Population-Specific gene expression profiles in prostate cancer: insights from Weighted Gene Co-expression Network Analysis (WGCNA).
Correlation
Feature selection
LASSO regression
Transcriptome
Journal
World journal of surgical oncology
ISSN: 1477-7819
Titre abrégé: World J Surg Oncol
Pays: England
ID NLM: 101170544
Informations de publication
Date de publication:
05 Jul 2024
05 Jul 2024
Historique:
received:
24
03
2024
accepted:
25
06
2024
medline:
6
7
2024
pubmed:
6
7
2024
entrez:
5
7
2024
Statut:
epublish
Résumé
This study investigates the genetic factors contributing to the disparity in prostate cancer incidence and progression among African American men (AAM) compared to European American men (EAM). The research focuses on employing Weighted Gene Co-expression Network Analysis (WGCNA) on public microarray data obtained from prostate cancer patients. The study employed WGCNA to identify clusters of genes with correlated expression patterns, which were then analyzed for their connection to population backgrounds. Additionally, pathway enrichment analysis was conducted to understand the significance of the identified gene modules in prostate cancer pathways. The Least Absolute Shrinkage and Selection Operator (LASSO) and Correlation-based Feature Selection (CFS) methods were utilized for selection of biomarker genes. The results revealed 353 differentially expressed genes (DEGs) between AAM and EAM. Six significant gene expression modules were identified through WGCNA, showing varying degrees of correlation with prostate cancer. LASSO and CFS methods pinpointed critical genes, as well as six common genes between both approaches, which are indicative of their vital role in the disease. The XGBoost classifier validated these findings, achieving satisfactory prediction accuracy. Genes such as APRT, CCL2, BEX2, MGC26963, and PLAU were identified as key genes significantly associated with cancer progression. In conclusion, the research underlines the importance of incorporating AAM and EAM population diversity in genomic studies, particularly in cancer research. In addition, the study highlights the effectiveness of integrating machine learning techniques with gene expression analysis as a robust methodology for identifying critical genes in cancer research.
Identifiants
pubmed: 38970097
doi: 10.1186/s12957-024-03459-6
pii: 10.1186/s12957-024-03459-6
doi:
Substances chimiques
Biomarkers, Tumor
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
177Informations de copyright
© 2024. The Author(s).
Références
Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48.
doi: 10.3322/caac.21763
pubmed: 36633525
Freedman J, Wang Y, Liu H, Moorman P, Hyslop T, George D, Lee N, Wei Q, Patierno S. Abstract B58: Single-nucleotide polymorphisms of race-related alternatively spliced genes associate with prostate cancer risk, aggressiveness and/or survival. Cancer Epidemiology, Biomarkers & Prevention. 2017;26(2_Supplement):B58–B58.
doi: 10.1158/1538-7755.DISP16-B58
Han D, Owiredu JN, Healy BM, Li M, Labaf M, Steinfeld JS, Patalano S, Gao S, Liu M, Macoska JA. Susceptibility-associated genetic variation in NEDD9 contributes to prostate cancer initiation and progression. Can Res. 2021;81(14):3766–76.
doi: 10.1158/0008-5472.CAN-20-3042
Lavender NA. The role of genetic and environmental oxidative stress factors in prostate cancer. Electronic Theses and Dissertations. 2010. Paper 797.
Di Pietro G, Chornokur G, Kumar NB, Davis C, Park JY. Racial differences in the diagnosis and treatment of prostate cancer. Int Neurourol J. 2016;20(Suppl 2):S112.
doi: 10.5213/inj.1632722.361
pubmed: 27915474
pmcid: 5169094
Gong J, Kim DM, Freeman MR, Kim H, Ellis L, Smith B, Theodorescu D, Posadas E, Figlin R, Bhowmick N, Freedland SJ. Genetic and biological drivers of prostate cancer disparities in Black men. Nature Reviews Urology. 2023;1–16.
Lavender NA, Rogers EN, Yeyeodu S, Rudd J, Hu T, Zhang J, Brock GN, Kimbro KS, Moore JH, Hein DW. Interaction among apoptosis-associated sequence variants and joint effects on aggressive prostate cancer. BMC Med Genomics. 2012;5:1–15.
doi: 10.1186/1755-8794-5-11
Weprin SA, Parker DC, Jones JD, Kaplan JR, Giusto LL, Mydlo JH, Sue-Jean SY, Lee DI, Eun DD, Reese AC. Association of low socioeconomic status with adverse prostate cancer pathology among African American men who underwent radical prostatectomy. Clin Genitourin Cancer. 2019;17(5):e1054–9.
doi: 10.1016/j.clgc.2019.06.006
pubmed: 31303559
Powell IJ, Dyson G, Land S, Ruterbusch J, Bock CH, Lenk S, Herawi M, Everson R, Giroux CN, Schwartz AG. Genes associated with prostate cancer are differentially expressed in African American and European American men. Cancer Epidemiol Biomark Prev. 2013;22(5):891–7.
doi: 10.1158/1055-9965.EPI-12-1238
Alkhateeb A, Rezaeian I, Singireddy S, Cavallo-Medved D, Porter LA, Rueda L. Transcriptomics signature from next-generation sequencing data reveals new transcriptomic biomarkers related to prostate cancer. Cancer informatics. 2019;18:1176935119835522.
doi: 10.1177/1176935119835522
pubmed: 30890858
pmcid: 6416685
Hamzeh O, Alkhateeb A, Zheng J, Kandalam S, Rueda L. Prediction of tumor location in prostate cancer tissue using a machine learning system on gene expression data. BMC Bioinformatics. 2020;21:1–10.
doi: 10.1186/s12859-020-3345-9
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47–e47.
doi: 10.1093/nar/gkv007
pubmed: 25605792
pmcid: 4402510
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9(1):1–13.
doi: 10.1186/1471-2105-9-559
Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B Stat Methodol. 1996;58(1):267–88.
doi: 10.1111/j.2517-6161.1996.tb02080.x
Friedman J, Hastie T, Tibshirani R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J Stat Softw. 2010;33(1):1–22.
doi: 10.18637/jss.v033.i01
pubmed: 20808728
pmcid: 2929880
Hall MA. Correlation-based feature selection of discrete and numeric class machine learning. Hamilton: University of Waikato, Department of Computer Science; 2000.
Chen T, Guestrin C. Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. 2016. p. 785-794.
Pey J, San José-Eneriz E, Ochoa MC, Apaolaza I, de Atauri P, Rubio A, Cendoya X, Miranda E, Garate L, Cascante M. In-silico gene essentiality analysis of polyamine biosynthesis reveals APRT as a potential target in cancer. Sci Rep. 2017;7(1):14358.
doi: 10.1038/s41598-017-14067-8
pubmed: 29084986
pmcid: 5662602
Xu M, Wang Y, Xia R, Wei Y, Wei X. Role of the CCL2-CCR2 signalling axis in cancer: mechanisms and therapeutic targeting. Cell Prolif. 2021;54(10): e13115.
doi: 10.1111/cpr.13115
pubmed: 34464477
pmcid: 8488570
Jin J, Lin J, Xu A, Lou J, Qian C, Li X, Wang Y, Yu W, Tao H. CCL2: an important mediator between tumor cells and host cells in tumor microenvironment. Front Oncol. 2021;11: 722916.
doi: 10.3389/fonc.2021.722916
pubmed: 34386431
pmcid: 8354025
Liu Y, Tiruthani K, Wang M, Zhou X, Qiu N, Xiong Y, Pecot CV, Liu R, Huang L. Tumor-targeted gene therapy with lipid nanoparticles inhibits tumor-associated adipocytes and remodels the immunosuppressive tumor microenvironment in triple-negative breast cancer. Nanoscale horizons. 2021;6(4):319–29.
doi: 10.1039/D0NH00588F
pubmed: 33587080
pmcid: 8638658
Naderi A, Teschendorff AE, Beigel J, Cariati M, Ellis IO, Brenton JD, Caldas C. BEX2 is overexpressed in a subset of primary breast cancers and mediates nerve growth factor/nuclear factor-κB inhibition of apoptosis in breast cancer cell lines. Can Res. 2007;67(14):6725–36.
doi: 10.1158/0008-5472.CAN-06-4394
He S, Gu X, Yang J, Xu F, Hu J, Wang W, Huang Y, Lou B, Ding T, Zhou L. Sphingomyelin synthase 2 is a positive regulator of the CSF1R-STAT3 pathway in pancreatic cancer-associated macrophage. Front Pharmacol. 2022;13: 902016.
doi: 10.3389/fphar.2022.902016
pubmed: 36324684
pmcid: 9618885
Deng Y. Hu J-c, He S-h, Lou B, Ding T-b, Yang J-t, Mo M-g, Ye D-y, Zhou L, Jiang X-c: Sphingomyelin synthase 2 facilitates M2-like macrophage polarization and tumor progression in a mouse model of triple-negative breast cancer. Acta Pharmacol Sin. 2021;42(1):149–59.
doi: 10.1038/s41401-020-0419-1
pubmed: 32451413
Jing F, Jing C, Dai X, Zhou G, Di S, Bi X, Dai T, Qin T, Hong L. Sphingomyelin synthase 2 but not sphingomyelin synthase 1 is upregulated in ovarian cancer and involved in migration, growth and survival via different mechanisms. American Journal of Translational Research. 2021;13(5):4412.
pubmed: 34150023
pmcid: 8205710
Zheng K, Chen Z, Feng H, Chen Y, Zhang C, Yu J, Luo Y, Zhao L, Jiang X, Shi F. Sphingomyelin synthase 2 promotes an aggressive breast cancer phenotype by disrupting the homoeostasis of ceramide and sphingomyelin. Cell Death Dis. 2019;10(3):157.
doi: 10.1038/s41419-019-1303-0
pubmed: 30770781
pmcid: 6377618
Taniguchi M, Ueda Y, Matsushita M, Nagaya S, Hashizume C, Arai K, Kabayama K, Fukase K, Watanabe K, Wardhani LO. Deficiency of sphingomyelin synthase 2 prolongs survival by the inhibition of lymphoma infiltration through ICAM-1 reduction. FASEB J. 2020;34(3):3838–54.
doi: 10.1096/fj.201901783RR
pubmed: 31970839
Fang L, Che Y, Zhang C, Huang J, Lei Y, Lu Z, Sun N, He J. PLAU directs conversion of fibroblasts to inflammatory cancer-associated fibroblasts, promoting esophageal squamous cell carcinoma progression via uPAR/Akt/NF-κB/IL8 pathway. Cell death discovery. 2021;7(1):32.
doi: 10.1038/s41420-021-00410-6
pubmed: 33574243
pmcid: 7878926
Hosen S, Uddin MN, Xu Z, Buckley BJ, Perera C, Pang TC, Moni MA, Notta F, Gallinger S, Pirola R. Metastatic phenotype and immunosuppressive tumour microenvironment in pancreatic ductal adenocarcinoma: Key role of the urokinase plasminogen activator (PLAU). Front Immunol. 2022;13:1060957.
doi: 10.3389/fimmu.2022.1060957
pubmed: 36591282
pmcid: 9794594
Gao Y, Ma X, Lu H, Xu P, Xu C. PLAU is associated with cell migration and invasion and is regulated by transcription factor YY1 in cervical cancer. Oncol Rep. 2023;49(2):1–9.
Ding Y, Niu W, Zheng X, Zhou C, Wang G, Feng Y, Yu B. Plasminogen activator, urokinase enhances the migration, invasion, and proliferation of colorectal cancer cells by activating the Src/ERK pathway. Journal of Gastrointestinal Oncology. 2022;13(6):3100.
doi: 10.21037/jgo-22-1215
pubmed: 36636041
pmcid: 9830328
Mahmood N, Mihalcioiu C, Rabbani SA. Multifaceted role of the urokinase-type plasminogen activator (uPA) and its receptor (uPAR): diagnostic, prognostic, and therapeutic applications. Front Oncol. 2018;8:24.
doi: 10.3389/fonc.2018.00024
pubmed: 29484286
pmcid: 5816037