Diagnostic accuracy and reliability of CT-based Node-RADS for colon cancer.

Colon cancer Computed tomography Lymph node

Journal

Abdominal radiology (New York)
ISSN: 2366-0058
Titre abrégé: Abdom Radiol (NY)
Pays: United States
ID NLM: 101674571

Informations de publication

Date de publication:
08 Jul 2024
Historique:
received: 24 04 2024
accepted: 30 06 2024
revised: 24 06 2024
medline: 8 7 2024
pubmed: 8 7 2024
entrez: 8 7 2024
Statut: aheadofprint

Résumé

The Node-RADS classification was recently published as a classification system to better characterize lymph nodes in oncological imaging. The present analysis investigated the diagnostic benefit of the Node-RADS classification of staging computed tomography (CT) images to categorize and stage lymph nodes in patients with colon cancer. All patients were surgically resected and the lymph nodes were histopathological analyzed. All investigated lymph nodes were scored in accordance to the Node-RADS classification by two experienced radiologists. Interreader variability was assessed with Cohen's kappa analysis, discrimination analysis was performed with Mann-Whitney-U test and diagnostic accuracy was assessed with receiver-operating characteristics (ROC) curve analysis. Overall, 108 patients (n = 49 females, 45.3%) with a mean age of 70.08 ± 14.34 years were included. In discrimination analysis, the total Node-RADS score showed statistically significant differences between N- and N + stage (for reader 1: mean 1.89 ± 1.09 score for N- versus 2.93 ± 1.62 score for N+, for reader 2: 1.33 ± 0.48 score for N- versus 3.65 ± 0.94 score for N+, p = 0.001, respectively). ROC curve analysis for lymph node discrimination showed an area under the curve of 0.68. A threshold value of 2 resulted in a sensitivity of 0.62 and a specificity of 0.71. Node-RADS score derived from staging CT shows only limited diagnostic accuracy to correctly predict nodal positivity in colon cancer. The interreader variability seems to be high and should question the clinical translation for this tumour entity.

Identifiants

pubmed: 38976057
doi: 10.1007/s00261-024-04485-4
pii: 10.1007/s00261-024-04485-4
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s).

Références

Argilés G, Tabernero J, Labianca R, Hochhauser D, Salazar R, Iveson T, Laurent-Puig P, Quirke P, Yoshino T, Taieb J, Martinelli E, Arnold D (2020) Localised colon cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 31(10):1291–1305.
doi: 10.1016/j.annonc.2020.06.022 pubmed: 32702383
Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F (2017) Global patterns and trends in colorectal cancer incidence and mortality. Gut. 66(4):683–691
doi: 10.1136/gutjnl-2015-310912 pubmed: 26818619
Allemani C, Weir HK, Carreira H, Harewood R, Spika D, Wang XS, Bannon F, Ahn JV, Johnson CJ, Bonaventure A, Marcos-Gragera R, Stiller C, Azevedo e Silva G, Chen WQ, Ogunbiyi OJ, Rachet B, Soeberg MJ, You H, Matsuda T, Bielska-Lasota M, Storm H, Tucker TC, Coleman MP (2015) Global surveillance of cancer survival 1995–2009: analysis of individual data for 25,676,887 patients from 279 population-based registries in 67 countries (CONCORD-2). Lancet. 385(9972):977–1010.
doi: 10.1016/S0140-6736(14)62038-9 pubmed: 25467588
Shkurti J, van den Berg K, van Erning FN, Lahaye MJ, Beets-Tan RGH, Nederend J (2023) Diagnostic accuracy of CT for local staging of colon cancer: A nationwide study in the Netherlands. Eur J Cancer. 193:113314.
doi: 10.1016/j.ejca.2023.113314 pubmed: 37729742
Benson AB, Venook AP, Al-Hawary MM, Arain MA, Chen YJ, Ciombor KK, Cohen S, Cooper HS, Deming D, Farkas L, Garrido-Laguna I, Grem JL, Gunn A, Hecht JR, Hoffe S, Hubbard J, Hunt S, Johung KL, Kirilcuk N, Krishnamurthi S, Messersmith WA, Meyerhardt J, Miller ED, Mulcahy MF, Nurkin S, Overman MJ, Parikh A, Patel H, Pedersen K, Saltz L, Schneider C, Shibata D, Skibber JM, Sofocleous CT, Stoffel EM, Stotsky-Himelfarb E, Willett CG, Gregory KM, Gurski LA. (2021) Colon Cancer, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 19(3):329–359
doi: 10.6004/jnccn.2021.0012 pubmed: 33724754
Bayanati H, E Thornhill R, Souza CA, Sethi-Virmani V, Gupta A, Maziak D, Amjadi K, Dennie C (2015) Quantitative CT texture and shape analysis: can it differentiate benign and malignant mediastinal lymph nodes in patients with primary lung cancer? Eur Radiol. 25(2):480–7
doi: 10.1007/s00330-014-3420-6 pubmed: 25216770
Shin SY, Hong IK, Jo YS (2019) Quantitative computed tomography texture analysis: can it improve diagnostic accuracy to differentiate malignant lymph nodes? Cancer Imaging. 19(1):25.
doi: 10.1186/s40644-019-0214-8 pubmed: 31113494 pmcid: 6530003
Zhai TT, Langendijk JA, van Dijk LV, Halmos GB, Witjes MJH, Oosting SF, Noordzij W, Sijtsema NM, Steenbakkers RJHM (2019) The prognostic value of CT-based image-biomarkers for head and neck cancer patients treated with definitive (chemo-)radiation. Oral Oncol. 95:178–186.
doi: 10.1016/j.oraloncology.2019.06.020 pubmed: 31345388
Elsholtz FHJ, Asbach P, Haas M, Becker M, Beets-Tan RGH, et al. (2021) Introducing the Node Reporting and Data System 1.0 (Node-RADS): a concept for standardized assessment of lymph nodes in cancer. Eur Radiol. 31(8):6116–24.
doi: 10.1007/s00330-020-07572-4 pubmed: 33585994 pmcid: 8270876
Leonhardi J, Sabanov A, Schnarkowski B, Hoehn AK, Sucher R, Seehofer D, Denecke T, Meyer HJ (2023) CT Texture Analysis and Node-RADS CT Score of Lymph Nodes in Patients With Perihilar Cholangiocarcinoma. Anticancer Res. 43(11):5089–5097.
doi: 10.21873/anticanres.16709 pubmed: 37909955
Meyer HJ, Schnarkowski B, Pappisch J, Kerkhoff T, Wirtz H, Höhn AK, Krämer S, Denecke T, Leonhardi J, Frille A (2022) CT texture analysis and node-RADS CT score of mediastinal lymph nodes - diagnostic performance in lung cancer patients. Cancer Imaging. 22(1):75.
doi: 10.1186/s40644-022-00506-x pubmed: 36567339 pmcid: 9791752
Leonardo C, Flammia RS, Lucciola S, Proietti F, Pecoraro M, Bucca B, Licari LC, Borrelli A, Bologna E, Landini N, Del Monte M, Chung BI, Catalano C, Magliocca FM, De Berardinis E, Del Giudice F, Panebianco V (2023) Performance of Node-RADS Scoring System for a Standardized Assessment of Regional Lymph Nodes in Bladder Cancer Patients. Cancers (Basel). 15(3):580.
doi: 10.3390/cancers15030580 pubmed: 36765540
Loch FN, Beyer K, Kreis ME, Kamphues C, Rayya W, Schineis C, Jahn J, Tronser M, Elsholtz FHJ, Hamm B, Reiter R (2023) Diagnostic performance of Node Reporting and Data System (Node-RADS) for regional lymph node staging of gastric cancer by CT. Eur Radiol. 2023 Oct 24
Maggialetti N, Greco CN, Lucarelli NM, Morelli C, Cianci V, Sasso S, Rubini D, Scardapane A, Stabile Ianora AA (2023) Applications of new radiological scores: the Node-rads in colon cancer staging. Radiol Med. 128(11):1287–1295.
doi: 10.1007/s11547-023-01703-9 pubmed: 37704777
Chang GJ, Rodriguez-Bigas MA, Skibber JM, Moyer VA (2007) Lymph node evaluation and survival after curative resection of colon cancer: systematic review. J Natl Cancer Inst. 99(6):433–41.
doi: 10.1093/jnci/djk092 pubmed: 17374833
Nerad E, Lahaye MJ, Maas M, Nelemans P, Bakers FC, Beets GL, Beets-Tan RG (2016) Diagnostic Accuracy of CT for Local Staging of Colon Cancer: A Systematic Review and Meta-Analysis. AJR Am J Roentgenol. 207(5):984–995
doi: 10.2214/AJR.15.15785 pubmed: 27490941
Hong EK, Landolfi F, Castagnoli F, Park SJ, Boot J, Van den Berg J, Lee JM, Beets-Tan R (2021) CT for lymph node staging of Colon cancer: not only size but also location and number of lymph node count. Abdom Radiol (NY). 46(9):4096–4105
doi: 10.1007/s00261-021-03057-0 pubmed: 33904991
Cheng Y, Yu Q, Meng W, Jiang W (2022) Clinico-Radiologic Nomogram Using Multiphase CT to Predict Lymph Node Metastasis in Colon Cancer. Mol Imaging Biol. 24(5):798–806.
doi: 10.1007/s11307-022-01730-4 pubmed: 35419770
Bedrikovetski S, Zhang J, Seow W, Traeger L, Moore JW, Verjans J, Carneiro G, Sammour T (2024) Deep learning to predict lymph node status on pre-operative staging CT in patients with colon cancer. J Med Imaging Radiat Oncol. 68(1):33–40
doi: 10.1111/1754-9485.13584 pubmed: 37724420
Mou A, Li H, Chen XL, Fan YH, Pu H (2021) Tumor size measured by multidetector CT in resectable colon cancer: correlation with regional lymph node metastasis and N stage. World J Surg Oncol. 19(1):179.
doi: 10.1186/s12957-021-02292-5 pubmed: 34134714 pmcid: 8210336
Wu Z, Qin G, Zhao N, Jia H, Zheng X (2017) Assessing the adequacy of lymph node yield for different tumor stages of colon cancer by nodal staging scores. BMC Cancer. 17(1):498.
doi: 10.1186/s12885-017-3491-2 pubmed: 28743236 pmcid: 5526283
Le Voyer TE, Sigurdson ER, Hanlon AL, Mayer RJ, Macdonald JS, Catalano PJ, Haller DG (2003) Colon cancer survival is associated with increasing number of lymph nodes analyzed: a secondary survey of intergroup trial INT-0089. J Clin Oncol. 21(15):2912–9.
doi: 10.1200/JCO.2003.05.062 pubmed: 12885809

Auteurs

Jakob Leonhardi (J)

Department of Diagnostic and Interventional Radiology, University of Leipzig, Leipzig, Germany.

Matthias Mehdorn (M)

Department of Visceral and Transplantation Surgery, University Hospital Leipzig, University of Leipzig, Leipzig, Germany.

Sigmar Stelzner (S)

Department of Visceral and Transplantation Surgery, University Hospital Leipzig, University of Leipzig, Leipzig, Germany.

Uwe Scheuermann (U)

Department of Visceral and Transplantation Surgery, University Hospital Leipzig, University of Leipzig, Leipzig, Germany.

Anne-Kathrin Höhn (AK)

Department of Pathology, University Hospital Leipzig, University of Leipzig, Leipzig, Germany.

Daniel Seehofer (D)

Department of Visceral and Transplantation Surgery, University Hospital Leipzig, University of Leipzig, Leipzig, Germany.

Benedikt Schnarkowski (B)

Department of Diagnostic and Interventional Radiology, University of Leipzig, Leipzig, Germany.

Timm Denecke (T)

Department of Diagnostic and Interventional Radiology, University of Leipzig, Leipzig, Germany.

Hans-Jonas Meyer (HJ)

Department of Diagnostic and Interventional Radiology, University of Leipzig, Leipzig, Germany. Hans-jonas.meyer@medizin.uni-leipzig.de.

Classifications MeSH