Targeting soluble amyloid-beta oligomers with a novel nanobody.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
12 Jul 2024
Historique:
received: 09 02 2024
accepted: 05 07 2024
medline: 12 7 2024
pubmed: 12 7 2024
entrez: 11 7 2024
Statut: epublish

Résumé

The classical amyloid cascade hypothesis postulates that the aggregation of amyloid plaques and the accumulation of intracellular hyperphosphorylated Tau tangles, together, lead to profound neuronal death. However, emerging research has demonstrated that soluble amyloid-β oligomers (SAβOs) accumulate early, prior to amyloid plaque formation. SAβOs induce memory impairment and disrupt cognitive function independent of amyloid-β plaques, and even in the absence of plaque formation. This work describes the development and characterization of a novel anti-SAβO (E3) nanobody generated from an alpaca immunized with SAβO. In-vitro assays and in-vivo studies using 5XFAD mice indicate that the fluorescein (FAM)-labeled E3 nanobody recognizes both SAβOs and amyloid-β plaques. The E3 nanobody traverses across the blood-brain barrier and binds to amyloid species in the brain of 5XFAD mice. Imaging of mouse brains reveals that SAβO and amyloid-β plaques are not only different in size, shape, and morphology, but also have a distinct spatial distribution in the brain. SAβOs are associated with neurons, while amyloid plaques reside in the extracellular matrix. The results of this study demonstrate that the SAβO nanobody can serve as a diagnostic agent with potential theragnostic applications in Alzheimer's disease.

Identifiants

pubmed: 38992064
doi: 10.1038/s41598-024-66970-6
pii: 10.1038/s41598-024-66970-6
doi:

Substances chimiques

Amyloid beta-Peptides 0
Single-Domain Antibodies 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

16086

Informations de copyright

© 2024. The Author(s).

Références

De-Paula, V. J., Radanovic, M., Diniz, B. S. & Forlenza, O. V. Alzheimer’s disease. Subcell. Biochem. 65, 329–352. https://doi.org/10.1007/978-94-007-5416-4_14 (2012).
doi: 10.1007/978-94-007-5416-4_14 pubmed: 23225010
Selkoe, D. J. Alzheimer’s disease. Cold Spring Harb. Perspect. Biol. 3, 1–16 (2011).
doi: 10.1101/cshperspect.a004457
Cline, E. N., Bicca, M. A., Viola, K. L. & Klein, W. L. The Amyloid-beta oligomer hypothesis: Beginning of the third decade. J. Alzheimers Dis. 64, S567–S610. https://doi.org/10.3233/JAD-179941 (2018).
doi: 10.3233/JAD-179941 pubmed: 29843241 pmcid: 6004937
Chromy, B. A. et al. Self-assembly of Abeta(1–42) into globular neurotoxins. Biochemistry 42, 12749–12760. https://doi.org/10.1021/bi030029q (2003).
doi: 10.1021/bi030029q pubmed: 14596589
Habashi, M. et al. Early diagnosis and treatment of Alzheimer’s disease by targeting toxic soluble Abeta oligomers. Proc. Natl. Acad. Sci. USA 119, e2210766119. https://doi.org/10.1073/pnas.2210766119 (2022).
doi: 10.1073/pnas.2210766119 pubmed: 36442093 pmcid: 9894226
Nguyen, P. H. et al. Amyloid oligomers: A joint experimental/computational perspective on Alzheimer’s disease, Parkinson’s disease, type II diabetes, and amyotrophic lateral sclerosis. Chem. Rev. 121, 2545–2647. https://doi.org/10.1021/acs.chemrev.0c01122 (2021).
doi: 10.1021/acs.chemrev.0c01122 pubmed: 33543942 pmcid: 8836097
Klein, W. L. Synaptic targeting by A beta oligomers (ADDLS) as a basis for memory loss in early Alzheimer’s disease. Alzheimers Dement. 2, 43–55. https://doi.org/10.1016/j.jalz.2005.11.003 (2006).
doi: 10.1016/j.jalz.2005.11.003 pubmed: 19595855
Lacor, P. N. et al. Synaptic targeting by Alzheimer’s-related amyloid beta oligomers. J. Neurosci. 24, 10191–10200. https://doi.org/10.1523/JNEUROSCI.3432-04.2004 (2004).
doi: 10.1523/JNEUROSCI.3432-04.2004 pubmed: 15537891 pmcid: 6730194
McLean, C. A. et al. Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann. Neurol. 46, 860–866 (1999).
doi: 10.1002/1531-8249(199912)46:6<860::AID-ANA8>3.0.CO;2-M pubmed: 10589538
Bjorklund, N. L. et al. Absence of amyloid beta oligomers at the postsynapse and regulated synaptic Zn
doi: 10.1186/1750-1326-7-23 pubmed: 22640423 pmcid: 3403985
Koffie, R. M. et al. Oligomeric amyloid beta associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc. Natl. Acad. Sci. USA 106, 4012–4017. https://doi.org/10.1073/pnas.0811698106 (2009).
doi: 10.1073/pnas.0811698106 pubmed: 19228947 pmcid: 2656196
Perez-Nievas, B. G. et al. Dissecting phenotypic traits linked to human resilience to Alzheimer’s pathology. Brain 136, 2510–2526. https://doi.org/10.1093/brain/awt171 (2013).
doi: 10.1093/brain/awt171 pubmed: 23824488 pmcid: 3722351
Esparza, T. J. et al. Amyloid-beta oligomerization in Alzheimer dementia versus high-pathology controls. Ann. Neurol. 73, 104–119. https://doi.org/10.1002/ana.23748 (2013).
doi: 10.1002/ana.23748 pubmed: 23225543
Fowler, S. W. et al. Genetic modulation of soluble Abeta rescues cognitive and synaptic impairment in a mouse model of Alzheimer’s disease. J. Neurosci. 34, 7871–7885. https://doi.org/10.1523/JNEUROSCI.0572-14.2014 (2014).
doi: 10.1523/JNEUROSCI.0572-14.2014 pubmed: 24899710 pmcid: 4044248
Fukumoto, H. et al. High-molecular-weight beta-amyloid oligomers are elevated in cerebrospinal fluid of Alzheimer patients. FASEB J. 24, 2716–2726. https://doi.org/10.1096/fj.09-150359 (2010).
doi: 10.1096/fj.09-150359 pubmed: 20339023
Klyubin, I. et al. Amyloid beta protein dimer-containing human CSF disrupts synaptic plasticity: prevention by systemic passive immunization. J. Neurosci. 28, 4231–4237. https://doi.org/10.1523/JNEUROSCI.5161-07.2008 (2008).
doi: 10.1523/JNEUROSCI.5161-07.2008 pubmed: 18417702 pmcid: 2685151
Nilsberth, C. et al. The “Arctic” APP mutation (E693G) causes Alzheimer’s disease by enhanced Abeta protofibril formation. Nat. Neurosci. 4, 887–893. https://doi.org/10.1038/nn0901-887 (2001).
doi: 10.1038/nn0901-887 pubmed: 11528419
Sehlin, D. et al. Large aggregates are the major soluble Abeta species in AD brain fractionated with density gradient ultracentrifugation. PLoS One 7, e32014. https://doi.org/10.1371/journal.pone.0032014 (2012).
doi: 10.1371/journal.pone.0032014 pubmed: 22355408 pmcid: 3280222
Shankar, G. M. et al. Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat. Med. 14, 837–842. https://doi.org/10.1038/nm1782 (2008).
doi: 10.1038/nm1782 pubmed: 18568035 pmcid: 2772133
Walsh, D. M. et al. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535–539. https://doi.org/10.1038/416535a (2002).
doi: 10.1038/416535a pubmed: 11932745
Pham, T. & Cheng, K. H. Exploring the binding kinetics and behaviors of self-aggregated beta-amyloid oligomers to phase-separated lipid rafts with or without ganglioside-clusters. Biophys. Chem. 290, 106874. https://doi.org/10.1016/j.bpc.2022.106874 (2022).
doi: 10.1016/j.bpc.2022.106874 pubmed: 36067650
Cleary, J. P. et al. Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat. Neurosci. 8, 79–84. https://doi.org/10.1038/nn1372 (2005).
doi: 10.1038/nn1372 pubmed: 15608634
Figueiredo, C. P. et al. Memantine rescues transient cognitive impairment caused by high-molecular-weight abeta oligomers but not the persistent impairment induced by low-molecular-weight oligomers. J. Neurosci. 33, 9626–9634. https://doi.org/10.1523/JNEUROSCI.0482-13.2013 (2013).
doi: 10.1523/JNEUROSCI.0482-13.2013 pubmed: 23739959 pmcid: 6619709
Hsia, A. Y. et al. Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc. Natl. Acad. Sci. USA 96, 3228–3233. https://doi.org/10.1073/pnas.96.6.3228 (1999).
doi: 10.1073/pnas.96.6.3228 pubmed: 10077666 pmcid: 15924
Ledo, J. H. et al. Amyloid-beta oligomers link depressive-like behavior and cognitive deficits in mice. Mol. Psychiatry 18, 1053–1054. https://doi.org/10.1038/mp.2012.168 (2013).
doi: 10.1038/mp.2012.168 pubmed: 23183490
Lourenco, M. V. et al. TNF-alpha mediates PKR-dependent memory impairment and brain IRS-1 inhibition induced by Alzheimer’s beta-amyloid oligomers in mice and monkeys. Cell Metab. 18, 831–843. https://doi.org/10.1016/j.cmet.2013.11.002 (2013).
doi: 10.1016/j.cmet.2013.11.002 pubmed: 24315369
Mucke, L. et al. High-level neuronal expression of abeta 1–42 in wild-type human amyloid protein precursor transgenic mice: Synaptotoxicity without plaque formation. J. Neurosci. 20, 4050–4058 (2000).
doi: 10.1523/JNEUROSCI.20-11-04050.2000 pubmed: 10818140 pmcid: 6772621
Poling, A. et al. Oligomers of the amyloid-beta protein disrupt working memory: Confirmation with two behavioral procedures. Behav. Brain Res. 193, 230–234. https://doi.org/10.1016/j.bbr.2008.06.001 (2008).
doi: 10.1016/j.bbr.2008.06.001 pubmed: 18585407 pmcid: 2786170
Westerman, M. A. et al. The relationship between Abeta and memory in the Tg2576 mouse model of Alzheimer’s disease. J. Neurosci. 22, 1858–1867 (2002).
doi: 10.1523/JNEUROSCI.22-05-01858.2002 pubmed: 11880515 pmcid: 6758862
Ni, R., Gillberg, P. G., Bergfors, A., Marutle, A. & Nordberg, A. Amyloid tracers detect multiple binding sites in Alzheimer’s disease brain tissue. Brain 136, 2217–2227. https://doi.org/10.1093/brain/awt142 (2013).
doi: 10.1093/brain/awt142 pubmed: 23757761
Wu, C., Bowers, M. T. & Shea, J. E. On the origin of the stronger binding of PIB over thioflavin T to protofibrils of the Alzheimer amyloid-beta peptide: a molecular dynamics study. Biophys. J. 100, 1316–1324. https://doi.org/10.1016/j.bpj.2011.01.058 (2011).
doi: 10.1016/j.bpj.2011.01.058 pubmed: 21354405 pmcid: 3043208
Ostrowitzki, S. et al. A phase III randomized trial of gantenerumab in prodromal Alzheimer’s disease. Alzheimers Res. Ther. 9, 95. https://doi.org/10.1186/s13195-017-0318-y (2017).
doi: 10.1186/s13195-017-0318-y pubmed: 29221491 pmcid: 5723032
Panza, F. et al. Bapineuzumab: anti-beta-amyloid monoclonal antibodies for the treatment of Alzheimer’s disease. Immunotherapy 2, 767–782. https://doi.org/10.2217/imt.10.80 (2010).
doi: 10.2217/imt.10.80 pubmed: 21091109
Sevigny, J. et al. The antibody aducanumab reduces Abeta plaques in Alzheimer’s disease. Nature 537, 50–56. https://doi.org/10.1038/nature19323 (2016).
doi: 10.1038/nature19323 pubmed: 27582220
Englund, H. et al. Sensitive ELISA detection of amyloid-beta protofibrils in biological samples. J. Neurochem. 103, 334–345. https://doi.org/10.1111/j.1471-4159.2007.04759.x (2007).
doi: 10.1111/j.1471-4159.2007.04759.x pubmed: 17623042
Magnusson, K. et al. Specific uptake of an amyloid-beta protofibril-binding antibody-tracer in AbetaPP transgenic mouse brain. J. Alzheimers Dis. 37, 29–40. https://doi.org/10.3233/JAD-130029 (2013).
doi: 10.3233/JAD-130029 pubmed: 23780660
Sehlin, D. et al. Heavy-chain complementarity-determining regions determine conformation selectivity of anti-abeta antibodies. Neurodegener. Dis. 8, 117–123. https://doi.org/10.1159/000316530 (2011).
doi: 10.1159/000316530 pubmed: 20714111
Tucker, S. et al. The murine version of BAN2401 (mAb158) selectively reduces amyloid-beta protofibrils in brain and cerebrospinal fluid of tg-ArcSwe mice. J. Alzheimers Dis. 43, 575–588. https://doi.org/10.3233/JAD-140741 (2015).
doi: 10.3233/JAD-140741 pubmed: 25096615
Kayed, R. et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300, 486–489. https://doi.org/10.1126/science.1079469 (2003).
doi: 10.1126/science.1079469 pubmed: 12702875
Daley, L. P., Gagliardo, L. F., Duffy, M. S., Smith, M. C. & Appleton, J. A. Application of monoclonal antibodies in functional and comparative investigations of heavy-chain immunoglobulins in new world camelids. Clin. Diagn. Lab. Immunol. 12, 380–386. https://doi.org/10.1128/CDLI.12.3.380-386.2005 (2005).
doi: 10.1128/CDLI.12.3.380-386.2005 pubmed: 15753251 pmcid: 1065209
Hanke, L. et al. An alpaca nanobody neutralizes SARS-CoV-2 by blocking receptor interaction. Nat. Commun. 11, 4420. https://doi.org/10.1038/s41467-020-18174-5 (2020).
doi: 10.1038/s41467-020-18174-5 pubmed: 32887876 pmcid: 7473855
Glassman, P. M. et al. Molecularly engineered nanobodies for tunable pharmacokinetics and drug delivery. Bioconjug. Chem. 31, 1144–1155. https://doi.org/10.1021/acs.bioconjchem.0c00003 (2020).
doi: 10.1021/acs.bioconjchem.0c00003 pubmed: 32167754 pmcid: 7413641
Abulrob, A., Sprong, H., Van Bergen en Henegouwen, P. & Stanimirovic, D. The blood–brain barrier transmigrating single domain antibody: Mechanisms of transport and antigenic epitopes in human brain endothelial cells. J. Neurochem. 95(4), 1201–1214. https://doi.org/10.1111/j.1471-4159.2005.03463.x (2005).
doi: 10.1111/j.1471-4159.2005.03463.x pubmed: 16271053
Li, T. et al. Cell-penetrating anti-GFAP VHH and corresponding fluorescent fusion protein VHH-GFP spontaneously cross the blood-brain barrier and specifically recognize astrocytes: Application to brain imaging. FASEB J. 26, 3969–3979. https://doi.org/10.1096/fj.11-201384 (2012).
doi: 10.1096/fj.11-201384 pubmed: 22730440
Fuller, J. P., Stavenhagen, J. B. & Teeling, J. L. New roles for Fc receptors in neurodegeneration-the impact on Immunotherapy for Alzheimer’s Disease. Front. Neurosci. 8, 235. https://doi.org/10.3389/fnins.2014.00235 (2014).
doi: 10.3389/fnins.2014.00235 pubmed: 25191216 pmcid: 4139653
Sperling, R. et al. Amyloid-related imaging abnormalities in patients with Alzheimer’s disease treated with bapineuzumab: a retrospective analysis. Lancet. Neurol. 11, 241–249. https://doi.org/10.1016/S1474-4422(12)70015-7 (2012).
doi: 10.1016/S1474-4422(12)70015-7 pubmed: 22305802 pmcid: 4063417
Ryan, D. A., Narrow, W. C., Federoff, H. J. & Bowers, W. J. An improved method for generating consistent soluble amyloid-beta oligomer preparations for in vitro neurotoxicity studies. J. Neurosci. Methods 190, 171–179. https://doi.org/10.1016/j.jneumeth.2010.05.001 (2010).
doi: 10.1016/j.jneumeth.2010.05.001 pubmed: 20452375 pmcid: 2902796
Pardon, E. et al. A general protocol for the generation of Nanobodies for structural biology. Nat. Protoc. 9, 674–693. https://doi.org/10.1038/nprot.2014.039 (2014).
doi: 10.1038/nprot.2014.039 pubmed: 24577359 pmcid: 4297639
Oakley, H. et al. Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J. Neurosci. 26, 10129–10140. https://doi.org/10.1523/JNEUROSCI.1202-06.2006 (2006).
doi: 10.1523/JNEUROSCI.1202-06.2006 pubmed: 17021169 pmcid: 6674618
He, P., Schulz, P. & Sierks, M. R. A conformation-specific antibody against oligomeric beta-amyloid restores neuronal integrity in a mouse model of Alzheimer’s disease. J. Biol. Chem. 296, 100241. https://doi.org/10.1074/jbc.RA120.015327 (2021).
doi: 10.1074/jbc.RA120.015327 pubmed: 33376140 pmcid: 7948963
Bjellqvist, B., Basse, B., Olsen, E. & Celis, J. E. Reference points for comparisons of two-dimensional maps of proteins from different human cell types defined in a pH scale where isoelectric points correlate with polypeptide compositions. Electrophoresis 15, 529–539. https://doi.org/10.1002/elps.1150150171 (1994).
doi: 10.1002/elps.1150150171 pubmed: 8055880
Bjellqvist, B. et al. The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. Electrophoresis 14, 1023–1031. https://doi.org/10.1002/elps.11501401163 (1993).
doi: 10.1002/elps.11501401163 pubmed: 8125050
Lambert, M. P. et al. Vaccination with soluble Abeta oligomers generates toxicity-neutralizing antibodies. J. Neurochem. 79, 595–605. https://doi.org/10.1046/j.1471-4159.2001.00592.x (2001).
doi: 10.1046/j.1471-4159.2001.00592.x pubmed: 11701763
Bitencourt, A. L. B., Campos, R. M., Cline, E. N., Klein, W. L. & Sebollela, A. Antibody fragments as tools for elucidating structure-toxicity relationships and for diagnostic/therapeutic targeting of neurotoxic amyloid oligomers. Int. J. Mol. Sci. 21, 8920. https://doi.org/10.3390/ijms21238920 (2020).
doi: 10.3390/ijms21238920 pubmed: 33255488 pmcid: 7727795
Olafsen, T. & Wu, A. W. Novel antibody vectors for imaging. Semin. Nucl. Med. 40, 167–181 (2010).
doi: 10.1053/j.semnuclmed.2009.12.005 pubmed: 20350626 pmcid: 2853948
Viola, K. L. et al. The therapeutic and diagnostic potential of amyloid beta oligomers selective antibodies to treat Alzheimer’s disease. Front. Neurosci. 15, 768646. https://doi.org/10.3389/fnins.2021.768646 (2021).
doi: 10.3389/fnins.2021.768646 pubmed: 35046767
Behof, W. J. et al. A novel antioxidant ergothioneine PET radioligand for in vivo imaging applications. Sci. Rep. 11, 18450. https://doi.org/10.1038/s41598-021-97925-w (2021).
doi: 10.1038/s41598-021-97925-w pubmed: 34531467 pmcid: 8446031
Maass, D. R., Sepulveda, J., Pernthaner, A. & Shoemaker, C. B. Alpaca (Lama pacos) as a convenient source of recombinant camelid heavy chain antibodies (VHHs). J. Immunol. Methods 324, 13–25. https://doi.org/10.1016/j.jim.2007.04.008 (2007).
doi: 10.1016/j.jim.2007.04.008 pubmed: 17568607 pmcid: 2014515
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589. https://doi.org/10.1038/s41586-021-03819-2 (2021).
doi: 10.1038/s41586-021-03819-2 pubmed: 34265844 pmcid: 8371605
Oeffner, R. D. et al. Putting AlphaFold models to work with phenix.process_predicted_model and ISOLDE. Acta Crystallogr. D Struct. Biol. 78, 1303–1314. https://doi.org/10.1107/S2059798322010026 (2022).
doi: 10.1107/S2059798322010026 pubmed: 36322415 pmcid: 9629492

Auteurs

Justin R Haynes (JR)

Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.

Clayton A Whitmore (CA)

Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.

William J Behof (WJ)

Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.

Charlotte A Landman (CA)

Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.

Henry H Ong (HH)

Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.

Andrew P Feld (AP)

Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.

Isabelle C Suero (IC)

Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.

Celeste B Greer (CB)

Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA.

John C Gore (JC)

Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA.
Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA.
Vanderbilt Ingram Cancer Center, Nashville, TN, 37232, USA.
Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37232, USA.

Printha Wijesinghe (P)

Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, V5Z3N9, Canada.

Joanne A Matsubara (JA)

Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, V5Z3N9, Canada.

Brian E Wadzinski (BE)

Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA. brian.wadzinski@vanderbilt.edu.
Vanderbilt Ingram Cancer Center, Nashville, TN, 37232, USA. brian.wadzinski@vanderbilt.edu.

Benjamin W Spiller (BW)

Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA. benjamin.spiller@vanderbilt.edu.
Vanderbilt Center for Structural Biology, Vanderbilt University, Nashville, TN, 37235, USA. benjamin.spiller@vanderbilt.edu.

Wellington Pham (W)

Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA. wellington.pham@vumc.org.
Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA. wellington.pham@vumc.org.
Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA. wellington.pham@vumc.org.
Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA. wellington.pham@vumc.org.
Vanderbilt Ingram Cancer Center, Nashville, TN, 37232, USA. wellington.pham@vumc.org.
Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37232, USA. wellington.pham@vumc.org.
Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, 37235, USA. wellington.pham@vumc.org.
Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, 37212, USA. wellington.pham@vumc.org.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH