Anthropometry for predicting cardiometabolic disease risk factors in adolescents.
Journal
Obesity (Silver Spring, Md.)
ISSN: 1930-739X
Titre abrégé: Obesity (Silver Spring)
Pays: United States
ID NLM: 101264860
Informations de publication
Date de publication:
12 Jul 2024
12 Jul 2024
Historique:
revised:
23
04
2024
received:
12
03
2024
accepted:
09
05
2024
medline:
12
7
2024
pubmed:
12
7
2024
entrez:
12
7
2024
Statut:
aheadofprint
Résumé
Early screening prevents chronic diseases by identifying at-risk adolescents through anthropometric measurements, but predictive value in diverse groups is uncertain. A cross-sectional analysis of 12- to 19-year-old individuals from the 2017-2018 National Health and Nutrition Examination Survey (NHANES) assessed the predictive ability of BMI percentile, total body fat percentage, waist circumference (WC), and waist-hip ratio (WHR) for four cardiometabolic risk factors across race and ethnicity groups using receiver operating characteristic curves. The unweighted sample (N = 1194; 51.2% male individuals; 23.7% Hispanic, 13.2% non-Hispanic Black [NHB], 51.1% non-Hispanic White [NHW], 12.0% other/multirace) had a weighted prevalence of elevated blood pressure of 2.7%, hyperglycemia of 36.8%, hypertriglyceridemia of 4.8%, and low high-density lipoprotein (HDL) cholesterol of 15%. WHR (area under the curve [AUC] = 0.77), WC (AUC = 0.77), and BMI percentile (AUC = 0.73) outperformed total body fat percentage (AUC = 0.56) in predicting elevated blood pressure (p < 0.001 for all). BMI percentile was more accurate than total body fat percentage in predicting hypertriglyceridemia (AUC = 0.70 vs. 0.59; p = 0.02) and low HDL cholesterol (AUC = 0.69 vs. 0.59; p < 0.001). Race and ethnicity-based predictions varied: NHW adolescents had the highest AUC (0.89; p < 0.01) for elevated blood pressure prediction compared with Hispanic and NHB adolescents (AUC = 0.77 for both). Total body fat percentage was more accurate in predicting low HDL cholesterol among Hispanic versus NHW adolescents (AUC = 0.73 vs. 0.58; p = 0.04). WHR, WC, and BMI percentile are better predictors of cardiometabolic risk factors in adolescents than total body fat percentage. Predictive abilities differed by race and ethnicity, highlighting the importance of tailored risk assessment strategies.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Eunice Kennedy Shriver National Institute of Child Health and Human Development
ID : R21HD105129
Organisme : NIMHD NIH HHS
ID : R01MD011686
Pays : United States
Informations de copyright
© 2024 The Obesity Society.
Références
Stierman B, Afful J, Carroll MD, et al. National Health and Nutrition Examination Survey 2017–March 2020 prepandemic data files—development of files and prevalence estimates for selected health outcomes. National Health Statistics Reports, no. 158. National Center for Health Statistics; 2021.
Barlow SE; Expert Committee. Expert committee recommendations regarding the prevention, assessment, and treatment of child and adolescent overweight and obesity: summary report. Pediatrics. 2007;120(suppl 4):S164‐S192.
Singh AS, Mulder C, Twisk JW, vanMechelen W, Chinapaw MJ. Tracking of childhood overweight into adulthood: a systematic review of the literature. Obes Rev. 2008;9(5):474‐488.
Messiah SE, Xie L, Kapti EG, et al. Prevalence of the metabolic syndrome by household food insecurity status in the United States adolescent population, 2001‐2020: a cross‐sectional study. Am J Clin Nutr. 2024;119(2):354‐361. doi:10.1016/j.ajcnut.2023.11.014
Magnussen CG, Koskinen J, Juonala M, et al. A diagnosis of the metabolic syndrome in youth that resolves by adult life is associated with a normalization of high carotid intima‐media thickness and type 2 diabetes mellitus risk: the Bogalusa heart and cardiovascular risk in young Finns studies. J Am Coll Cardiol. 2012;60(17):1631‐1639. doi:10.1016/j.jacc.2012.05.056
Hampl SE, Hassink SG, Skinner AC, et al. Clinical practice guideline for the evaluation and treatment of children and adolescents with obesity. Pediatrics. 2023;151(2):e2022060640. doi:10.1542/peds.2022‐060640
Zeng Q, Dong SY, Sun XN, Xie J, Cui Y. Percent body fat is a better predictor of cardiovascular risk factors than body mass index. Braz J Med Biol Res. 2012;45(7):591‐600. doi:10.1590/s0100‐879x2012007500059
Messiah SE, Arheart KL, Lopez‐Mitnik G, Lipshultz SE, Miller TL. Ethnic group differences in cardiometabolic disease risk factors independent of body mass index among American youth. Obesity (Silver Spring). 2013;21(3):424‐428. doi:10.1002/oby.20343
Messiah SE, Arheart KL, Lipshultz SE, Miller TL. Ethnic group differences in waist circumference percentiles among U.S. children and adolescents: estimates from the 1999‐2008 National Health and Nutrition Examination Surveys. Metab Syndr Relat Disord. 2011;9(4):297‐303. doi:10.1089/met.2010.0127
Messiah SE, Arheart KL, Natale RA, Hlaing WM, Lipshultz SE, Miller TL. BMI, waist circumference, and selected cardiovascular disease risk factors among preschool‐age children. Obesity (Silver Spring). 2012;20(9):1942‐1949. doi:10.1038/oby.2011.353
International Diabetes Federation. The IDF Consensus Definition of the Metabolic Syndrome in Children and Adolescents. International Diabetes Federation; 2007.
World Health Organization. Growth reference data for 5–19 years. Accessed December 18, 2023. https://www.who.int/tools/growth-reference-data-for-5to19-years
Centers for Disease Control and Prevention. CDC Extended BMI‐for‐age Growth Charts. Updated December 15, 2022. Accessed December 21, 2023. https://www.cdc.gov/growthcharts/extended-bmi.htm
Stefan N. Causes, consequences, and treatment of metabolically unhealthy fat distribution. Lancet Diabetes Endocrinol. 2020;8:616‐627.
Razak F, Anand SS, Shannon H, et al. Defining obesity cut points in a multiethnic population. Circulation. 2007;115(16):2111‐2118. doi:10.1161/CIRCULATIONAHA.106.635011
Michels KB, Greenland S, Rosner BA. Does body mass index adequately capture the relation of body composition and body size to health outcomes? Am J Epidemiol. 1998;147(2):167‐172.
Flanagin A, Frey T, Christiansen SL; AMA Manual of Style Committee. Updated guidance on the reporting of race and ethnicity in medical and science journals. JAMA. 2021;326(7):621‐627. doi:10.1001/jama.2021.13304
Andreasen RO. Race: biological reality or social construct? Philos Sci. 2000;67(S3):S653‐S666. doi:10.1086/392853
National Center for Health Statistics. NHANES questionnaires, datasets, and related documentation. Centers for Disease Control and Prevention website. Accessed December 9, 2023. https://wwwn.cdc.gov/nchs/nhanes/default.aspx
Centers for Disease Control and Prevention. The SAS program for CDC growth charts that includes the extended BMI calculations. Updated January 9, 2023. Accessed December 9, 2023. https://www.cdc.gov/nccdphp/dnpao/growthcharts/resources/sas.htm
Shepherd JA, Ng BK, Sommer MJ, Heymsfield SB. Body composition by DXA. Bone. 2017;104:101‐105. doi:10.1016/j.bone.2017.06.010
Centers for Disease Control and Prevention. NHANES Anthropometry Procedures Manual. Published January 2017. Accessed December 9, 2023. https://wwwn.cdc.gov/nchs/data/nhanes/2017-2018/manuals/2017_Anthropometry_Procedures_Manual.pdf
Magge SN, Goodman E, Armstrong SC, Committee On Nutrition; Section On Endocrinology; Section On Obesity. The metabolic syndrome in children and adolescents: shifting the focus to Cardiometabolic risk factor clustering. Pediatrics. 2017;140(2):e20171603. doi:10.1542/peds.2017‐1603
Korn EL, Graubard BI. Confidence intervals for proportions with small expected number of positive counts estimated from survey data. SurvMethodol. 1998;24:193‐201.
Casadei K, Kiel J. Anthropometric measurement [updated 2022 Sep 26]. StatPearls [Internet]. StatPearls Publishing; 2023 Available from: https://www.ncbi.nlm.nih.gov/books/NBK537315/
Jiang J, Cai X, Pan Y, et al. Relationship of obesity to adipose tissue insulin resistance. BMJ Open Diabetes Res Care. 2020;8(1):e000741. doi:10.1136/bmjdrc‐2019‐000741
Caprio S, Perry R, Kursawe R. Adolescent obesity and insulin resistance: roles of ectopic fat accumulation and adipose inflammation. Gastroenterology. 2017;152(7):1638‐1646. doi:10.1053/j.gastro.2016.12.051
You YB, Zhou H, Han J, Zhu YH, Zan D, Zhang QY. Anthropometry did not approach adequate predictive accuracies for detecting elevated fasting plasma glucose or hemoglobin A1c levels among Chinese children aged 7‐9 years. J Diabetes Investig. 2021;12(5):781‐789. doi:10.1111/jdi.13395
DeLacey S, Josefson JL. A mini‐review of pediatric anthropometrics as predictors of future insulin resistance. Front Endocrinol (Lausanne). 2022;13:826430. doi:10.3389/fendo.2022.826430
Lee CM, Huxley RR, Wildman RP, Woodward M. Indices of abdominal obesity are better discriminators of cardiovascular risk factors than BMI: a meta‐analysis. J Clin Epidemiol. 2008;61:646‐653.
Liu J, Tse LA, Liu Z, et al. Predictive values of anthropometric measurements for cardiometabolic risk factors and cardiovascular diseases among 44 048 Chinese. J Am Heart Assoc. 2019;8(16):e010870. doi:10.1161/JAHA.118.010870
Tuan NT, Adair LS, Stevens J, Popkin BM. Prediction of hypertension by different anthropometric indices in adults: the change in estimate approach. Public Health Nutr. 2010;13(5):639‐646. doi:10.1017/S1368980009991479
Oliveira BR, Magalhães EIDS, Bragança MLBM, et al. Performance of body fat percentage, fat mass index and body mass index for detecting Cardiometabolic outcomes in Brazilian adults. Nutrients. 2023;15(13):2974. doi:10.3390/nu15132974
Dereje R, Hassen K, Gizaw G. Evaluation of anthropometric indices for screening hypertension among employees of Mizan Tepi university, southwestern Ethiopia. Integr Blood Press Control. 2021;14:99‐111. doi:10.2147/IBPC.S317018
Lee JW, Lim NK, Baek TH, Park SH, Park HY. Anthropometric indices as predictors of hypertension among men and women aged 40‐69 years in the Korean population: the Korean genome and epidemiology study. BMC Public Health. 2015;15:140. doi:10.1186/s12889‐015‐1471‐5
Ford CL, Harawa NT. A new conceptualization of ethnicity for social epidemiologic and health equity research. Soc Sci Med. 2010;71(2):251‐258. doi:10.1016/j.socscimed.2010.04.008
Mersha TB, Beck AF. The social, economic, political, and genetic value of race and ethnicity in 2020. Hum Genomics. 2020;14(1):37. doi:10.1186/s40246‐020‐00284‐2
Macias N, Quezada AD, Flores M, et al. Accuracy of body fat percent and adiposity indicators cut off values to detect metabolic risk factors in a sample of Mexican adults. BMC Public Health. 2014;14:341. doi:10.1186/1471‐2458‐14‐341
Zhang Y, Zeng Q, Li X, Zhu P, Huang F. Application of conicity index adjusted total body fat in young adults‐a novel method to assess metabolic diseases risk. Sci Rep. 2018;8(1):10093. doi:10.1038/s41598‐018‐28463‐1
Hassan S, Oladele C, Galusha D, et al. Anthropometric measures of obesity and associated cardiovascular disease risk in the Eastern Caribbean Health Outcomes Research Network (ECHORN) Cohort Study. BMC Public Health. 2021;21:399. doi:10.1186/s12889‐021‐10399‐3
Bramante CT, Palzer EF, Rudser KD, et al. BMI metrics and their association with adiposity, cardiometabolic risk factors, and biomarkers in children and adolescents. Int J Obes (Lond). 2022;46(2):359‐365. doi:10.1038/s41366‐021‐01006‐x
Lean ME, Han TS, Bush H, Anderson AS, Bradby H, Williams R. Ethnic differences in anthropometric and lifestyle measures related to coronary heart disease risk between south Asian, Italian and general‐population British women living in the west of Scotland. Int J Obes Relat Metab Disord. 2001;25(12):1800‐1805. doi:10.1038/sj.ijo.0801823
Heagerty RM, Lumley T, Pepe MS. Evaluation of diagnostic tests: ROC curves. J Natl Cancer Inst. 2000;92(6):575‐581.
Vickers AJ, Van Houwelingen EM. Understanding the ROC curve. Br J Radiol. 2000;73(869):697‐705.