Cardiovascular toxicities by calcineurin inhibitors: Cellular mechanisms behind clinical manifestations.

calcineurin inhibitors cardiovascular toxicity cyclosporine tacrolimus

Journal

Acta physiologica (Oxford, England)
ISSN: 1748-1716
Titre abrégé: Acta Physiol (Oxf)
Pays: England
ID NLM: 101262545

Informations de publication

Date de publication:
10 Jul 2024
Historique:
revised: 19 06 2024
received: 21 02 2024
accepted: 25 06 2024
medline: 10 7 2024
pubmed: 10 7 2024
entrez: 10 7 2024
Statut: aheadofprint

Résumé

Calcineurin inhibitors (CNI), including cyclosporine A (CsA) and tacrolimus (TAC), are cornerstones of immunosuppressive therapy in solid organ transplant recipients. While extensively recognized for their capacity to induce nephrotoxicity, hypertension, and dyslipidemia, emerging reports suggest potential direct cardiovascular toxicities associated with CNI. Evidence from both in vitro and in vivo studies has demonstrated direct cardiotoxic impact of CNI, manifesting itself as induction of cardiomyocyte apoptosis, enhanced oxidative stress, inflammatory cell infiltration, and cardiac fibrosis. CNI enhances cellular apoptosis through CaSR via activation of the p38 MAPK pathway and deactivation of the ERK pathway, and enhancement of miR-377 axis. Although CNI could attenuate cardiac hypertrophy in certain animal models, CNI concurrently impaired systolic function, enhanced cardiac fibrosis, and increased the risk of heart failure. Evidence from in vivo studies demonstrated that CNI prolong the duration of action potentials through a decrease in potassium current. CNI also exerted direct effects on endothelial cell injury, inducing apoptosis and enhancing oxidative stress. CNI may induce vascular inflammation through TLR4 via MyD88 and TRIF pathways. In addition, CNI affects vascular function by impairing endothelial-dependent vasodilation and promoting vasoconstriction. Clinical studies in transplant patients also revealed an increased incidence of cardiac remodeling. However, the evidence is constrained by the limited number of participants and potential confounding factors. Several studies indicate differing cardiovascular toxicity profiles between CsA and TAC, and these could be potentially due to their different interactions with calcineurin subunits and calcineurin-independent effects. Further studies are needed to clarify these mechanisms to improve cardiovascular outcomes for transplant patients with CNI.

Identifiants

pubmed: 38984711
doi: 10.1111/apha.14199
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

e14199

Informations de copyright

© 2024 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

Références

Dharmavaram N, Hess T, Jaeger H, et al. National Trends in heart donor usage rates: are we efficiently transplanting more hearts? J Am Heart Assoc. 2021;10(15):e019655.
Wang JH, Hart A. Global perspective on kidney transplantation: United States. Kidney360. 2021;2(11):1836‐1839.
Ume AC, Wenegieme TY, Williams CR. Calcineurin inhibitors: a double‐edged sword. Am J Physiol Renal Physiol. 2021;320(3):F336‐F341.
Lindenfeld J, Miller GG, Shakar SF, et al. Drug therapy in the heart transplant recipient: part II: immunosuppressive drugs. Circulation. 2004;110(25):3858‐3865.
Calne RY, White DJ, Thiru S, et al. Cyclosporin a in patients receiving renal allografts from cadaver donors. Lancet. 1978;2(8104–5):1323‐1327.
Group USMFLS. A comparison of tacrolimus (FK 506) and cyclosporine for immunosuppression in liver transplantation. N Engl J Med. 1994;331(17):1110‐1115.
Tang J, Wang G, Liu Y, et al. Cyclosporin a induces cardiomyocyte injury through calcium‐sensing receptor‐mediated calcium overload. Pharmazie. 2011;66(1):52‐57.
Chi J, Zhu Y, Fu Y, et al. Cyclosporin a induces apoptosis in H9c2 cardiomyoblast cells through calcium‐sensing receptor‐mediated activation of the ERK MAPK and p38 MAPK pathways. Mol Cell Biochem. 2012;367(1–2):227‐236.
Zhu XD, Chi JY, Liang HH, et al. MicroRNA‐377 mediates Cardiomyocyte apoptosis induced by Cyclosporin a. Can J Cardiol. 2016;32(10):1249‐1259.
Florio S, Ciarcia R, Crispino L, et al. Hydrocortisone has a protective effect on CyclosporinA‐induced cardiotoxicity. J Cell Physiol. 2003;195(1):21‐26.
Lu Z, Xu S. ERK1/2 MAP kinases in cell survival and apoptosis. IUBMB Life. 2006;58(11):621‐631.
Tavares P, Reis F, Ribeiro CA, Teixeira F. Cardiovascular effects of cyclosporin treatment in an experimental model. Rev Port Cardiol. 2002;21(2):141‐155.
Rezzani R, Rodella LF, Fraschini F, et al. Melatonin delivery in solid lipid nanoparticles: prevention of cyclosporine a induced cardiac damage. J Pineal Res. 2009;46(3):255‐261.
Ozkan G, Ulusoy S, Alkanat M, et al. Antiapoptotic and antioxidant effects of GSPE in preventing cyclosporine A‐induced cardiotoxicity. Ren Fail. 2012;34(4):460‐466.
Zhao Y, Hou G, Zhang Y, et al. Involvement of the calcium‐sensing receptor in cyclosporin A‐induced cardiomyocyte apoptosis in rats. Pharmazie. 2011;66(12):968‐974.
Zhao Y, Li Y, Fan D, et al. Potential role of circular RNA in cyclosporin A‐induced cardiotoxicity in rats. J Appl Toxicol. 2022;42(2):216‐229.
Selcoki Y, Uz E, Bayrak R, et al. The protective effect of erdosteine against cyclosporine A‐induced cardiotoxicity in rats. Toxicology. 2007;239(1–2):53‐59.
Rezzani R, Rodella LF, Bonomini F, Tengattini S, Bianchi R, Reiter RJ. Beneficial effects of melatonin in protecting against cyclosporine A‐induced cardiotoxicity are receptor mediated. J Pineal Res. 2006;41(3):288‐295.
Rezzani R, Giugno L, Buffoli B, Bonomini F, Bianchi R. The protective effect of caffeic acid phenethyl ester against cyclosporine A‐induced cardiotoxicity in rats. Toxicology. 2005;212(2–3):155‐164.
Rezzani R, Angoscini P, Rodella L, Bianchi R. Alterations induced by cyclosporine a in myocardial fibers and extracellular matrix in rat. Histol Histopathol. 2002;17(3):761‐766.
Nourmohammadi K, Bayrami A, Naderi R, Shirpoor A. Cyclosporine a induces cardiac remodeling through TGF‐beta/Smad3/miR‐29 signaling pathway and alters gene expression of miR‐30b‐5p/CaMKIIdelta isoforms pathways: alleviating effects of moderate exercise. Mol Biol Rep. 2023;50(7):5859‐5870.
Dada FA, Oyeleye SI, Adefegha SA, Oboh G. Extracts from almond (Terminalia catappa) leaf and stem bark mitigate the activities of crucial enzymes and oxidative stress associated with hypertension in cyclosporine A‐stressed rats. J Food Biochem. 2021;45(3):e13435.
Al‐Harbi NO, Imam F, Nadeem A, et al. Protection against tacrolimus‐induced cardiotoxicity in rats by olmesartan and aliskiren. Toxicol Mech Methods. 2014;24(9):697‐702.
Hosseini A, Rajabian A, Forouzanfar F, Farzadnia M, Boroushaki MT. Pomegranate seed oil protects against tacrolimus‐induced toxicity in the heart and kidney by modulation of oxidative stress in rats. Avicenna J Phytomed. 2022;12(4):439‐448.
Ferjani H, Timoumi R, Amara I, et al. Beneficial effects of mycophenolate mofetil on cardiotoxicity induced by tacrolimus in wistar rats. Exp Biol Med (Maywood). 2017;242(4):448‐455.
Stacchiotti A, Bonomini F, Lavazza A, Rodella LF, Rezzani R. Adverse effects of cyclosporine a on HSP25, alpha B‐crystallin and myofibrillar cytoskeleton in rat heart. Toxicology. 2009;262(3):192‐198.
Rezzani R, Rodella L, Dessy C, Daneau G, Bianchi R, Feron O. Changes in Hsp90 expression determine the effects of cyclosporine a on the NO pathway in rat myocardium. FEBS Lett. 2003;552(2–3):125‐129.
Yang G, Meguro T, Hong C, et al. Cyclosporine reduces left ventricular mass with chronic aortic banding in mice, which could be due to apoptosis and fibrosis. J Mol Cell Cardiol. 2001;33(8):1505‐1514.
Agirbasli M, Papila‐Topal N, Ogutmen B, et al. The blockade of the renin‐angiotensin system reverses tacrolimus related cardiovascular toxicity at the histopathological level. J Renin‐Angiotensin‐Aldosterone Syst. 2007;8(2):54‐58.
Zhu W, Zou Y, Shiojima I, et al. Ca2+/calmodulin‐dependent kinase II and calcineurin play critical roles in endothelin‐1‐induced cardiomyocyte hypertrophy. J Biol Chem. 2000;275(20):15239‐15245.
Molkentin JD, Lu JR, Antos CL, et al. A calcineurin‐dependent transcriptional pathway for cardiac hypertrophy. Cell. 1998;93(2):215‐228.
Kato T, Sano M, Miyoshi S, et al. Calmodulin kinases II and IV and calcineurin are involved in leukemia inhibitory factor‐induced cardiac hypertrophy in rats. Circ Res. 2000;87(10):937‐945.
Janssen PM, Zeitz O, Keweloh B, et al. Influence of cyclosporine a on contractile function, calcium handling, and energetics in isolated human and rabbit myocardium. Cardiovasc Res. 2000;47(1):99‐107.
Milting H, Janssen PM, Wangemann T, et al. FK506 does not affect cardiac contractility and adrenergic response in vitro. Eur J Pharmacol. 2001;430(2–3):299‐304.
Chi J, Wang L, Zhang X, et al. Cyclosporin a induces autophagy in cardiac fibroblasts through the NRP‐2/WDFY‐1 axis. Biochimie. 2018;148:55‐62.
Eleftheriades EG, Ferguson AG, Samarel AM. Cyclosporine a has no direct effect on collagen metabolism by cardiac fibroblasts in vitro. Circulation. 1993;87(4):1368‐1377.
Sallam K, Thomas D, Gaddam S, et al. Modeling effects of immunosuppressive drugs on human hearts using induced pluripotent stem cell‐derived cardiac organoids and single‐cell RNA sequencing. Circulation. 2022;145(17):1367‐1369.
Kingma I, Harmsen E, ter Keurs HE, Benediktsson H, Paul LC. Cyclosporine‐associated reduction in systolic myocardial function in the rat. Int J Cardiol. 1991;31(1):15‐22.
Braun‐Dullaeus RC, Feussner M, Walker G, Tillmanns H, Haberbosch W. Comparison of in vitro cardiovascular function with in vivo echocardiographic assessment after long‐term administration of cyclosporine to rats. J Cardiovasc Pharmacol. 1998;31(6):828‐832.
Hiemstra JA, Gutierrez‐Aguilar M, Marshall KD, et al. A new twist on an old idea part 2: cyclosporine preserves normal mitochondrial but not cardiomyocyte function in mini‐swine with compensated heart failure. Physiol Rep. 2014;2(6):e12050.
Hiemstra JA, Liu S, Ahlman MA, et al. A new twist on an old idea: a two‐dimensional speckle tracking assessment of cyclosporine as a therapeutic alternative for heart failure with preserved ejection fraction. Physiol Rep. 2013;1(7):e00174.
Meguro T, Hong C, Asai K, et al. Cyclosporine attenuates pressure‐overload hypertrophy in mice while enhancing susceptibility to decompensation and heart failure. Circ Res. 1999;84(6):735‐740.
Lim HW, De Windt LJ, Steinberg L, et al. Calcineurin expression, activation, and function in cardiac pressure‐overload hypertrophy. Circulation. 2000;101(20):2431‐2437.
Hill JA, Karimi M, Kutschke W, et al. Cardiac hypertrophy is not a required compensatory response to short‐term pressure overload. Circulation. 2000;101(24):2863‐2869.
Eto Y, Yonekura K, Sonoda M, et al. Calcineurin is activated in rat hearts with physiological left ventricular hypertrophy induced by voluntary exercise training. Circulation. 2000;101(18):2134‐2137.
Luo Z, Shyu KG, Gualberto A, Walsh K. Calcineurin inhibitors and cardiac hypertrophy. Nat Med. 1998;4(10):1092‐1093.
Zhang W, Kowal RC, Rusnak F, Sikkink RA, Olson EN, Victor RG. Failure of calcineurin inhibitors to prevent pressure‐overload left ventricular hypertrophy in rats. Circ Res. 1999;84(6):722‐728.
Ding B, Price RL, Borg TK, Weinberg EO, Halloran PF, Lorell BH. Pressure overload induces severe hypertrophy in mice treated with cyclosporine, an inhibitor of calcineurin. Circ Res. 1999;84(6):729‐734.
Murat A, Pellieux C, Brunner HR, Pedrazzini T. Calcineurin blockade prevents cardiac mitogen‐activated protein kinase activation and hypertrophy in renovascular hypertension. J Biol Chem. 2000;275(52):40867‐40873.
Mervaala E, Muller DN, Park JK, et al. Cyclosporin a protects against angiotensin II‐induced end‐organ damage in double transgenic rats harboring human renin and angiotensinogen genes. Hypertension. 2000;35(1 Pt 2):360‐366.
Sakata Y, Masuyama T, Yamamoto K, et al. Calcineurin inhibitor attenuates left ventricular hypertrophy, leading to prevention of heart failure in hypertensive rats. Circulation. 2000;102(18):2269‐2275.
Shimoyama M, Hayashi D, Zou Y, et al. Calcineurin inhibitor attenuates the development and induces the regression of cardiac hypertrophy in rats with salt‐sensitive hypertension. Circulation. 2000;102(16):1996‐2004.
Hayashida W, Kihara Y, Yasaka A, Sasayama S. Cardiac calcineurin during transition from hypertrophy to heart failure in rats. Biochem Biophys Res Commun. 2000;273(1):347‐351.
Oie E, Bjornerheim R, Clausen OP, Attramadal H. Cyclosporin a inhibits cardiac hypertrophy and enhances cardiac dysfunction during postinfarction failure in rats. Am J Physiol Heart Circ Physiol. 2000;278(6):H2115‐H2123.
Schreiner KD, Kelemen K, Zehelein J, et al. Biventricular hypertrophy in dogs with chronic AV block: effects of cyclosporin a on morphology and electrophysiology. Am J Physiol Heart Circ Physiol. 2004;287(6):H2891‐H2898.
Sussman MA, Lim HW, Gude N, et al. Prevention of cardiac hypertrophy in mice by calcineurin inhibition. Science. 1998;281(5383):1690‐1693.
Lim HW, De Windt LJ, Mante J, et al. Reversal of cardiac hypertrophy in transgenic disease models by calcineurin inhibition. J Mol Cell Cardiol. 2000;32(4):697‐709.
Mende U, Kagen A, Cohen A, Aramburu J, Schoen FJ, Neer EJ. Transient cardiac expression of constitutively active Galphaq leads to hypertrophy and dilated cardiomyopathy by calcineurin‐dependent and independent pathways. Proc Natl Acad Sci USA. 1998;95(23):13893‐13898.
Fatkin D, McConnell BK, Mudd JO, et al. An abnormal Ca(2+) response in mutant sarcomere protein‐mediated familial hypertrophic cardiomyopathy. J Clin Invest. 2000;106(11):1351‐1359.
Wilkins BJ, Dai YS, Bueno OF, et al. Calcineurin/NFAT coupling participates in pathological, but not physiological, cardiac hypertrophy. Circ Res. 2004;94(1):110‐118.
duBell WH, Wright PA, Lederer WJ, Rogers TB. Effect of the immunosupressant FK506 on excitation‐contraction coupling and outward K+ currents in rat ventricular myocytes. J Physiol. 1997;501(Pt 3):509‐516.
duBell WH, Gaa ST, Lederer WJ, Rogers TB. Independent inhibition of calcineurin and K+ currents by the immunosuppressant FK‐506 in rat ventricle. Am J Phys. 1998;275(6):H2041‐H2052.
DuBell WH, Lederer WJ, Rogers TB. K(+) currents responsible for repolarization in mouse ventricle and their modulation by FK‐506 and rapamycin. Am J Physiol Heart Circ Physiol. 2000;278(3):H886‐H897.
Ahn HS, Kim SE, Choi BH, et al. Calcineurin‐independent inhibition of KV1.3 by FK‐506 (tacrolimus): a novel pharmacological property. Am J Physiol Cell Physiol. 2007;292(5):C1714‐C1722.
McCall E, Li L, Satoh H, Shannon TR, Blatter LA, Bers DM. Effects of FK‐506 on contraction and Ca2+ transients in rat cardiac myocytes. Circ Res. 1996;79(6):1110‐1121.
Xiao RP, Valdivia HH, Bogdanov K, Valdivia C, Lakatta EG, Cheng H. The immunophilin FK506‐binding protein modulates Ca2+ release channel closure in rat heart. J Physiol. 1997;500(Pt 2):343‐354.
Dong D, Duan Y, Guo J, et al. Overexpression of calcineurin in mouse causes sudden cardiac death associated with decreased density of K+ channels. Cardiovasc Res. 2003;57(2):320‐332.
Nattel S, Maguy A, Le Bouter S, Yeh YH. Arrhythmogenic ion‐channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. Physiol Rev. 2007;87(2):425‐456.
Tandan S, Wang Y, Wang TT, et al. Physical and functional interaction between calcineurin and the cardiac L‐type Ca2+ channel. Circ Res. 2009;105(1):51‐60.
Minematsu T, Ohtani H, Sato H, Iga T. Sustained QT prolongation induced by tacrolimus in Guinea pigs. Life Sci. 1999;65(14):PL197‐PL202.
Seino Y, Hori M, Sonoda T. Multicenter prospective investigation on cardiovascular adverse effects of tacrolimus in kidney transplantations. Cardiovasc Drugs Ther. 2003;17(2):141‐149.
Redondo‐Horcajo M, Romero N, Martinez‐Acedo P, et al. Cyclosporine A‐induced nitration of tyrosine 34 MnSOD in endothelial cells: role of mitochondrial superoxide. Cardiovasc Res. 2010;87(2):356‐365.
Navarro‐Antolin J, Redondo‐Horcajo M, Zaragoza C, et al. Role of peroxynitrite in endothelial damage mediated by cyclosporine A. Free Radic Biol Med. 2007;42(3):394‐403.
Longoni B, Boschi E, Demontis GC, Ratto GM, Mosca F. Apoptosis and adaptive responses to oxidative stress in human endothelial cells exposed to cyclosporin a correlate with BCL‐2 expression levels. FASEB J. 2001;15(3):731‐740.
Sagiroglu T, Kanter M, Yagci MA, Sezer A, Erboga M. Protective effect of curcumin on cyclosporin A‐induced endothelial dysfunction, antioxidant capacity, and oxidative damage. Toxicol Ind Health. 2014;30(4):316‐327.
Rodrigues‐Diez R, Gonzalez‐Guerrero C, Ocana‐Salceda C, et al. Calcineurin inhibitors cyclosporine a and tacrolimus induce vascular inflammation and endothelial activation through TLR4 signaling. Sci Rep. 2016;6:27915.
Diederich D, Skopec J, Diederich A, Dai FX. Cyclosporine produces endothelial dysfunction by increased production of superoxide. Hypertension. 1994;23(6 Pt 2):957‐961.
Sudhir K, MacGregor JS, DeMarco T, et al. Cyclosporine impairs release of endothelium‐derived relaxing factors in epicardial and resistance coronary arteries. Circulation. 1994;90(6):3018‐3023.
Vaziri ND, Ni Z, Zhang YP, Ruzics EP, Maleki P, Ding Y. Depressed renal and vascular nitric oxide synthase expression in cyclosporine‐induced hypertension. Kidney Int. 1998;54(2):482‐491.
Oriji GK, Keiser HR. Role of nitric oxide in cyclosporine A‐induced hypertension. Hypertension. 1998;32(5):849‐855.
Takeda Y, Miyamori I, Wu P, Yoneda T, Furukawa K, Takeda R. Effects of an endothelin receptor antagonist in rats with cyclosporine‐induced hypertension. Hypertension. 1995;26(6 Pt 1):932‐936.
Grzesk G, Wicinski M, Malinowski B, et al. Calcium blockers inhibit cyclosporine A‐induced hyperreactivity of vascular smooth muscle cells. Mol Med Rep. 2012;5(6):1469‐1474.
Grzesk E, Malinowski B, Wicinski M, et al. Cyclosporine‐a, but not tacrolimus significantly increases reactivity of vascular smooth muscle cells. Pharmacol Rep. 2016;68(1):201‐205.
De Lima JJ, Xue H, Coburn L, et al. Effects of FK506 in rat and human resistance arteries. Kidney Int. 1999;55(4):1518‐1527.
Takeda Y, Miyamori I, Furukawa K, Inaba S, Mabuchi H. Mechanisms of FK 506‐induced hypertension in the rat. Hypertension. 1999;33(1):130‐136.
Forstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33(7):829‐837.
Forstermann U, Munzel T. Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation. 2006;113(13):1708‐1714.
Yuan Q, Yang J, Santulli G, et al. Maintenance of normal blood pressure is dependent on IP3R1‐mediated regulation of eNOS. Proc Natl Acad Sci USA. 2016;113(30):8532‐8537.
Hoorn EJ, Walsh SB, McCormick JA, Zietse R, Unwin RJ, Ellison DH. Pathogenesis of calcineurin inhibitor‐induced hypertension. J Nephrol. 2012;25(3):269‐275.
Curtis JJ, Luke RG, Jones P, Diethelm AG. Hypertension in cyclosporine‐treated renal transplant recipients is sodium dependent. Am J Med. 1988;85(2):134‐138.
Moss NG, Powell SL, Falk RJ. Intravenous cyclosporine activates afferent and efferent renal nerves and causes sodium retention in innervated kidneys in rats. Proc Natl Acad Sci USA. 1985;82(23):8222‐8226.
Hoorn EJ, Walsh SB, McCormick JA, et al. The calcineurin inhibitor tacrolimus activates the renal sodium chloride cotransporter to cause hypertension. Nat Med. 2011;17(10):1304‐1309.
Atkison P, Joubert G, Barron A, et al. Hypertrophic cardiomyopathy associated with tacrolimus in paediatric transplant patients. Lancet. 1995;345(8954):894‐896.
Roberts CA, Stern DL, Radio SJ. Asymmetric cardiac hypertrophy at autopsy in patients who received FK506 (tacrolimus) or cyclosporine a after liver transplant. Transplantation. 2002;74(6):817‐821.
Dehghani SM, Haghighat M, Imanieh MH, et al. Tacrolimus related hypertrophic cardiomyopathy in liver transplant recipients. Arch Iran Med. 2010;13(2):116‐119.
Nakata Y, Yoshibayashi M, Yonemura T, et al. Tacrolimus and myocardial hypertrophy. Transplantation. 2000;69(9):1960‐1962.
Chang RK, McDiarmid SV, Alejos JC, Drant SE, Klitzner TS. Echocardiographic findings of hypertrophic cardiomyopathy in children after orthotopic liver transplantation. Pediatr Transplant. 2001;5(3):187‐191.
Stovin PG, English TA. Effects of cyclosporine on the transplanted human heart. J Heart Transplant. 1987;6(3):180‐185.
Anthony C, Imran M, Pouliopoulos J, et al. Everolimus for the prevention of Calcineurin‐inhibitor‐induced left ventricular hypertrophy after heart transplantation (RADTAC study). JACC Heart Fail. 2021;9(4):301‐313.
Peura JL, Zile MR, Feldman DS, et al. Effects of conversion from cyclosporine to tacrolimus on left ventricular structure in cardiac allograft recipients. J Heart Lung Transplant. 2005;24(11):1969‐1972.
Espino G, Denney J, Furlong T, Fitzsimmons W, Nash RA. Assessment of myocardial hypertrophy by echocardiography in adult patients receiving tacrolimus or cyclosporine therapy for prevention of acute GVHD. Bone Marrow Transplant. 2001;28(12):1097‐1103.
Kanazawa K, Iwai‐Takano M, Kimura S, Ohira T. Blood concentration of tacrolimus and age predict tacrolimus‐induced left ventricular dysfunction after bone marrow transplantation in adults. J Med Ultrason. 2001;47(1):97‐105.
Coley KC, Verrico MM, McNamara DM, Park SC, Cressman MD, Branch RA. Lack of tacrolimus‐induced cardiomyopathy. Ann Pharmacother. 2001;35(9):985‐989.
Sommerer C, Suwelack B, Dragun D, et al. An open‐label, randomized trial indicates that everolimus with tacrolimus or cyclosporine is comparable to standard immunosuppression in de novo kidney transplant patients. Kidney Int. 2019;96(1):231‐244.
Frist WH, Stinson EB, Oyer PE, Baldwin JC, Shumway NE. Long‐term hemodynamic results after cardiac transplantation. J Thorac Cardiovasc Surg. 1987;94(5):685‐693.
Bergh N, Gude E, Bartfay SE, et al. Invasive haemodynamics in de novo everolimus vs. calcineurin inhibitor heart transplant recipients. ESC. Heart Fail. 2020;7(2):567‐576.
Andreassen AK, Andersson B, Gustafsson F, et al. Everolimus initiation and early calcineurin inhibitor withdrawal in heart transplant recipients: a randomized trial. Am J Transplant. 2014;14(8):1828‐1838.
Grattan MT, Moreno‐Cabral CE, Starnes VA, Oyer PE, Stinson EB, Shumway NE. Eight‐year results of cyclosporine‐treated patients with cardiac transplants. J Thorac Cardiovasc Surg. 1990;99(3):500‐509.
Koglin JMM, Petrakopoulou P, Groetzner J, Weis M, Meiser B, et al. Tacrolimus excels cyclosporine a in prevention of cardiac allograft vasculopathy—a prospective IVUS, angiography and doppler study. J Heart Lung Transplant. 2002;21:68.
Gao SZ, Schroeder JS, Alderman EL, et al. Prevalence of accelerated coronary artery disease in heart transplant survivors. Comparison of cyclosporine and azathioprine regimens. Circulation. 1989;80(5 Pt 2):100‐105.
Kramer BK, Montagnino G, Del Castillo D, et al. Efficacy and safety of tacrolimus compared with cyclosporin a microemulsion in renal transplantation: 2 year follow‐up results. Nephrol Dial Transplant. 2005;20(5):968‐973.
Klauss V, Konig A, Spes C, et al. Cyclosporine versus tacrolimus (FK 506) for prevention of cardiac allograft vasculopathy. Am J Cardiol. 2000;85(2):266‐269.
Williams CR, Gooch JL. Calcineurin inhibitors and immunosuppression—a tale of two isoforms. Expert Rev Mol Med. 2012;14:e14.

Auteurs

Tanawat Attachaipanich (T)

Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.

Siriporn C Chattipakorn (SC)

Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.

Nipon Chattipakorn (N)

Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.
Cardiac Electrophysiology Research Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.

Classifications MeSH