, S., Paulsen, H., Henninger, K., Bandow, J. E., Sahl, H. G., & Labischinski, H. (2005). Dysregulation of bacterial proteolytic machinery by a new class of antibiotics. Nature Medicine, 11, 1082–1087.
Brötz‐Oesterhelt, H., & Vorbach, A. (2021). Reprogramming of the caseinolytic protease by ADEP antibiotics: Molecular mechanism, cellular consequences, therapeutic potential. Frontiers in Molecular Biosciences, 8, 690902.
Carney, D. W., Schmitz, K. R., Truong, J. V., Sauer, R. T., & Sello, J. K. (2014). Restriction of the conformational dynamics of the cyclic acyldepsipeptide antibiotics improves their antibacterial activity. Journal of the American Chemical Society, 136, 1922–1929.
Charette, M. F., Henderson, G. W., & Markovitz, A. (1981). ATP hydrolysis‐dependent protease activity of the lon (capR) protein of Escherichia coli K‐12. Proceedings of the National Academy of Sciences of the United States of America, 78, 4728–4732.
Chung, C. H., & Goldberg, A. L. (1981). The product of the lon (capR) gene in Escherichia coli is the ATP‐dependent protease, protease La. Proceedings of the National Academy of Sciences of the United States of America, 78, 4931–4935.
Conlon, B. P., Nakayasu, E. S., Fleck, L. E., LaFleur, M. D., Isabella, V. M., Coleman, K., Leonard, S. N., Smith, R. D., Adkins, J. N., & Lewis, K. (2013). Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature, 503, 365–370.
Dayananda, A., Dennison, T. S. H., Fonseka, H. Y. Y., Avestan, M. S., Wang, Q., Tehver, R., & Stan, G. (2023). Allosteric communication in the gating mechanism for controlled protein degradation by the bacterial ClpP peptidase. The Journal of Chemical Physics, 158, 125101.
Elsholz, A. K. W., Birk, M. S., Charpentier, E., & Turgay, K. (2017). Functional diversity of AAA+ protease complexes in Bacillus subtilis. Frontiers in Molecular Biosciences, 4, 44.
Fei, X., Bell, T. A., Barkow, S. R., Baker, T. A., & Sauer, R. T. (2020). Structural basis of ClpXP recognition and unfolding of ssrA‐tagged substrates. eLife, 9, e52774.
Fei, X., Bell, T. A., Jenni, S., Stinson, B. M., Baker, T. A., Harrison, S. C., & Sauer, R. T. (2020). Structures of the ATP‐fueled ClpXP proteolytic machine bound to protein substrate. eLife, 9, e61496.
Fraga, H., Rodriguez, B., Bardera, A., Cid, C., Akopian, T., Kandror, O., Park, A., Colmenarejo, G., Lelievre, J., & Goldberg, A. (2019). Development of high throughput screening methods for inhibitors of ClpC1P1P2 from Mycobacteria tuberculosis. Analytical Biochemistry, 567, 30–37.
Frees, D., Qazi, S. N., Hill, P. J., & Ingmer, H. (2003). Alternative roles of ClpX and ClpP in Staphylococcus aureus stress tolerance and virulence. Molecular Microbiology, 48, 1565–1578.
Fritze, J., Zhang, M., Luo, Q., & Lu, X. (2020). An overview of the bacterial SsrA system modulating intracellular protein levels and activities. Applied Microbiology and Biotechnology, 104, 5229–5241.
Gersch, M., Kolb, R., Alte, F., Groll, M., & Sieber, S. A. (2014). Disruption of oligomerization and dehydroalanine formation as mechanisms for ClpP protease inhibition. Journal of the American Chemical Society, 136, 1360–1366.
Gersch, M., List, A., Groll, M., & Sieber, S. A. (2012). Insights into structural network responsible for oligomerization and activity of bacterial virulence regulator caseinolytic protease P (ClpP) protein. The Journal of Biological Chemistry, 287, 9484–9494.
Ghanbarpour, A., Fei, X., Baker, T. A., Davis, J. H., & Sauer, R. T. (2023). The SspB adaptor drives structural changes in the AAA+ ClpXP protease during ssrA‐tagged substrate delivery. Proceedings of the National Academy of Sciences of the United States of America, 120, e2219044120.
Goldberg, A. L. (1992). The mechanism and functions of ATP‐dependent proteases in bacterial and animal cells. European Journal of Biochemistry, 203, 9–23.
Goodreid, J. D., Janetzko, J., Santa Maria, J. P., Jr., Wong, K. S., Leung, E., Eger, B. T., Bryson, S., Pai, E. F., Gray‐Owen, S. D., Walker, S., Houry, W. A., & Batey, R. A. (2016). Development and characterization of potent cyclic acyldepsipeptide analogues with increased antimicrobial activity. Journal of Medicinal Chemistry, 59, 624–646.
Gottesman, S. (1996). Proteases and their targets in Escherichia coli. Annual Review of Genetics, 30, 465–506.
Gottesman, S., Clark, W. P., de Crecy‐Lagard, V., & Maurizi, M. R. (1993). ClpX, an alternative subunit for the ATP‐dependent Clp protease of Escherichia coli. Sequence and in vivo activities. The Journal of Biological Chemistry, 268, 22618–22626.
Gottesman, S., & Maurizi, M. R. (1992). Regulation by proteolysis: Energy‐dependent proteases and their targets. Microbiological Reviews, 56, 592–621.
Graves, P. R., Aponte‐Collazo, L. J., Fennell, E. M. J., Graves, A. C., Hale, A. E., Dicheva, N., Herring, L. E., Gilbert, T. S. K., East, M. P., McDonald, I. M., Lockett, M. R., Ashamalla, H., Moorman, N. J., Karanewsky, D. S., Iwanowicz, E. J., Holmuhamedov, E., & Graves, L. M. (2019). Mitochondrial protease ClpP is a target for the anticancer compounds ONC201 and related analogues. ACS Chemical Biology, 14, 1020–1029.
Greer, Y. E., Hernandez, L., Fennell, E. M. J., Kundu, M., Voeller, D., Chari, R., Gilbert, S. F., Gilbert, T. S. K., Ratnayake, S., Tang, B., Hafner, M., Chen, Q., Meerzaman, D., Iwanowicz, E., Annunziata, C. M., Graves, L. M., & Lipkowitz, S. (2022). Mitochondrial matrix protease ClpP agonists inhibit cancer stem cell function in breast cancer cells by disrupting mitochondrial homeostasis. Cancer Research Communications, 2, 1144–1161.
Gronauer, T. F., Mandl, M. M., Lakemeyer, M., Hackl, M. W., Meßner, M., Korotkov, V. S., Pachmayr, J., & Sieber, S. A. (2018). Design and synthesis of tailored human caseinolytic protease P inhibitors. Chemical Communications, 54, 9833–9836.
Guo, F., Maurizi, M. R., Esser, L., & Xia, D. (2002). Crystal structure of ClpA, an Hsp100 chaperone and regulator of ClpAP protease. The Journal of Biological Chemistry, 277, 46743–46752.
Gur, E., Biran, D., & Ron, E. Z. (2011). Regulated proteolysis in gram‐negative bacteria—how and when? Nature Reviews. Microbiology, 9, 839–848.
Hackl, M. W., Lakemeyer, M., Dahmen, M., Glaser, M., Pahl, A., Lorenz‐Baath, K., Menzel, T., Sievers, S., Böttcher, T., Antes, I., Waldmann, H., & Sieber, S. A. (2015). Phenyl esters are potent inhibitors of caseinolytic protease P and reveal a stereogenic switch for deoligomerization. Journal of the American Chemical Society, 137, 8475–8483.
Hengge, R. (2009). Proteolysis of sigmaS (RpoS) and the general stress response in Escherichia coli. Research in Microbiology, 160, 667–676.
Humbard, M. A., & Maupin‐Furlow, J. A. (2013). Prokaryotic proteasomes: Nanocompartments of degradation. Journal of Molecular Microbiology and Biotechnology, 23, 321–334.
Hwang, B. J., Park, W. J., Chung, C. H., & Goldberg, A. L. (1987). Escherichia coli contains a soluble ATP‐dependent protease (Ti) distinct from protease La. Proceedings of the National Academy of Sciences of the United States of America, 84, 5550–5554.
Ishizawa, J., Zarabi, S. F., Davis, R. E., Halgas, O., Nii, T., Jitkova, Y., Zhao, R., St‐Germain, J., Heese, L. E., Egan, G., Ruvolo, V. R., Barghout, S. H., Nishida, Y., Hurren, R., Ma, W., Gronda, M., Link, T., Wong, K., Mabanglo, M., … Andreeff, M. (2019). Mitochondrial ClpP‐mediated proteolysis induces selective cancer cell lethality. Cancer Cell, 35, 721–737.e729.
Ito, K., & Akiyama, Y. (2005). Cellular functions, mechanism of action, and regulation of FtsH protease. Annual Review of Microbiology, 59, 211–231.
Jenal, U., & Hengge‐Aronis, R. (2003). Regulation by proteolysis in bacterial cells. Current Opinion in Microbiology, 6, 163–172.
Ju, Y., He, L., Zhou, Y., Yang, T., Sun, K., Song, R., Yang, Y., Li, C., Sang, Z., Bao, R., & Luo, Y. (2020). Discovery of novel peptidomimetic boronate ClpP inhibitors with noncanonical enzyme mechanism as potent virulence blockers in vitro and in vivo. Journal of Medicinal Chemistry, 63, 3104–3119.
Kahne, S. C., & Darwin, K. H. (2021). Structural determinants of regulated proteolysis in pathogenic bacteria by ClpP and the proteasome. Current Opinion in Structural Biology, 67, 120–126.
Katayama, Y., Gottesman, S., Pumphrey, J., Rudikoff, S., Clark, W. P., & Maurizi, M. R. (1988). The two‐component, ATP‐dependent Clp protease of Escherichia coli. Purification, cloning, and mutational analysis of the ATP‐binding component. The Journal of Biological Chemistry, 263, 15226–15236.
Katayama‐Fujimura, Y., Gottesman, S., & Maurizi, M. R. (1987). A multiple‐component, ATP‐dependent protease from Escherichia coli. The Journal of Biological Chemistry, 262, 4477–4485.
Kessel, M., Wu, W., Gottesman, S., Kocsis, E., Steven, A. C., & Maurizi, M. R. (1996). Six‐fold rotational symmetry of ClpQ, the E. coli homolog of the 20S proteasome, and its ATP‐dependent activator, ClpY. FEBS Letters, 398, 274–278.
Kim, D. Y., & Kim, K. K. (2003). Crystal structure of ClpX molecular chaperone from Helicobacter pylori. The Journal of Biological Chemistry, 278, 50664–50670.
Kim, S., Fei, X., Sauer, R. T., & Baker, T. A. (2022). AAA+ protease‐adaptor structures reveal altered conformations and ring specialization. Nature Structural & Molecular Biology, 29, 1068–1079.
Kim, Y. I., Burton, R. E., Burton, B. M., Sauer, R. T., & Baker, T. A. (2000). Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. Molecular Cell, 5, 639–648.
Kirstein, J., Molière, N., Dougan, D. A., & Turgay, K. (2009). Adapting the machine: Adaptor proteins for Hsp100/Clp and AAA+ proteases. Nature Reviews. Microbiology, 7, 589–599.
Lavey, N. P., Coker, J. A., Ruben, E. A., & Duerfeldt, A. S. (2016). Sclerotiamide: The first non‐peptide‐based natural product activator of bacterial caseinolytic protease P. Journal of Natural Products, 79, 1193–1197.
Lee, B. G., Park, E. Y., Lee, K. E., Jeon, H., Sung, K. H., Paulsen, H., Rübsamen‐Schaeff, H., Brötz‐Oesterhelt, H., & Song, H. K. (2010). Structures of ClpP in complex with acyldepsipeptide antibiotics reveal its activation mechanism. Nature Structural & Molecular Biology, 17, 471–478.
Leung, E., Datti, A., Cossette, M., Goodreid, J., McCaw, S. E., Mah, M., Nakhamchik, A., Ogata, K., el Bakkouri, M., Cheng, Y. Q., Wodak, S. J., Eger, B. T., Pai, E. F., Liu, J., Gray‐Owen, S., Batey, R. A., & Houry, W. A. (2011). Activators of cylindrical proteases as antimicrobials: Identification and development of small molecule activators of ClpP protease. Chemistry & Biology, 18, 1167–1178.
Li, B., Li, N., Wang, F., Guo, L., Huang, Y., Liu, X., Wei, T., Zhu, D., Liu, C., Pan, H., Xu, S., Wang, H. W., & Gu, L. (2012). Structural insight of a concentration‐dependent mechanism by which YdiV inhibits Escherichia coli flagellum biogenesis and motility. Nucleic Acids Research, 40, 11073–11085.
Li, D. H., Chung, Y. S., Gloyd, M., Joseph, E., Ghirlando, R., Wright, G. D., Cheng, Y. Q., Maurizi, M. R., Guarné, A., & Ortega, J. (2010). Acyldepsipeptide antibiotics induce the formation of a structured axial channel in ClpP: A model for the ClpX/ClpA‐bound state of ClpP. Chemistry & Biology, 17, 959–969.
Liu, P., Yang, Y., Ju, Y., Tang, Y., Sang, Z., Chen, L., Yang, T., An, Q., Zhang, T., & Luo, Y. (2018). Design, synthesis and biological evaluation of novel pyrrole derivatives as potential ClpP1P2 inhibitor against Mycobacterium tuberculosis. Bioorganic Chemistry, 80, 422–432.
Mabanglo, M. F., & Houry, W. A. (2022). Recent structural insights into the mechanism of ClpP protease regulation by AAA+ chaperones and small molecules. The Journal of Biological Chemistry, 298, 101781.
Mahmoud, S. A., & Chien, P. (2018). Regulated proteolysis in bacteria. Annual Review of Biochemistry, 87, 677–696.
Martin, A., Baker, T. A., & Sauer, R. T. (2005). Rebuilt AAA + motors reveal operating principles for ATP‐fuelled machines. Nature, 437, 1115–1120.
Maurizi, M. R., Clark, W. P., Katayama, Y., Rudikoff, S., Pumphrey, J., Bowers, B., & Gottesman, S. (1990). Sequence and structure of Clp P, the proteolytic component of the ATP‐dependent Clp protease of Escherichia coli. The Journal of Biological Chemistry, 265, 12536–12545.
Mizusawa, S., & Gottesman, S. (1983). Protein degradation in Escherichia coli: The lon gene controls the stability of sulA protein. Proceedings of the National Academy of Sciences of the United States of America, 80, 358–362.
Mizushima, N., Yoshimori, T., & Ohsumi, Y. (2011). The role of Atg proteins in autophagosome formation. Annual Review of Cell and Developmental Biology, 27, 107–132.
Moreira, W., Ngan, G. J., Low, J. L., Poulsen, A., Chia, B. C., Ang, M. J., Yap, A., Fulwood, J., Lakshmanan, U., Lim, J., Khoo, A. Y., Flotow, H., Hill, J., Raju, R. M., Rubin, E. J., & Dick, T. (2015). Target mechanism‐based whole‐cell screening identifies bortezomib as an inhibitor of caseinolytic protease in mycobacteria. MBio, 6, e00253‐00215.
Moreno‐Cinos, C., Goossens, K., Salado, I. G., Van Der Veken, P., De Winter, H., & Augustyns, K. (2019). ClpP protease, a promising antimicrobial target. International Journal of Molecular Sciences, 20, 2232.
Moreno‐Cinos, C., Sassetti, E., Salado, I. G., Witt, G., Benramdane, S., Reinhardt, L., Cruz, C. D., Joossens, J., Van der Veken, P., Brötz‐Oesterhelt, H., Tammela, P., Winterhalter, M., Gribbon, P., Windshügel, B., & Augustyns, K. (2019). α‐Amino diphenyl phosphonates as novel inhibitors of Escherichia coli ClpP protease. Journal of Medicinal Chemistry, 62, 774–797.
Olivares, A. O., Baker, T. A., & Sauer, R. T. (2016). Mechanistic insights into bacterial AAA+ proteases and protein‐remodelling machines. Nature Reviews. Microbiology, 14, 33–44.
Osada, H., Yano, T., Koshino, H., & Isono, K. (1991). Enopeptin A, a novel depsipeptide antibiotic with anti‐bacteriophage activity. Journal of Antibiotics, 44, 1463–1466.
Pahl, A., Lakemeyer, M., Vielberg, M. T., Hackl, M. W., Vomacka, J., Korotkov, V. S., Stein, M. L., Fetzer, C., Lorenz‐Baath, K., Richter, K., Waldmann, H., Groll, M., & Sieber, S. A. (2015). Reversible inhibitors arrest ClpP in a defined conformational state that can be revoked by ClpX association. Angewandte Chemie (International Ed. in English), 54, 15892–15896.
Powers, J. C., Lively, M. O., 3rd, & Tippett, J. T. (1977). Inhibition of subtilisin BPN' with peptide chloromethyl ketones. Biochimica et Biophysica Acta, 480, 246–261.
Rohrwild, M., Pfeifer, G., Santarius, U., Müller, S. A., Huang, H. C., Engel, A., Baumeister, W., & Goldberg, A. L. (1997). The ATP‐dependent HslVU protease from Escherichia coli is a four‐ring structure resembling the proteasome. Nature Structural Biology, 4, 133–139.
Sato, Y., Takaya, A., Mouslim, C., Hughes, K. T., & Yamamoto, T. (2014). FliT selectively enhances proteolysis of FlhC subunit in FlhD4C2 complex by an ATP‐dependent protease, ClpXP. The Journal of Biological Chemistry, 289, 33001–33011.
Sauer, R. T., Fei, X., Bell, T. A., & Baker, T. A. (2022). Structure and function of ClpXP, a AAA+ proteolytic machine powered by probabilistic ATP hydrolysis. Critical Reviews in Biochemistry and Molecular Biology, 57, 188–204.
Saunders, R. A., Stinson, B. M., Baker, T. A., & Sauer, R. T. (2020). Multistep substrate binding and engagement by the AAA+ ClpXP protease. Proceedings of the National Academy of Sciences of the United States of America, 117, 28005–28013.
Schlothauer, T., Mogk, A., Dougan, D. A., Bukau, B., & Turgay, K. (2003). MecA, an adaptor protein necessary for ClpC chaperone activity. Proceedings of the National Academy of Sciences of the United States of America, 100, 2306–2311.
Socha, A. M., Tan, N. Y., LaPlante, K. L., & Sello, J. K. (2010). Diversity‐oriented synthesis of cyclic acyldepsipeptides leads to the discovery of a potent antibacterial agent. Bioorganic & Medicinal Chemistry, 18, 7193–7202.
Staub, I., & Sieber, S. A. (2008). Beta‐lactams as selective chemical probes for the in vivo labeling of bacterial enzymes involved in cell wall biosynthesis, antibiotic resistance, and virulence. Journal of the American Chemical Society, 130, 13400–13409.
Szyk, A., & Maurizi, M. R. (2006). Crystal structure at 1.9A of E. coli ClpP with a peptide covalently bound at the active site. Journal of Structural Biology, 156, 165–174.
Takaya, A., Erhardt, M., Karata, K., Winterberg, K., Yamamoto, T., & Hughes, K. T. (2012). YdiV: A dual function protein that targets FlhDC for ClpXP‐dependent degradation by promoting release of DNA‐bound FlhDC complex. Molecular Microbiology, 83, 1268–1284.
Tanaka, K., Tamura, T., Kumatori, A., Kwak, T. H., Chung, C. H., & Ichihara, A. (1989). Separation of yeast proteasome subunits. Immunoreactivity with antibodies against ATP‐dependent protease Ti from Escherichia coli. Biochemical and Biophysical Research Communications, 164, 1253–1261.
Tomoyasu, T., Takaya, A., Isogai, E., & Yamamoto, T. (2003). Turnover of FlhD and FlhC, master regulator proteins for Salmonella flagellum biogenesis, by the ATP‐dependent ClpXP protease. Molecular Microbiology, 48, 443–452.
Trentini, D. B., Suskiewicz, M. J., Heuck, A., Kurzbauer, R., Deszcz, L., Mechtler, K., & Clausen, T. (2016). Arginine phosphorylation marks proteins for degradation by a Clp protease. Nature, 539, 48–53.
Varshavsky, A. (2017). The ubiquitin system, autophagy, and regulated protein degradation. Annual Review of Biochemistry, 86, 123–128.
Wang, J., Hartling, J. A., & Flanagan, J. M. (1997). The structure of ClpP at 2.3 A resolution suggests a model for ATP‐dependent proteolysis. Cell, 91, 447–456.
Wedam, R., Greer, Y. E., Wisniewski, D. J., Weltz, S., Kundu, M., Voeller, D., & Lipkowitz, S. (2023). Targeting mitochondria with ClpP agonists as a novel therapeutic opportunity in breast cancer. Cancers, 15, 1936.
Wei, B., Zhang, T., Wang, P., Pan, Y., Li, J., Chen, W., Zhang, M., Ji, Q., Wu, W., Lan, L., Gan, J., & Yang, C. G. (2022). Anti‐infective therapy using species‐specific activators of Staphylococcus aureus ClpP. Nature Communications, 13, 6909.
Withey, J. H., & Friedman, D. I. (2003). A salvage pathway for protein structures: tmRNA and trans‐translation. Annual Review of Microbiology, 57, 101–123.
Wojtyra, U. A., Thibault, G., Tuite, A., & Houry, W. A. (2003). The N‐terminal zinc binding domain of ClpX is a dimerization domain that modulates the chaperone function. The Journal of Biological Chemistry, 278, 48981–48990.
Wong, K. S., Mabanglo, M. F., Seraphim, T. V., Mollica, A., Mao, Y. Q., Rizzolo, K., Leung, E., Moutaoufik, M. T., Hoell, L., Phanse, S., Goodreid, J., Barbosa, L. R. S., Ramos, C. H. I., Babu, M., Mennella, V., Batey, R. A., Schimmer, A. D., & Houry, W. A. (2018). Acyldepsipeptide analogs dysregulate human mitochondrial ClpP protease activity and cause apoptotic cell death. Cell Chemical Biology, 25, 1017–1030.e1019.
Ye, F., Li, J., & Yang, C. G. (2016). The development of small‐molecule modulators for ClpP protease activity. Molecular BioSystems, 13, 23–31.
Zheng, M., Wang, X., Templeton, L. J., Smulski, D. R., LaRossa, R. A., & Storz, G. (2001). DNA microarray‐mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. Journal of Bacteriology, 183, 4562–4570.

Auteurs

Fumihiro Ishikawa (F)

Faculty of Pharmacy, Kindai University, Osaka, Japan.

Michio Homma (M)

Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan.

Genzoh Tanabe (G)

Faculty of Pharmacy, Kindai University, Osaka, Japan.

Takayuki Uchihashi (T)

Division of Material Science, Graduate School of Science, Nagoya University, Nagoya, Japan.

Classifications MeSH