Unlocking the diagnostic power of plasma extracellular vesicle miR-200 family in pancreatic ductal adenocarcinoma.


Journal

Journal of experimental & clinical cancer research : CR
ISSN: 1756-9966
Titre abrégé: J Exp Clin Cancer Res
Pays: England
ID NLM: 8308647

Informations de publication

Date de publication:
08 Jul 2024
Historique:
received: 27 02 2024
accepted: 06 06 2024
medline: 9 7 2024
pubmed: 9 7 2024
entrez: 8 7 2024
Statut: epublish

Résumé

Distinguishing benign from malignant pancreaticobiliary disease is challenging because of the absence of reliable biomarkers. Circulating extracellular vesicles (EVs) have emerged as functional mediators between cells. Their cargos, including microRNAs (miRNAs), are increasingly acknowledged as an important source of potential biomarkers. This multicentric, prospective study aimed to establish a diagnostic plasma EV-derived miRNA signature to discriminate pancreatic ductal adenocarcinoma (PDAC) from benign pancreaticobiliary disease. Plasma EVs were isolated using size exclusion chromatography (SEC) and characterised using nanoparticle tracking analysis, electron microscopy and Western blotting. EV-RNAs underwent small RNA sequencing to discover differentially expressed markers for PDAC (n = 10 benign vs. 10 PDAC). Candidate EV-miRNAs were then validated in a cohort of 61 patients (n = 31 benign vs. 30 PDAC) by RT-qPCR. Logistic regression and optimal thresholds (Youden Index) were used to develop an EV-miR-200 family model to detect cancer. This model was tested in an independent cohort of 95 patients (n = 30 benign, 33 PDAC, and 32 cholangiocarcinoma). Small RNA sequencing and RT-qPCR showed that EV-miR-200 family members were significantly overexpressed in PDAC vs. benign disease. Combined expression of the EV-miR-200 family showed an AUC of 0.823. In an independent validation cohort, application of this model showed a sensitivity, specificity and AUC of 100%, 88%, and 0.97, respectively, for diagnosing PDAC. This is the first study to validate plasma EV-miR-200 members as a clinically-useful diagnostic biomarker for PDAC. Further validation in larger cohorts and clinical trials is essential. These findings also suggest the potential utility in monitoring response and/or recurrence.

Sections du résumé

BACKGROUND BACKGROUND
Distinguishing benign from malignant pancreaticobiliary disease is challenging because of the absence of reliable biomarkers. Circulating extracellular vesicles (EVs) have emerged as functional mediators between cells. Their cargos, including microRNAs (miRNAs), are increasingly acknowledged as an important source of potential biomarkers. This multicentric, prospective study aimed to establish a diagnostic plasma EV-derived miRNA signature to discriminate pancreatic ductal adenocarcinoma (PDAC) from benign pancreaticobiliary disease.
METHODS METHODS
Plasma EVs were isolated using size exclusion chromatography (SEC) and characterised using nanoparticle tracking analysis, electron microscopy and Western blotting. EV-RNAs underwent small RNA sequencing to discover differentially expressed markers for PDAC (n = 10 benign vs. 10 PDAC). Candidate EV-miRNAs were then validated in a cohort of 61 patients (n = 31 benign vs. 30 PDAC) by RT-qPCR. Logistic regression and optimal thresholds (Youden Index) were used to develop an EV-miR-200 family model to detect cancer. This model was tested in an independent cohort of 95 patients (n = 30 benign, 33 PDAC, and 32 cholangiocarcinoma).
RESULTS RESULTS
Small RNA sequencing and RT-qPCR showed that EV-miR-200 family members were significantly overexpressed in PDAC vs. benign disease. Combined expression of the EV-miR-200 family showed an AUC of 0.823. In an independent validation cohort, application of this model showed a sensitivity, specificity and AUC of 100%, 88%, and 0.97, respectively, for diagnosing PDAC.
CONCLUSIONS CONCLUSIONS
This is the first study to validate plasma EV-miR-200 members as a clinically-useful diagnostic biomarker for PDAC. Further validation in larger cohorts and clinical trials is essential. These findings also suggest the potential utility in monitoring response and/or recurrence.

Identifiants

pubmed: 38978141
doi: 10.1186/s13046-024-03090-z
pii: 10.1186/s13046-024-03090-z
doi:

Substances chimiques

MicroRNAs 0
MIRN200 microRNA, human 0
Biomarkers, Tumor 0

Types de publication

Journal Article Multicenter Study

Langues

eng

Sous-ensembles de citation

IM

Pagination

189

Subventions

Organisme : Jon Moulton Charity Trust
ID : Jon Moulton Charity Trust
Organisme : Action Against Cancer
ID : Action Against Cancer
Organisme : Action Against Cancer
ID : Action Against Cancer
Organisme : Action Against Cancer
ID : Action Against Cancer
Organisme : Action Against Cancer
ID : Action Against Cancer
Organisme : Action Against Cancer
ID : Action Against Cancer
Organisme : Action Against Cancer
ID : Action Against Cancer
Organisme : Action Against Cancer
ID : Action Against Cancer
Organisme : Royal College of Surgeons of Edinburgh
ID : Royal College of Surgeons of Edinburgh
Organisme : Royal College of Surgeons of England
ID : Royal College of Surgeons of England
Organisme : Royal College of Surgeons of England
ID : Royal College of Surgeons of England
Organisme : Mason Medical Research Trust
ID : Mason Medical Research Trust
Organisme : S.A.L. Charitable Fund
ID : S.A.L. Charitable Fund
Organisme : BRIGHT Cancer Charity
ID : BRIGHT Cancer Charity
Organisme : BRIGHT Cancer Charity
ID : BRIGHT Cancer Charity
Organisme : Bennink Foundation
ID : Bennink Foundation
Organisme : Bennink Foundation
ID : Bennink Foundation
Organisme : Bennink Foundation
ID : Bennink Foundation
Organisme : Italian Association of Cancer Research AIRC
ID : Italian Association of Cancer Research AIRC
Organisme : Fondazione Pisa
ID : PANOMIC grant
Organisme : KWF Kankerbestrijding
ID : KWF Kankerbestrijding
Organisme : KWF Kankerbestrijding
ID : KWF Kankerbestrijding
Organisme : KWF Kankerbestrijding
ID : KWF Kankerbestrijding

Informations de copyright

© 2024. The Author(s).

Références

Cancer Statistics—Cancer Stat Facts: Pancreatic Cancer. 2023. https://seer.cancer.gov/statfacts/html/pancreas.html . Accessed 01 November 2023.
Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. Cancer J Clin. 2023;73(1):17–48. https://doi.org/10.3322/caac.21763 .
doi: 10.3322/caac.21763
Hosein AN, Dougan SK, Aguirre AJ, Maitra A. Translational advances in pancreatic ductal adenocarcinoma therapy. Nat Cancer. 2022;3(3):272–86. https://doi.org/10.1038/s43018-022-00349-2 .
doi: 10.1038/s43018-022-00349-2 pubmed: 35352061
Mizrahi JD, Surana R, Valle JW, Shroff RT. Pancreatic cancer. Lancet. 2020;395(10242):2008–20. https://doi.org/10.1016/S0140-6736(20)30974-0 .
doi: 10.1016/S0140-6736(20)30974-0 pubmed: 32593337
van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–28. https://doi.org/10.1038/nrm.2017.125 .
doi: 10.1038/nrm.2017.125 pubmed: 29339798
Mann DV, Edwards R, Ho S, Lau WY, Glazer G. Elevated tumour marker CA19-9: clinical interpretation and influence of obstructive jaundice. Eur J Surg Oncol (EJSO). 2000;26(5):474–9. https://doi.org/10.1053/ejso.1999.0925 .
doi: 10.1053/ejso.1999.0925 pubmed: 11016469
Tsen A, Barbara M, Rosenkranz L. Dilemma of elevated CA 19 – 9 in biliary pathology. Pancreatology. 2018;18(8):862–7. https://doi.org/10.1016/j.pan.2018.09.004 .
doi: 10.1016/j.pan.2018.09.004 pubmed: 30249386
Nordgren J, Sharma S, Bucardo F, Nasir W, Gunaydin G, Ouermi D, et al. Both Lewis and secretor status mediate susceptibility to rotavirus infections in a rotavirus genotype-dependent manner. Clin Infect Dis. 2014;59(11):1567–73. https://doi.org/10.1093/cid/ciu633 .
doi: 10.1093/cid/ciu633 pubmed: 25097083 pmcid: 4650770
Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem. 1987;262(19):9412–20. https://doi.org/10.1016/S0021-9258(18)48095-7 .
doi: 10.1016/S0021-9258(18)48095-7 pubmed: 3597417
Whiteside TL. Exosomes and tumor-mediated immune suppression. J Clin Invest. 2016;126(4):1216–23. https://doi.org/10.1172/JCI81136 .
doi: 10.1172/JCI81136 pubmed: 26927673 pmcid: 4811135
Gardiner C, Di Vizio D, Sahoo S, Thery C, Witwer KW, Wauben M, Hill AF. Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey. J Extracell Vesicles. 2016;5:32945. https://doi.org/10.3402/jev.v5.32945 .
doi: 10.3402/jev.v5.32945 pubmed: 27802845
Liu DSK, Upton FM, Rees E, Limb C, Jiao LR, Krell J, Frampton AE. Size-exclusion chromatography as a technique for the investigation of Novel Extracellular vesicles in Cancer. Cancers (Basel). 2020;12(11). https://doi.org/10.3390/cancers12113156 .
Monguio-Tortajada M, Galvez-Monton C, Bayes-Genis A, Roura S, Borras FE. Extracellular vesicle isolation methods: rising impact of size-exclusion chromatography. Cell Mol Life Sci. 2019;76(12):2369–82. https://doi.org/10.1007/s00018-019-03071-y .
doi: 10.1007/s00018-019-03071-y pubmed: 30891621 pmcid: 11105396
Takahasi K, Iinuma H, Wada K, Minezaki S, Kawamura S, Kainuma M, et al. Usefulness of exosome-encapsulated microRNA-451a as a minimally invasive biomarker for prediction of recurrence and prognosis in pancreatic ductal adenocarcinoma. J Hepatobiliary Pancreat Sci. 2018;25(2):155–61. https://doi.org/10.1002/jhbp.524 .
doi: 10.1002/jhbp.524 pubmed: 29130611
Li Z, Tao Y, Wang X, Jiang P, Li J, Peng M, et al. Tumor-secreted exosomal miR-222 promotes Tumor Progression via regulating P27 expression and re-localization in pancreatic Cancer. Cell Physiol Biochemistry: Int J Experimental Cell Physiol Biochem Pharmacol. 2018;51(2):610–29. https://doi.org/10.1159/000495281 .
doi: 10.1159/000495281
Goto T, Fujiya M, Konishi H, Sasajima J, Fujibayashi S, Hayashi A, et al. An elevated expression of serum exosomal microRNA-191, – 21, -451a of pancreatic neoplasm is considered to be efficient diagnostic marker. BMC Cancer. 2018;18(1):116. https://doi.org/10.1186/s12885-018-4006-5 .
doi: 10.1186/s12885-018-4006-5 pubmed: 29385987 pmcid: 5793347
Xu YF, Hannafon BN, Zhao YD, Postier RG, Ding WQ. Plasma exosome miR-196a and miR-1246 are potential indicators of localized pancreatic cancer. Oncotarget. 2017;8(44):77028–40. https://doi.org/10.18632/oncotarget.20332 .
doi: 10.18632/oncotarget.20332 pubmed: 29100367 pmcid: 5652761
Yang G, Qiu J, Xu J, Xiong G, Zhao F, Cao Z, et al. Using a microRNA panel of circulating exosomes for diagnosis of pancreatic cancer: multicentre case–control study. Br J Surg. 2022;110(8):908–12. https://doi.org/10.1093/bjs/znac375 .
doi: 10.1093/bjs/znac375
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97. https://doi.org/10.1016/s0092-8674(04)00045-5 .
doi: 10.1016/s0092-8674(04)00045-5 pubmed: 14744438
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013 .
doi: 10.1016/j.cell.2011.02.013 pubmed: 21376230
Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A. 2011;108(12):5003–8. https://doi.org/10.1073/pnas.1019055108 .
doi: 10.1073/pnas.1019055108 pubmed: 21383194 pmcid: 3064324
Heitzer E, Haque IS, Roberts CES, Speicher MR. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat Rev Genet. 2019;20(2):71–88. https://doi.org/10.1038/s41576-018-0071-5 .
doi: 10.1038/s41576-018-0071-5 pubmed: 30410101
Alix-Panabières C, Pantel K. Liquid Biopsy: from Discovery to Clinical Application. Cancer Discov. 2021;11(4):858–73. https://doi.org/10.1158/2159-8290.Cd-20-1311 .
doi: 10.1158/2159-8290.Cd-20-1311 pubmed: 33811121
Schwarzenbach H, Nishida N, Calin GA, Pantel K. Clinical relevance of circulating cell-free microRNAs in cancer. Nat Reviews Clin Oncol. 2014;11(3):145–56. https://doi.org/10.1038/nrclinonc.2014.5 .
doi: 10.1038/nrclinonc.2014.5
Meijer LL, Puik JR, Le Large TYS, Heger M, Dijk F, Funel N, et al. Unravelling the diagnostic dilemma: a MicroRNA panel of circulating MiR-16 and MiR-877 as a diagnostic classifier for distal bile Duct Tumors. Cancers (Basel). 2019;11(8). https://doi.org/10.3390/cancers11081181 .
’t Veld SGJG, Arkani M, Post E, Antunes-Ferreira M, D’Ambrosi S, Vessies DCL Detection and localization of early- and late-stage cancers using platelet RNA, et al. editors. Cancer Cell. 2022;40(9):999–1009.e6. https://doi.org/10.1016/j.ccell.2022.08.006 .
Best MG, ‘t Sol N et al. Veld S, Vancura A, Muller M, Niemeijer AN,. Swarm Intelligence-Enhanced Detection of Non-Small-Cell Lung Cancer Using Tumor-Educated Platelets. Cancer Cell. 2017;32(2):238 – 52.e9. https://doi.org/10.1016/j.ccell.2017.07.004 .
Welsh JA, Goberdhan DC, O’Driscoll L, Théry C, Witwer KW. MISEV2023: an updated guide to EV research and applications. J Extracell Vesicles. 2024;13(2):e12416. https://doi.org/10.1002/jev2.12416 .
doi: 10.1002/jev2.12416 pubmed: 38400602 pmcid: 10891433
Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750. https://doi.org/10.1080/20013078.2018.1535750 .
doi: 10.1080/20013078.2018.1535750 pubmed: 30637094 pmcid: 6322352
Castillo J, Bernard V, San Lucas FA, Allenson K, Capello M, Kim DU, et al. Surfaceome profiling enables isolation of cancer-specific exosomal cargo in liquid biopsies from pancreatic cancer patients. Ann Oncol. 2018;29(1):223–9. https://doi.org/10.1093/annonc/mdx542 .
doi: 10.1093/annonc/mdx542 pubmed: 29045505
Buenafe AC, Dorrell C, Reddy AP, Klimek J, Marks DL. Proteomic analysis distinguishes extracellular vesicles produced by cancerous versus healthy pancreatic organoids. Sci Rep. 2022;12(1):3556. https://doi.org/10.1038/s41598-022-07451-6 .
doi: 10.1038/s41598-022-07451-6 pubmed: 35241737 pmcid: 8894448
Johnsen KB, Gudbergsson JM, Andresen TL, Simonsen JB. What is the blood concentration of extracellular vesicles? Implications for the use of extracellular vesicles as blood-borne biomarkers of cancer. Biochimica et Biophysica Acta (BBA) - reviews on Cancer. 2019;1871(1):109–16. https://doi.org/10.1016/j.bbcan.2018.11.006 .
Frampton AE, Castellano L, Colombo T, Giovannetti E, Krell J, Jacob J, et al. Integrated molecular analysis to investigate the role of microRNAs in pancreatic tumour growth and progression. Lancet. 2015;385:S37. https://doi.org/10.1016/S0140-6736(15)60352-X .
doi: 10.1016/S0140-6736(15)60352-X pubmed: 26312859
Reese M, Flammang I, Yang Z, Dhayat SA. Potential of Exosomal microRNA-200b as Liquid Biopsy marker in pancreatic ductal adenocarcinoma. Cancers (Basel). 2020;12(1). https://doi.org/10.3390/cancers12010197 .
Nakamura K, Zhu Z, Roy S, Jun E, Han H, Munoz RM, et al. An exosome-based Transcriptomic Signature for Noninvasive, early detection of patients with pancreatic ductal adenocarcinoma: a Multicenter Cohort Study. Gastroenterology. 2022;163(5):1252–e662. https://doi.org/10.1053/j.gastro.2022.06.090 .
doi: 10.1053/j.gastro.2022.06.090 pubmed: 35850192
Korpal M, Lee ES, Hu G, Kang Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem. 2008;283(22):14910–4. https://doi.org/10.1074/jbc.C800074200 .
doi: 10.1074/jbc.C800074200 pubmed: 18411277 pmcid: 3258899
Title AC, Hong SJ, Pires ND, Hasenohrl L, Godbersen S, Stokar-Regenscheit N, et al. Genetic dissection of the mir-200-Zeb1 axis reveals its importance in tumor differentiation and invasion. Nat Commun. 2018;9(1):4671. https://doi.org/10.1038/s41467-018-07130-z .
doi: 10.1038/s41467-018-07130-z pubmed: 30405106 pmcid: 6220299
Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10(5):593–601. https://doi.org/10.1038/ncb1722 .
doi: 10.1038/ncb1722 pubmed: 18376396
Cavallari I, Ciccarese F, Sharova E, Urso L, Raimondi V, Silic-Benussi M, et al. The miR-200 family of microRNAs: fine tuners of epithelial-mesenchymal transition and circulating Cancer biomarkers. Cancers (Basel). 2021;13(23). https://doi.org/10.3390/cancers13235874 .
Le MT, Hamar P, Guo C, Basar E, Perdigão-Henriques R, Balaj L, Lieberman J. Mir-200-containing extracellular vesicles promote breast cancer cell metastasis. J Clin Invest. 2014;124(12):5109–28. https://doi.org/10.1172/jci75695 .
doi: 10.1172/jci75695 pubmed: 25401471 pmcid: 4348969
Title AC, Hong SJ, Pires ND, Hasenöhrl L, Godbersen S, Stokar-Regenscheit N, et al. Genetic dissection of the mir-200-Zeb1 axis reveals its importance in tumor differentiation and invasion. Nat Commun. 2018;9(1):4671. https://doi.org/10.1038/s41467-018-07130-z .
doi: 10.1038/s41467-018-07130-z pubmed: 30405106 pmcid: 6220299
Brabletz T, Kalluri R, Nieto MA, Weinberg RA. EMT in cancer. Nat Rev Cancer. 2018;18(2):128–34. https://doi.org/10.1038/nrc.2017.118 .
doi: 10.1038/nrc.2017.118 pubmed: 29326430
Dhayat SA, Traeger MM, Rehkaemper J, Stroese AJ, Steinestel K, Wardelmann E, et al. Clinical impact of epithelial-to-mesenchymal transition regulating MicroRNAs in Pancreatic Ductal Adenocarcinoma. Cancers. 2018;10(9):328.
doi: 10.3390/cancers10090328 pubmed: 30217058 pmcid: 6162771
Krebs AM, Mitschke J, Lasierra Losada M, Schmalhofer O, Boerries M, Busch H, et al. The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat Cell Biol. 2017;19(5):518–29. https://doi.org/10.1038/ncb3513 .
doi: 10.1038/ncb3513 pubmed: 28414315
Lo HC, Zhang XH. EMT in Metastasis: finding the right balance. Dev Cell. 2018;45(6):663–5. https://doi.org/10.1016/j.devcel.2018.05.033 .
doi: 10.1016/j.devcel.2018.05.033 pubmed: 29920271
Dhayat SA, Traeger MM, Rehkaemper J, Stroese AJ, Steinestel K, Wardelmann E, et al. Clinical impact of epithelial-to-mesenchymal transition regulating MicroRNAs in Pancreatic Ductal Adenocarcinoma. Cancers (Basel). 2018;10(9):328. https://doi.org/10.3390/cancers10090328 .
doi: 10.3390/cancers10090328 pubmed: 30217058
Reichert M, Bakir B, Moreira L, Pitarresi JR, Feldmann K, Simon L, et al. Regulation of epithelial plasticity determines metastatic Organotropism in Pancreatic Cancer. Dev Cell. 2018;45(6):696–e7118. https://doi.org/10.1016/j.devcel.2018.05.025 .
doi: 10.1016/j.devcel.2018.05.025 pubmed: 29920275 pmcid: 6011231
Hashimoto N, Tanaka T. Role of miRNAs in the pathogenesis and susceptibility of diabetes mellitus. J Hum Genet. 2017;62(2):141–50. https://doi.org/10.1038/jhg.2016.150 .
doi: 10.1038/jhg.2016.150 pubmed: 27928162
Korc M, Pathogenesis of Pancreatic Cancer-Related Diabetes Mellitus. Quo Vadis? Pancreas. 2019;48(5):594–7. https://doi.org/10.1097/MPA.0000000000001300 .
doi: 10.1097/MPA.0000000000001300
Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 2011;13(4):423–33. https://doi.org/10.1038/ncb2210 .
doi: 10.1038/ncb2210 pubmed: 21423178 pmcid: 3074610
Colao IL, Corteling R, Bracewell D, Wall I. Manufacturing exosomes: a promising therapeutic platform. Trends Mol Med. 2018;24(3):242–56. https://doi.org/10.1016/j.molmed.2018.01.006 .
doi: 10.1016/j.molmed.2018.01.006 pubmed: 29449149
Nordin JZ, Lee Y, Vader P, Mäger I, Johansson HJ, Heusermann W, et al. Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties. Nanomed Nanotechnol Biol Med. 2015;11(4):879–83. https://doi.org/10.1016/j.nano.2015.01.003 .
doi: 10.1016/j.nano.2015.01.003

Auteurs

Daniel S K Liu (DSK)

Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120HS, London, UK.

Jisce R Puik (JR)

Department of Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands.

Bhavik Y Patel (BY)

Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, The Leggett Building, University of Surrey, Guildford, Surrey, GU2 7WG, UK.
HPB Surgical Unit, Royal Surrey County Hospital, Guildford, Surrey, UK.

Morten T Venø (MT)

Department of Molecular Biology and Genetics, Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Aarhus, Denmark.
Omiics ApS, 8200 Aarhus N, Aarhus, Denmark.

Mahrou Vahabi (M)

Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands.

Mireia Mato Prado (MM)

Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120HS, London, UK.
UK Dementia Research Institute, Institute of Neurology, University College London, London, UK.

Jason P Webber (JP)

Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, UK.

Eleanor Rees (E)

Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120HS, London, UK.

Flora M Upton (FM)

Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120HS, London, UK.

Kate Bennett (K)

Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120HS, London, UK.

Catherine Blaker (C)

Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120HS, London, UK.

Benoit Immordino (B)

Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, 56127, Italy.

Annalisa Comandatore (A)

General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, 56100, Italy.

Luca Morelli (L)

General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, 56100, Italy.

Shivan Sivakumar (S)

Oncology Department, Institute of Immunology and Immunotherapy, Birmingham Medical School, University of Birmingham, Birmingham, B15 2TT, UK.

Rutger-Jan Swijnenburg (RJ)

Department of Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands.
Department of Surgery, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.

Marc G Besselink (MG)

Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands.
Department of Surgery, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.

Long R Jiao (LR)

Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120HS, London, UK.

Geert Kazemier (G)

Department of Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands.

Elisa Giovannetti (E)

Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands. elisa.giovannetti@gmail.com.
Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, San Giuliano, Pisa, 56016, Italy. elisa.giovannetti@gmail.com.
Laboratory of Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands. elisa.giovannetti@gmail.com.

Jonathan Krell (J)

Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120HS, London, UK.

Adam E Frampton (AE)

Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120HS, London, UK. a.frampton@imperial.ac.uk.
Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, The Leggett Building, University of Surrey, Guildford, Surrey, GU2 7WG, UK. a.frampton@imperial.ac.uk.
HPB Surgical Unit, Royal Surrey County Hospital, Guildford, Surrey, UK. a.frampton@imperial.ac.uk.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH