Directional integration and pathway enrichment analysis for multi-omics data.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
07 Jul 2024
Historique:
received: 29 09 2023
accepted: 26 06 2024
medline: 7 7 2024
pubmed: 7 7 2024
entrez: 6 7 2024
Statut: epublish

Résumé

Omics techniques generate comprehensive profiles of biomolecules in cells and tissues. However, a holistic understanding of underlying systems requires joint analyses of multiple data modalities. We present DPM, a data fusion method for integrating omics datasets using directionality and significance estimates of genes, transcripts, or proteins. DPM allows users to define how the input datasets are expected to interact directionally given the experimental design or biological relationships between the datasets. DPM prioritises genes and pathways that change consistently across the datasets and penalises those with inconsistent directionality. To demonstrate our approach, we characterise gene and pathway regulation in IDH-mutant gliomas by jointly analysing transcriptomic, proteomic, and DNA methylation datasets. Directional integration of survival information in ovarian cancer reveals candidate biomarkers with consistent prognostic signals in transcript and protein expression. DPM is a general and adaptable framework for gene prioritisation and pathway analysis in multi-omics datasets.

Identifiants

pubmed: 38971800
doi: 10.1038/s41467-024-49986-4
pii: 10.1038/s41467-024-49986-4
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

5690

Informations de copyright

© 2024. The Author(s).

Références

Reimand, J. et al. Pathway enrichment analysis and visualization of omics data using g:Profiler, GSEA, Cytoscape and EnrichmentMap. Nat. Protoc. 14, 482–517 (2019).
pubmed: 30664679 pmcid: 6607905 doi: 10.1038/s41596-018-0103-9
Ashburner, M. et al. Gene Ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).
pubmed: 10802651 pmcid: 3037419 doi: 10.1038/75556
Gillespie, M. et al. The reactome pathway knowledgebase 2022. Nucleic acids Res. 50, D687–D692 (2022).
pubmed: 34788843 doi: 10.1093/nar/gkab1028
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
pubmed: 16199517 pmcid: 1239896 doi: 10.1073/pnas.0506580102
Reimand, J., Kull, M., Peterson, H., Hansen, J. & Vilo, J. g:Profiler-a web-based toolset for functional profiling of gene lists from large-scale experiments. Nucleic Acids Res 35, W193–W200 (2007).
pubmed: 17478515 pmcid: 1933153 doi: 10.1093/nar/gkm226
Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44, W90–W97 (2016).
pubmed: 27141961 pmcid: 4987924 doi: 10.1093/nar/gkw377
Cancer Genome Atlas Research Network. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).
pmcid: 3919969 doi: 10.1038/ng.2764
Encode Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).
doi: 10.1038/nature11247
GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).
doi: 10.1038/ng.2653
Li, Y. et al. Proteogenomic data and resources for pan-cancer analysis. Cancer Cell 41, 1397–1406 (2023).
pubmed: 37582339 doi: 10.1016/j.ccell.2023.06.009
Subramanian, I., Verma, S., Kumar, S., Jere, A. & Anamika, K. Multi-omics Data Integration, Interpretation, and Its Application. Bioinforma. Biol. Insights 14, 24 (2020).
Maghsoudi, Z., Nguyen, H., Tavakkoli, A. & Nguyen, T. A comprehensive survey of the approaches for pathway analysis using multi-omics data integration. Brief. Bioinforma. 23, 19 (2022).
doi: 10.1093/bib/bbac435
Canzler, S. & Hackermuller, J. multiGSEA: a GSEA-based pathway enrichment analysis for multi-omics data. BMC Bioinforma. 21, 13 (2020).
doi: 10.1186/s12859-020-03910-x
Griss, J. et al. ReactomeGSA-efficient multi-omics comparative pathway analysis. Mol. Cell. Proteom. 19, 11 (2020).
doi: 10.1074/mcp.TIR120.002155
Xia, J. G. et al. INMEX-a web-based tool for integrative meta-analysis of expression data. Nucleic acids Res. 41, W63–W70 (2013).
pubmed: 23766290 pmcid: 3692077 doi: 10.1093/nar/gkt338
Kaspi, A. & Ziemann, M. mitch: multi-contrast pathway enrichment for multi-omics and single-cell profiling data. BMC Genomics 21, 17 (2020).
doi: 10.1186/s12864-020-06856-9
Shen, K. & Tseng, G. C. Meta-analysis for pathway enrichment analysis when combining multiple genomic studies. Bioinformatics 26, 1316–1323 (2010).
pubmed: 20410053 pmcid: 2865865 doi: 10.1093/bioinformatics/btq148
Paczkowska, M. et al. Integrative pathway enrichment analysis of multivariate omics data. Nat. Commun. 11, 16 (2020).
doi: 10.1038/s41467-019-13983-9
Brown, M. B. A method for combining non-independent, one-sided tests of significance. Biometrics 31, 987 (1975).
doi: 10.2307/2529826
Poole, W., Gibbs, D. L., Shmulevich, I., Bernard, B. & Knijnenburg, T. A. Combining dependent P-values with an empirical adaptation of Brown’s method. Bioinformatics 32, 430–436 (2016).
doi: 10.1093/bioinformatics/btw438
Fisher, R. A. in Statistical Methods for Research Workers. (Oliver and Boyd, 1925).
Stouffer, S. A., Suchman, E. A., DeVinney, L. C., Star, S. A. & Williams, R. M. Jr. Studies in Social Psychology in World War II: The American Soldier. Princeton: Princeton University Press 1 (1949).
Strube, M. J. Combining and comparing significance levels from nonindependent hypothesis tests. Psychological Bull. 97, 334–341 (1985).
doi: 10.1037/0033-2909.97.2.334
Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).
pubmed: 20616382 pmcid: 2922887 doi: 10.1093/bioinformatics/btq340
Wadi, L., Meyer, M., Weiser, J., Stein, L. D. & Reimand, J. Impact of outdated gene annotations on pathway enrichment analysis. Nat. Methods 13, 705–706 (2016).
pubmed: 27575621 pmcid: 7802636 doi: 10.1038/nmeth.3963
Merico, D., Isserlin, R., Stueker, O., Emili, A. & Bader, G. D. Enrichment Map: a network-based method for gene-set enrichment visualization and interpretation. PLoS One 5, 12 (2010).
doi: 10.1371/journal.pone.0013984
Isaev, K. et al. Pan-cancer analysis of non-coding transcripts reveals the prognostic onco-lncRNA HOXA10-AS in gliomas. Cell Rep. 37, 26 (2021).
doi: 10.1016/j.celrep.2021.109873
Pastushenko, I. et al. Fat1 deletion promotes hybrid EMT state, tumour stemness and metastasis. Nature 589, 448–455 (2021).
pubmed: 33328637 doi: 10.1038/s41586-020-03046-1
Li, Z. et al. Loss of the FAT1 tumor suppressor promotes resistance to cdk4/6 inhibitors via the hippo pathway. Cancer Cell 34, 893–905.e898 (2018).
pubmed: 30537512 pmcid: 6294301 doi: 10.1016/j.ccell.2018.11.006
Noh, K. et al. Negr1 controls adult hippocampal neurogenesis and affective behaviors. Mol. Psychiatry 24, 1189–1205 (2019).
pubmed: 30651602 doi: 10.1038/s41380-018-0347-3
Sheng, L. F., Leshchyns’ka, I. & Sytnyk, V. Neural cell adhesion molecule 2 promotes the formation of filopodia and neurite branching by inducing submembrane increases in Ca2+ levels. J. Neurosci. 35, 1739–1752 (2015).
pubmed: 25632147 pmcid: 6795254 doi: 10.1523/JNEUROSCI.1714-14.2015
Couturier, C. P. et al. Single-cell RNA-seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy. Nat. Commun. 11, 3406 (2020).
pubmed: 32641768 pmcid: 7343844 doi: 10.1038/s41467-020-17186-5
Colwell, N. et al. Hypoxia in the glioblastoma microenvironment: shaping the phenotype of cancer stem-like cells. Neuro Oncol. 19, 887–896 (2017).
pubmed: 28339582 pmcid: 5570138 doi: 10.1093/neuonc/now258
Demuth, T. & Berens, M. E. Molecular mechanisms of glioma cell migration and invasion. J. Neurooncol 70, 217–228 (2004).
pubmed: 15674479 doi: 10.1007/s11060-004-2751-6
Yamamoto, S. et al. Actinin-4 gene amplification in ovarian cancer: a candidate oncogene associated with poor patient prognosis and tumor chemoresistance. Mod. Pathol. 22, 499–507 (2009).
pubmed: 19151661 doi: 10.1038/modpathol.2008.234
Hoxhaj, G. & Manning, B. D. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat. Rev. Cancer 20, 74–88 (2020).
pubmed: 31686003 doi: 10.1038/s41568-019-0216-7
Janku, F., Yap, T. A. & Meric-Bernstam, F. Targeting the PI3K pathway in cancer: are we making headway? Nat. Rev. Clin. Oncol. 15, 273–291 (2018).
pubmed: 29508857 doi: 10.1038/nrclinonc.2018.28
Zhang, Y. Q., Chen, F. J., Chandrashekar, D. S., Varambally, S. & Creighton, C. J. Proteogenomic characterization of 2002 human cancers reveals pan-cancer molecular subtypes and associated pathways. Nat. Commun. 13, 19 (2022).
Zhang, H. et al. Integrated proteogenomic characterization of human high-grade serous ovarian cancer. Cell 166, 755–765 (2016).
pubmed: 27372738 pmcid: 4967013 doi: 10.1016/j.cell.2016.05.069
Clark, D. J. et al. Integrated proteogenomic characterization of clear cell renal cell carcinoma. Cell 179, 964 (2019).
pubmed: 31675502 pmcid: 7331093 doi: 10.1016/j.cell.2019.10.007
Yan, H. et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med 360, 765–773 (2009).
pubmed: 19228619 pmcid: 2820383 doi: 10.1056/NEJMoa0808710
Turcan, S. et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483, 479–483 (2012).
pubmed: 22343889 pmcid: 3351699 doi: 10.1038/nature10866
Yamaguchi, F., Saya, H., Bruner, J. M. & Morrison, R. S. Differential expression of two fibroblast growth factor-receptor genes is associated with malignant progression in human astrocytomas. Proc. Natl Acad. Sci. USA 91, 484–488 (1994).
pubmed: 8290551 pmcid: 42973 doi: 10.1073/pnas.91.2.484
Loilome, W. et al. Glioblastoma cell growth is suppressed by disruption of Fibroblast Growth Factor pathway signaling. J. Neurooncol 94, 359–366 (2009).
pubmed: 19340397 doi: 10.1007/s11060-009-9885-5
Singh, D. et al. Transforming fusions of FGFR and TACC genes in human glioblastoma. Science 337, 1231–1235 (2012).
pubmed: 22837387 pmcid: 3677224 doi: 10.1126/science.1220834
Zhang, J. et al. Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat. Genet. 45, 602–612 (2013).
pubmed: 23583981 pmcid: 3727232 doi: 10.1038/ng.2611
Suva, M. L. et al. Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells. Cell 157, 580–594 (2014).
pubmed: 24726434 pmcid: 4004670 doi: 10.1016/j.cell.2014.02.030
Barthel, F. P. et al. Longitudinal molecular trajectories of diffuse glioma in adults. Nature 576, 112–120 (2019).
pubmed: 31748746 pmcid: 6897368 doi: 10.1038/s41586-019-1775-1
Oh, S. et al. Integrated pharmaco-proteogenomics defines two subgroups in isocitrate dehydrogenase wild-type glioblastoma with prognostic and therapeutic opportunities. Nat. Commun. 11, 3288 (2020).
pubmed: 32620753 pmcid: 7335111 doi: 10.1038/s41467-020-17139-y
Komili, S. & Silver, P. A. Coupling and coordination in gene expression processes: a systems biology view. Nat. Rev. Genet. 9, 38–48 (2008).
pubmed: 18071322 doi: 10.1038/nrg2223
Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979).
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate—a practical and powerful approach to multiple testing. J. R. Stat. Soc. B Met 57, 289–300 (1995).
doi: 10.1111/j.2517-6161.1995.tb02031.x
Tate, J. G. et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic acids Res. 47, D941–D947 (2019).
pubmed: 30371878 doi: 10.1093/nar/gky1015
Colaprico, A. et al. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic acids Res. 44, 11 (2016).
doi: 10.1093/nar/gkv1507
Vizcaino, J. A. et al. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat. Biotechnol. 32, 223–226 (2014).
pubmed: 24727771 pmcid: 3986813 doi: 10.1038/nbt.2839
Slobodyanyuk, M. & Reimand, J. DPM: Directional integration and pathway enrichment analysis for multi-omics data. Zenodo. https://doi.org/10.5281/zenodo.12118089 (2024).

Auteurs

Mykhaylo Slobodyanyuk (M)

Computational Biology Program, Ontario Institute for Cancer Research, 661 University Ave Suite 510, Toronto, ON M5G 0A3, Canada.
Department of Medical Biophysics, University of Toronto, 101 College Str Suite 15-701, Toronto, ON M5G 1L7, Canada.

Alexander T Bahcheli (AT)

Computational Biology Program, Ontario Institute for Cancer Research, 661 University Ave Suite 510, Toronto, ON M5G 0A3, Canada.
Department of Molecular Genetics, University of Toronto, 1 King's College Circle Room 4386, Toronto, ON M5S 1A8, Canada.

Zoe P Klein (ZP)

Computational Biology Program, Ontario Institute for Cancer Research, 661 University Ave Suite 510, Toronto, ON M5G 0A3, Canada.
Department of Molecular Genetics, University of Toronto, 1 King's College Circle Room 4386, Toronto, ON M5S 1A8, Canada.

Masroor Bayati (M)

Computational Biology Program, Ontario Institute for Cancer Research, 661 University Ave Suite 510, Toronto, ON M5G 0A3, Canada.
Department of Medical Biophysics, University of Toronto, 101 College Str Suite 15-701, Toronto, ON M5G 1L7, Canada.

Lisa J Strug (LJ)

Program in Genetics and Genome Biology, the Hospital for Sick Children Research Institute, 686 Bay Str, Toronto, ON M5G 0A4, Canada.
Departments of Statistical Sciences, Computer Science and Division of Biostatistics, University of Toronto, 700 University Avenue, Toronto, ON M5G 1Z5, Canada.

Jüri Reimand (J)

Computational Biology Program, Ontario Institute for Cancer Research, 661 University Ave Suite 510, Toronto, ON M5G 0A3, Canada. juri.reimand@utoronto.ca.
Department of Medical Biophysics, University of Toronto, 101 College Str Suite 15-701, Toronto, ON M5G 1L7, Canada. juri.reimand@utoronto.ca.
Department of Molecular Genetics, University of Toronto, 1 King's College Circle Room 4386, Toronto, ON M5S 1A8, Canada. juri.reimand@utoronto.ca.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH