Cell atlas of the regenerating human liver after portal vein embolization.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
11 Jul 2024
11 Jul 2024
Historique:
received:
22
05
2023
accepted:
28
05
2024
medline:
12
7
2024
pubmed:
12
7
2024
entrez:
11
7
2024
Statut:
epublish
Résumé
The liver has the remarkable capacity to regenerate. In the clinic, regeneration is induced by portal vein embolization, which redirects portal blood flow, resulting in liver hypertrophy in locations with increased blood supply, and atrophy of embolized segments. Here, we apply single-cell and single-nucleus transcriptomics on healthy, hypertrophied, and atrophied patient-derived liver samples to explore cell states in the regenerating liver. Our data unveils pervasive upregulation of genes associated with developmental processes, cellular adhesion, and inflammation in post-portal vein embolization liver, disrupted portal-central hepatocyte zonation, and altered cell subtype composition of endothelial and immune cells. Interlineage crosstalk analysis reveals mesenchymal cells as an interaction hub between immune and endothelial cells, and highlights the importance of extracellular matrix proteins in liver regeneration. Moreover, we establish tissue-scale iterative indirect immunofluorescence imaging for high-dimensional spatial analysis of perivascular microenvironments, uncovering changes to tissue architecture in regenerating liver lobules. Altogether, our data is a rich resource revealing cellular and histological changes in human liver regeneration.
Identifiants
pubmed: 38992008
doi: 10.1038/s41467-024-49236-7
pii: 10.1038/s41467-024-49236-7
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
5827Subventions
Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : Organomics-758877
Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : Braintime-874606
Organisme : Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
ID : 310030_192604
Informations de copyright
© 2024. The Author(s).
Références
Kubes, P. & Jenne, C. Immune responses in the liver. Annu. Rev. Immunol. 36, 247–277 (2018).
pubmed: 29328785
doi: 10.1146/annurev-immunol-051116-052415
Ben-Moshe, S. & Itzkovitz, S. Spatial heterogeneity in the mammalian liver. Nat. Rev. Gastroenterol. Hepatol. 16, 395–410 (2019).
pubmed: 30936469
doi: 10.1038/s41575-019-0134-x
Halpern, K. B. et al. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 542, 352–356 (2017).
pubmed: 28166538
pmcid: 5321580
doi: 10.1038/nature21065
McEnerney, L. et al. Dual modulation of human hepatic zonation via canonical and non-canonical Wnt pathways. Exp. Mol. Med. 49, e413 (2017).
pubmed: 29244788
pmcid: 5750478
doi: 10.1038/emm.2017.226
Brosch, M. et al. Epigenomic map of human liver reveals principles of zonated morphogenic and metabolic control. Nat. Commun. 9, 4150 (2018).
pubmed: 30297808
pmcid: 6175862
doi: 10.1038/s41467-018-06611-5
Strauss, O., Phillips, A., Ruggiero, K., Bartlett, A. & Rod Dunbar, P. Immunofluorescence identifies distinct subsets of endothelial cells in the human liver. Sci. Rep. 7, 1–13 (2017).
doi: 10.1038/srep44356
Halpern, K. B. et al. Paired-cell sequencing enables spatial gene expression mapping of liver endothelial cells. Nat. Biotechnol. 36, 962–970 (2018).
pubmed: 30222169
pmcid: 6546596
doi: 10.1038/nbt.4231
Barberá-Guillem, E., Rocha, M., Alvarez, A. & Vidal-Vanaclocha, F. Differences in the lectin-binding patterns of the periportal and perivenous endothelial domains in the liver sinusoids. Hepatology 14, 131–139 (1991).
pubmed: 1906044
doi: 10.1002/hep.1840140122
MacParland, S. A. et al. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat. Commun. 9, 1–21 (2018).
doi: 10.1038/s41467-018-06318-7
Segal, J. M. et al. Single cell analysis of human foetal liver captures the transcriptional profile of hepatobiliary hybrid progenitors. Nat. Commun. 10, 1–14 (2019).
doi: 10.1038/s41467-019-11266-x
Popescu, D.-M. et al. Decoding human fetal liver haematopoiesis. Nature 574, 365–371 (2019).
pubmed: 31597962
pmcid: 6861135
doi: 10.1038/s41586-019-1652-y
Aizarani, N. et al. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature 572, 199–204 (2019).
pubmed: 31292543
pmcid: 6687507
doi: 10.1038/s41586-019-1373-2
Ramachandran, P. et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 575, 512–518 (2019).
pubmed: 31597160
pmcid: 6876711
doi: 10.1038/s41586-019-1631-3
Losic, B. et al. Intratumoral heterogeneity and clonal evolution in liver cancer. Nat. Commun. 11, 291 (2020).
pubmed: 31941899
pmcid: 6962317
doi: 10.1038/s41467-019-14050-z
Massalha, H. et al. A single cell atlas of the human liver tumor microenvironment. Mol. Syst. Biol. 16, e9682 (2020).
pubmed: 33332768
pmcid: 7746227
doi: 10.15252/msb.20209682
Andrews, T. S. et al. Single cell, single nucleus, and spatial RNA sequencing of the human liver identifies hepatic stellate cell and cholangiocyte heterogeneity. Hepatol. Commun. 6, 821–840 (2022) https://doi.org/10.1101/2021.03.27.436882 .
Guilliams, M. et al. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell 185, 379–396.e38 (2022).
Michalopoulos, G. K. & Bhushan, B. Liver regeneration: biological and pathological mechanisms and implications. Nat. Rev. Gastroenterol. Hepatol. 18, 40–55 (2020).
pubmed: 32764740
doi: 10.1038/s41575-020-0342-4
Abu Rmilah, A. et al. Understanding the marvels behind liver regeneration. Wiley Interdiscip. Rev. Dev. Biol. 8, e340 (2019).
pubmed: 30924280
doi: 10.1002/wdev.340
Forbes, S. J. & Newsome, P. N. Liver regeneration - mechanisms and models to clinical application. Nat. Rev. Gastroenterol. Hepatol. 13, 473–485 (2016).
pubmed: 27353402
doi: 10.1038/nrgastro.2016.97
Chembazhi, U. V., Bangru, S., Hernaez, M. & Kalsotra, A. Cellular plasticity balances the metabolic and proliferation dynamics of a regenerating liver. Genome Res. 31, 576–591 (2020) https://doi.org/10.1101/2020.05.29.124263 .
Simkin, J. & Seifert, A. W. Concise review: translating regenerative biology into clinically relevant therapies: are we on the right path? Stem Cells Transl. Med. 7, 220–231 (2018).
pubmed: 29271610
doi: 10.1002/sctm.17-0213
May, B. J. & Madoff, D. C. Portal vein embolization: rationale, technique, and current application. Semin. Interv. Radiol. 29, 81–89 (2012).
doi: 10.1055/s-0032-1312568
He, Z., Brazovskaja, A., Ebert, S., Camp, J. G. & Treutlein, B. CSS: cluster similarity spectrum integration of single-cell genomics data. Genome Biol. 21, 224 (2020).
pubmed: 32867824
pmcid: 7460789
doi: 10.1186/s13059-020-02147-4
Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).
pubmed: 31870423
pmcid: 6927181
doi: 10.1186/s13059-019-1874-1
Michalopoulos, G. K. & DeFrances, M. C. Liver regeneration. Science 276, 60–66. https://doi.org/10.1126/science.276.5309.60 (1997).
Kamimoto, K., Nakano, Y., Kaneko, K., Miyajima, A. & Itoh, T. Multidimensional imaging of liver injury repair in mice reveals fundamental role of the ductular reaction. Commun. Biol. 3, 289 (2020).
pubmed: 32503996
pmcid: 7275065
doi: 10.1038/s42003-020-1006-1
Dobie, R. et al. Single-cell transcriptomics uncovers zonation of function in the mesenchyme during liver fibrosis. Cell Rep. 29, 1832–1847.e8 (2019).
pubmed: 31722201
pmcid: 6856722
doi: 10.1016/j.celrep.2019.10.024
Markose, D., Kirkland, P., Ramachandran, P. & Henderson, N. C. Immune cell regulation of liver regeneration and repair. J. Immunol. Regen. Med. 2, 1–10 (2018).
Kim, B., Lee, H., Kawata, K. & Park, J.-Y. Exercise-mediated wall shear stress increases mitochondrial biogenesis in vascular endothelium. PLoS One 9, e111409 (2014).
pubmed: 25375175
pmcid: 4222908
doi: 10.1371/journal.pone.0111409
Robinson, M. W., Harmon, C. & O’Farrelly, C. Liver immunology and its role in inflammation and homeostasis. Cell. Mol. Immunol. 13, 267–276 (2016).
pubmed: 27063467
pmcid: 4856809
doi: 10.1038/cmi.2016.3
Travaglini, K. J. et al. A molecular cell atlas of the human lung from single-cell RNA sequencing. Nature 587, 619–625 (2020).
pubmed: 33208946
pmcid: 7704697
doi: 10.1038/s41586-020-2922-4
Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat. Protoc. 15, 1484–1506 (2020).
pubmed: 32103204
doi: 10.1038/s41596-020-0292-x
McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. (2018) https://doi.org/10.48550/arXiv.1802.03426 .
Gut, G., Herrmann, M. D. & Pelkmans, L. Multiplexed protein maps link subcellular organization to cellular states. Science 361, eaar7042 (2018).
pubmed: 30072512
doi: 10.1126/science.aar7042
Pepe-Mooney, B. J. et al. Single-cell analysis of the liver epithelium reveals dynamic heterogeneity and an essential role for YAP in homeostasis and regeneration. Cell Stem Cell 25, 23–38.e8 (2019).
pubmed: 31080134
pmcid: 6814390
doi: 10.1016/j.stem.2019.04.004
Planas-Paz, L. et al. YAP, but Not RSPO-LGR4/5, signaling in biliary epithelial cells promotes a ductular reaction in response to liver injury. Cell Stem Cell 25, 39–53.e10 (2019).
pubmed: 31080135
doi: 10.1016/j.stem.2019.04.005
Kolodziejczyk, A. A. et al. Acute liver failure is regulated by MYC- and microbiome-dependent programs. Nat. Med. 26, 1899–1911 (2020).
pubmed: 33106666
doi: 10.1038/s41591-020-1102-2
Li, N. & Hua, J. Immune cells in liver regeneration. Oncotarget 8, 3628–3639 (2017).
pubmed: 27690296
doi: 10.18632/oncotarget.12275
DeLeve, L. D. & Maretti-Mira, A. C. Liver sinusoidal endothelial cell: an update. Semin. Liver Dis. 37, 377–387 (2017).
pubmed: 29272898
pmcid: 6005648
doi: 10.1055/s-0037-1617455
Ma, R., Martínez-Ramírez, A. S., Borders, T. L., Gao, F. & Sosa-Pineda, B. Metabolic and non-metabolic liver zonation is established non-synchronously and requires sinusoidal Wnts. Elife 9, e46206 (2020).
pubmed: 32154783
pmcid: 7067564
doi: 10.7554/eLife.46206
Sun, R. & Gao, B. Negative regulation of liver regeneration by innate immunity (natural killer cells/interferon-γ). Gastroenterology 127, 1525–1539 (2004).
pubmed: 15521020
doi: 10.1053/j.gastro.2004.08.055
Takeishi, T. et al. The role of Kupffer cells in liver regeneration. Arch. Histol. Cytol. 62, 413–422 (1999).
Kusano, F., Tanaka, Y., Marumo, F. & Sato, C. Expression of C-C chemokines is associated with portal and periportal inflammation in the liver of patients with chronic hepatitis C. Lab. Invest. 80, 415–422 (2000).
pubmed: 10744077
doi: 10.1038/labinvest.3780046
Camp, J. G. et al. Multilineage communication regulates human liver bud development from pluripotency. Nature 546, 533–538 (2017).
pubmed: 28614297
doi: 10.1038/nature22796
Sampaziotis, F. et al. Cholangiocyte organoids can repair bile ducts after transplantation in the human liver. Science 371, 839–846 (2021).
pubmed: 33602855
pmcid: 7610478
doi: 10.1126/science.aaz6964
Huch, M. et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160, 299–312 (2015).
pubmed: 25533785
pmcid: 4313365
doi: 10.1016/j.cell.2014.11.050
Takebe, T. et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499, 481–484 (2013).
pubmed: 23823721
doi: 10.1038/nature12271
Pfeiffer, E. et al. Featured Article: Isolation, characterization, and cultivation of human hepatocytes and non-parenchymal liver cells. Exp. Biol. Med. 240, 645–656 (2015).
doi: 10.1177/1535370214558025
Kanton, S. et al. Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature 574, 418–422 (2019).
pubmed: 31619793
doi: 10.1038/s41586-019-1654-9
Zimmermann, A. et al. In vivo and in vitro characterization of primary human liver macrophages and their inflammatory state. Biomedicines 9, 406 (2021).
pubmed: 33918803
pmcid: 8070551
doi: 10.3390/biomedicines9040406
Wahle, P. et al. Multimodal spatiotemporal phenotyping of human organoid development. Nat. Biotechnol. 41, 1765–1775 https://doi.org/10.1101/2022.03.16.484396 (2022).
Klein, S., Staring, M., Murphy, K., Viergever, M. A. & Pluim, J. elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29, 196–205 (2010).
pubmed: 19923044
doi: 10.1109/TMI.2009.2035616
van der Walt, S. et al. scikit-image: image processing in Python. PeerJ 2, e453 (2014).
pubmed: 25024921
pmcid: 4081273
doi: 10.7717/peerj.453
Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).
pubmed: 29409532
pmcid: 5802054
doi: 10.1186/s13059-017-1382-0
Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9, 1–12 (2019).
doi: 10.1038/s41598-019-41695-z
Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).
pubmed: 31740819
pmcid: 6884693
doi: 10.1038/s41592-019-0619-0
Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18, 100–106 (2020).
pubmed: 33318659
doi: 10.1038/s41592-020-01018-x
Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 8, 281–291.e9 (2019).
pubmed: 30954476
pmcid: 6625319
doi: 10.1016/j.cels.2018.11.005
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).
pubmed: 31178118
pmcid: 6687398
doi: 10.1016/j.cell.2019.05.031
Gerard, D. Data-based RNA-seq simulations by binomial thinning. BMC Bioinforma. 21, 206 (2020).
doi: 10.1186/s12859-020-3450-9
Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).
pubmed: 22455463
pmcid: 3339379
doi: 10.1089/omi.2011.0118
Haghverdi, L., Büttner, M., Wolf, F. A., Buettner, F. & Theis, F. J. Diffusion pseudotime robustly reconstructs lineage branching. Nat. Methods 13, 845–848 (2016).
pubmed: 27571553
doi: 10.1038/nmeth.3971
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. Usa. 102, 15545–15550 (2005).
pubmed: 16199517
pmcid: 1239896
doi: 10.1073/pnas.0506580102
Ding, B.-S. et al. Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature 468, 310–315 (2010).
pubmed: 21068842
pmcid: 3058628
doi: 10.1038/nature09493
Hu, J. et al. Endothelial cell-derived angiopoietin-2 controls liver regeneration as a spatiotemporal rheostat. Science 343, 416–419 (2014).
pubmed: 24458641
doi: 10.1126/science.1244880
Gomez-Salinero, J. M. & Rafii, S. Endothelial cell adaptation in regeneration. Science 362, 1116–1117 (2018).
pubmed: 30523098
doi: 10.1126/science.aar4800
Rafii, S., Butler, J. M. & Ding, B.-S. Angiocrine functions of organ-specific endothelial cells. Nature 529, 316–325 (2016).
pubmed: 26791722
pmcid: 4878406
doi: 10.1038/nature17040
Uhlén, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).
pubmed: 25613900
doi: 10.1126/science.1260419