Caspase-8 promotes scramblase-mediated phosphatidylserine exposure and fusion of osteoclast precursors.


Journal

Bone research
ISSN: 2095-4700
Titre abrégé: Bone Res
Pays: China
ID NLM: 101608652

Informations de publication

Date de publication:
11 Jul 2024
Historique:
received: 20 11 2022
accepted: 14 04 2024
revised: 10 04 2024
medline: 11 7 2024
pubmed: 11 7 2024
entrez: 10 7 2024
Statut: epublish

Résumé

Efficient cellular fusion of mononuclear precursors is the prerequisite for the generation of fully functional multinucleated bone-resorbing osteoclasts. However, the exact molecular factors and mechanisms controlling osteoclast fusion remain incompletely understood. Here we identify RANKL-mediated activation of caspase-8 as early key event during osteoclast fusion. Single cell RNA sequencing-based analyses suggested that activation of parts of the apoptotic machinery accompanied the differentiation of osteoclast precursors into mature multinucleated osteoclasts. A subsequent characterization of osteoclast precursors confirmed that RANKL-mediated activation of caspase-8 promoted the non-apoptotic cleavage and activation of downstream effector caspases that translocated to the plasma membrane where they triggered activation of the phospholipid scramblase Xkr8. Xkr8-mediated exposure of phosphatidylserine, in turn, aided cellular fusion of osteoclast precursors and thereby allowed generation of functional multinucleated osteoclast syncytia and initiation of bone resorption. Pharmacological blockage or genetic deletion of caspase-8 accordingly interfered with fusion of osteoclasts and bone resorption resulting in increased bone mass in mice carrying a conditional deletion of caspase-8 in mononuclear osteoclast precursors. These data identify a novel pathway controlling osteoclast biology and bone turnover with the potential to serve as target for therapeutic intervention during diseases characterized by pathologic osteoclast-mediated bone loss. Proposed model of osteoclast fusion regulated by caspase-8 activation and PS exposure. RANK/RANK-L interaction. Activation of procaspase-8 into caspase-8. Caspase-8 activates caspase-3. Active capase-3 cleaves Xkr8. Local PS exposure is induced. Exposed PS is recognized by the fusion partner. FUSION. PS is re-internalized.

Identifiants

pubmed: 38987568
doi: 10.1038/s41413-024-00338-4
pii: 10.1038/s41413-024-00338-4
doi:

Substances chimiques

Caspase 8 EC 3.4.22.-
Phosphatidylserines 0
Phospholipid Transfer Proteins 0
RANK Ligand 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

40

Subventions

Organisme : RCUK | Biotechnology and Biological Sciences Research Council (BBSRC)
ID : (BB/T009543/1
Organisme : Wellcome Trust (Wellcome)
ID : 107964/Z/15/Z
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : SCHE 2062/1-1

Informations de copyright

© 2024. The Author(s).

Références

Zaidi, M. Skeletal remodeling in health and disease. Nat. Med. 13, 791–801 (2007).
doi: 10.1038/nm1593 pubmed: 17618270
Jacome-Galarza, C. E. et al. Developmental origin, functional maintenance and genetic rescue of osteoclasts. Nature 568, 541–545 (2019).
doi: 10.1038/s41586-019-1105-7 pubmed: 30971820 pmcid: 6910203
Kong, Y. Y. et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397, 315–323 (1999).
doi: 10.1038/16852 pubmed: 9950424
Wada, T., Nakashima, T., Hiroshi, N. & Penninger, J. M. RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol. Med. 12, 17–25 (2006).
doi: 10.1016/j.molmed.2005.11.007 pubmed: 16356770
Takayanagi, H. et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell 3, 889–901 (2002).
doi: 10.1016/S1534-5807(02)00369-6 pubmed: 12479813
Witwicka, H. et al. Studies of OC-STAMP in osteoclast fusion: a new knockout mouse model, rescue of cell fusion, and transmembrane topology. PLoS One 10, e0128275 (2015).
doi: 10.1371/journal.pone.0128275 pubmed: 26042409 pmcid: 4456411
Miyamoto, H. et al. Osteoclast stimulatory transmembrane protein and dendritic cell-specific transmembrane protein cooperatively modulate cell-cell fusion to form osteoclasts and foreign body giant cells. J. Bone Min. Res. 27, 1289–1297 (2012).
doi: 10.1002/jbmr.1575
Segawa, K. & Nagata, S. An apoptotic ‘Eat Me’ signal: phosphatidylserine exposure. Trends Cell Biol. 25, 639–650 (2015).
doi: 10.1016/j.tcb.2015.08.003 pubmed: 26437594
Ravichandran, K. S. & Lorenz, U. Engulfment of apoptotic cells: signals for a good meal. Nat. Rev. Immunol. 7, 964–974 (2007).
doi: 10.1038/nri2214 pubmed: 18037898
Wu, Y., Tibrewal, N. & Birge, R. B. Phosphatidylserine recognition by phagocytes: a view to a kill. Trends Cell Biol. 16, 189–197 (2006).
doi: 10.1016/j.tcb.2006.02.003 pubmed: 16529932
Nagata, S., Suzuki, J., Segawa, K. & Fujii, T. Exposure of phosphatidylserine on the cell surface. Cell Death Differ. 23, 952–961 (2016).
doi: 10.1038/cdd.2016.7 pubmed: 26891692 pmcid: 4987739
Nagata, S., Sakuragi, T. & Segawa, K. Flippase and scramblase for phosphatidylserine exposure. Curr. Opin. Immunol. 62, 31–38 (2020).
doi: 10.1016/j.coi.2019.11.009 pubmed: 31837595
Rosas, M. et al. Hoxb8 conditionally immortalised macrophage lines model inflammatory monocytic cells with important similarity to dendritic cells. Eur. J. Immunol. 41, 356–365 (2011).
doi: 10.1002/eji.201040962 pubmed: 21268006
Koizumi, K. et al. Role of CX3CL1/fractalkine in osteoclast differentiation and bone resorption. J. Immunol. 183, 7825–7831 (2009).
doi: 10.4049/jimmunol.0803627 pubmed: 19923448
Li, J. & Yuan, J. Caspases in apoptosis and beyond. Oncogene 27, 6194–6206 (2008).
doi: 10.1038/onc.2008.297 pubmed: 18931687
Mukherjee, A. & Williams, D. W. More alive than dead: non-apoptotic roles for caspases in neuronal development, plasticity and disease. Cell Death Differ. 24, 1411–1421 (2017).
doi: 10.1038/cdd.2017.64 pubmed: 28644437 pmcid: 5520460
Günther, C. et al. Caspase-8 regulates TNF-α-induced epithelial necroptosis and terminal ileitis. Nature 477, 335–339 (2011).
doi: 10.1038/nature10400 pubmed: 21921917 pmcid: 3373730
Szymczyk, K. H., Freeman, T. A., Adams, C. S., Srinivas, V. & Steinbeck, M. J. Active caspase-3 is required for osteoclast differentiation. J. Cell Physiol. 209, 836–844 (2006).
doi: 10.1002/jcp.20770 pubmed: 16972256
Svandova, E., Vesela, B., Tucker, A. S. & Matalova, E. Activation of pro-apoptotic caspases in non-apoptotic cells during odontogenesis and related osteogenesis. Front. Physiol. 9, 174 (2018).
Kearney, C. J. et al. Inhibitor of apoptosis proteins (IAPs) and their antagonists regulate spontaneous and tumor necrosis factor (TNF)-induced proinflammatory cytokine and chemokine production. J. Biol. Chem. 288, 4878–4890 (2013).
doi: 10.1074/jbc.M112.422410 pubmed: 23275336
Klöditz, K. & Fadeel, B. Three cell deaths and a funeral: macrophage clearance of cells undergoing distinct modes of cell death. Cell Death Discov. 5, 65 (2019).
doi: 10.1038/s41420-019-0146-x pubmed: 30774993 pmcid: 6368547
Fadok, V. A., Bratton, D. L. & Henson, P. M. Phagocyte receptors for apoptotic cells: recognition, uptake, and consequences. J. Clin. Invest. 108, 957–962 (2001).
doi: 10.1172/JCI200114122 pubmed: 11581295 pmcid: 200959
Segawa, K. et al. Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure. Science 344, 1164–1168 (2014).
doi: 10.1126/science.1252809 pubmed: 24904167
Kang, J. H. et al. Dual role of phosphatidylserine and its receptors in osteoclastogenesis. Cell Death Dis. 11, 497 (2020).
doi: 10.1038/s41419-020-2712-9 pubmed: 32612123 pmcid: 7330034
Verma, S. K. et al. Cell-surface phosphatidylserine regulates osteoclast precursor fusion. J. Biol. Chem. 293, 254–270 (2018).
doi: 10.1074/jbc.M117.809681 pubmed: 29101233
Ravichandran, K. S. Find-me and eat-me signals in apoptotic cell clearance: progress and conundrums. J. Exp. Med. 207, 1807–1817 (2010).
doi: 10.1084/jem.20101157 pubmed: 20805564 pmcid: 2931173
Tsuchiya, M. et al. Cell surface flip-flop of phosphatidylserine is critical for PIEZO1-mediated myotube formation. Nat. Commun. 9, 2049 (2018).
doi: 10.1038/s41467-018-04436-w pubmed: 29799007 pmcid: 5967302
Kim, G. W., Park, S. Y. & Kim, I. S. Novel function of stabilin-2 in myoblast fusion: the recognition of extracellular phosphatidylserine as a “fuse-me” signal. BMB Rep. 49, 303–304 (2016).
doi: 10.5483/BMBRep.2016.49.6.078 pubmed: 27174501 pmcid: 5070716
Hochreiter-Hufford, A. E., Arandjelovic, S. & Ravichandran, K. S. Using phosphatidylserine exposure on apoptotic cells to stimulate myoblast fusion. Methods Mol. Biol. 1313, 141–148 (2015).
doi: 10.1007/978-1-4939-2703-6_10 pubmed: 25947662 pmcid: 4473771
Hochreiter-Hufford, A. E. et al. Phosphatidylserine receptor BAI1 and apoptotic cells as new promoters of myoblast fusion. Nature 497, 263–267 (2013).
doi: 10.1038/nature12135 pubmed: 23615608 pmcid: 3773542

Auteurs

Brenda Krishnacoumar (B)

Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany. Brenda.Krishnacoumar@uk-essen.de.
Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany. Brenda.Krishnacoumar@uk-essen.de.
Department of Biopsectroscopy, Leibniz Institut für Analytische Wissenschaften-ISAS-e.V., Bunsen-Kirchhoff-Str. 11, Dortmund, 44227, Germany. Brenda.Krishnacoumar@uk-essen.de.
Medical Faculty, University Hospital, University Duisburg-Essen, Essen, 45147, Germany. Brenda.Krishnacoumar@uk-essen.de.

Martin Stenzel (M)

Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany.
Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany.
Department of Biopsectroscopy, Leibniz Institut für Analytische Wissenschaften-ISAS-e.V., Bunsen-Kirchhoff-Str. 11, Dortmund, 44227, Germany.

Hilal Garibagaoglu (H)

Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany.
Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany.

Yasunori Omata (Y)

Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany.
Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany.

Rachel L Sworn (RL)

Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany.
Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany.

Thea Hofmann (T)

Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany.
Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany.

Natacha Ipseiz (N)

Systems Immunity Research Institute, Heath Park, Cardiff University, Cardiff, CF14 4XN, UK.

Magdalena A Czubala (MA)

Systems Immunity Research Institute, Heath Park, Cardiff University, Cardiff, CF14 4XN, UK.

Ulrike Steffen (U)

Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany.
Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany.

Antonio Maccataio (A)

Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany.
Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany.

Cornelia Stoll (C)

Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany.
Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany.

Christina Böhm (C)

Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany.
Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany.

Martin Herrmann (M)

Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany.
Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany.

Stefan Uderhardt (S)

Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany.
Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany.
Optical Imaging Competence Centre (FAU OICE), Exploratory Research Unit, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.

Robert H Jenkins (RH)

Division of Infection & Immunity, Heath Park, Cardiff University, Cardiff, CF14 4XN, UK.

Philip R Taylor (PR)

Systems Immunity Research Institute, Heath Park, Cardiff University, Cardiff, CF14 4XN, UK.

Anika Grüneboom (A)

Department of Biopsectroscopy, Leibniz Institut für Analytische Wissenschaften-ISAS-e.V., Bunsen-Kirchhoff-Str. 11, Dortmund, 44227, Germany.
Medical Faculty, University Hospital, University Duisburg-Essen, Essen, 45147, Germany.

Mario M Zaiss (MM)

Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany.
Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany.

Georg Schett (G)

Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany.
Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany.

Gerhard Krönke (G)

Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany.
Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany.
Deutsches Rheuma-Forschungszentrum Berlin, Berlin, Germany.
Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.

Carina Scholtysek (C)

Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany. carina.scholtysek@uk-erlangen.de.
Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany. carina.scholtysek@uk-erlangen.de.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH