Comparison of holmium:yttrium-aluminium-garnet (YAG), thulium fiber laser, and pulsed thulium:YAG lasers on soft tissue: an ex vivo study.

Ho:YAG laser Tm:YAG laser endourology laser‐tissue interactions thulium (Tm) fiber laser tissue ablation

Journal

BJU international
ISSN: 1464-410X
Titre abrégé: BJU Int
Pays: England
ID NLM: 100886721

Informations de publication

Date de publication:
12 Jul 2024
Historique:
medline: 12 7 2024
pubmed: 12 7 2024
entrez: 12 7 2024
Statut: aheadofprint

Résumé

To assess laser-tissue interactions through ablation, coagulation, and carbonisation characteristics in a non-perfused porcine kidney model between three pulsed lasers: holmium (Ho): yttrium-aluminium-garnet (YAG), thulium fiber laser (TFL), and pulsed thulium (p-Tm):YAG. A 150-W Ho:YAG, a 60-W TFL, and a 100-W p-Tm:YAG lasers were compared. The laser settings that can be set identically between the three lasers and be clinically relevant for prostate laser enucleation were identified and used on fresh, unfrozen porcine kidneys. Laser incisions were performed using stripped laser fibers of 365 and 550 μm, set at distances of 0 and 1 mm from the tissue surface at a constant speed of 2 mm/s. Histological analysis evaluated shape, depth, width of the incision, axial coagulation depth, and presence of carbonisation. Incision depths, widths, and coagulation zones were greater with Ho:YAG and p-Tm:YAG lasers than TFL. Although no carbonisation was found with the Ho:YAG and p-Tm:YAG lasers, it was common with TFL, especially at high frequencies. The shapes of the incisions and coagulation zones were more regular and homogeneous with the p-Tm:YAG laser and TFL than with Ho:YAG laser. Regardless of the laser used, short pulse durations resulted in deeper incisions than long pulse durations. Concerning the distance, we found that to be effective, TFL had to be used in contact with the tissue. Finally, 365-μm fibers resulted in deeper incisions, while 550-μm fibers led to wider incisions and larger coagulation zones. Histological analysis revealed greater tissue penetration with the p-Tm:YAG laser compared to the TFL, while remaining less than with Ho:YAG. Its coagulation properties seem interesting insofar as it provides homogeneous coagulation without carbonisation, while incisions remained uniform without tissue laceration. Thus, the p-Tm:YAG laser appears to be an effective alternative to Ho:YAG and TFL lasers in prostate surgery.

Identifiants

pubmed: 38994628
doi: 10.1111/bju.16447
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024 BJU International.

Références

Garraway WM, Collins GN, Lee RJ. High prevalence of benign prostatic hypertrophy in the community. Lancet Lond Engl 1991; 338: 469–471
Lerner LB, Rajender A. Laser prostate enucleation techniques. Can J Urol 2015; 22: 53–59
Lebdai S, Chevrot A, Doizi S et al. Traitement chirurgical et interventionnel de l'obstruction sous‐vésicale liée à une hyperplasie bénigne de prostate: revue systématique de la littérature et recommandations de bonne pratique clinique du Comité des Troubles Mictionnels de l'Homme. Prog Urol 2021; 31: 249–265
Delongchamps NB, Robert G, Descazeaud A et al. Traitement de l'hyperplasie bénigne de prostate par techniques endoscopiques électriques et adénomectomie voie haute: revue de littérature du CTMH de l'AFU. Prog Urol 2012; 22: 73–79
Fried NM. Recent advances in infrared laser lithotripsy [invited]. Biomed Opt Express 2018; 9: 4552–4568
Fried NM, Irby PB. Advances in laser technology and fiber‐optic delivery systems in lithotripsy. Nat Rev Urol 2018; 15: 563–573
Herrmann TRW, Liatsikos EN, Nagele U, Traxer O, Merseburger AS. EAU guidelines on laser technologies. Eur Urol 2012; 61: 783–795
Johnson DE, Cromeens DM, Price RE. Use of the holmium:YAG laser in urology. Lasers Surg Med 1992; 12: 353–363
Robert G, de la Taille A, Descazeaud A. Traitements chirurgicaux de l'obstruction prostatique bénigne: standards et innovations. Prog Urol 2018; 28: 856–867
Strohmaier WL. Recent advances in understanding and managing urolithiasis. F1000Research 2016; 5: 2651
Fried NM. Thulium fiber laser lithotripsy: an in vitro analysis of stone fragmentation using a modulated 110‐watt thulium fiber laser at 1.94 μm. Lasers Surg Med 2005; 37: 53–58
Haddad M, Emiliani E, Rouchausse Y et al. Impact of laser fiber tip cleavage on power output for ureteroscopy and stone treatment. World J Urol 2017; 35: 1765–1770
Traxer O, Keller EX. Thulium fiber laser: the new player for kidney stone treatment? A comparison with holmium:YAG laser. World J Urol 2020; 38: 1883–1894
Lange BI, Brendel T, Hüttmann G. Temperature dependence of light absorption in water at holmium and thulium laser wavelengths. Appl Opt 2002; 41: 5797–5803
Schomacker KT, Domankevitz Y, Flotte TJ, Deutsch TF. Co:MgF2 laser ablation of tissue: effect of wavelength on ablation threshold and thermal damage. Lasers Surg Med 1991; 11: 141–151
Roggan A, Bindig U, Wäsche W et al. Action mechanisms of laser radiation in biological tissues. In Berlien HP, Müller GJ eds, Applied Laser Medicine [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003: 73–127
Vogel A, Venugopalan V. Mechanisms of pulsed laser ablation of biological tissues. Chem Rev 2003; 103: 577–644
Doizi S, Germain T, Panthier F, Compérat E, Traxer O, Berthe L. Comparison of holmium:YAG and thulium fiber lasers on soft tissue: an ex vivo study. J Endourol 2022; 36: 251–258
Taratkin M, Kovalenko A, Laukhtina E et al. Ex vivo study of Ho:YAG and thulium fiber lasers for soft tissue surgery: which laser for which case? Lasers Med Sci 2022; 37: 149–154
Taratkin M, Netsch C, Enikeev D et al. The impact of the laser fiber‐tissue distance on histological parameters in a porcine kidney model. World J Urol 2021; 39: 1607–1612
Huusmann S, Lafos M, Meyenburg I, Muschter R, Teichmann HO, Herrmann T. Tissue effects of a newly developed diode pumped pulsed thulium:YAG laser compared to continuous wave thulium:YAG and pulsed holmium:YAG laser. World J Urol 2021; 39: 3503–3508
Emiliani E, Talso M, Haddad M et al. The true ablation effect of holmium YAG laser on soft tissue. J Endourol 2018; 32: 230–235
Proietti S, Rodríguez‐Socarrás ME, Eisner BH et al. Thulium:YAG versus holmium:YAG laser effect on upper urinary tract soft tissue: evidence from an ex vivo experimental study. J Endourol 2021; 35: 544–551
Becker B, Enikeev D, Netsch C et al. Comparative analysis of vaporization and coagulation properties of a hybrid laser (combination of a thulium and blue diode laser) vs thulium and Ho:YAG lasers: potential applications in endoscopic enucleation of the prostate. J Endourol 2020; 34: 862–867
Ventimiglia E, Doizi S, Kovalenko A, Andreeva V, Traxer O. Effect of temporal pulse shape on urinary stone phantom retropulsion rate and ablation efficiency using holmium:YAG and super‐pulse thulium fiber lasers. BJU Int 2020; 126: 159–167
Mues AC, Teichman JM, Knudsen BE. Quantification of holmium:yttrium aluminum garnet optical tip degradation. J Endourol 2009; 23: 1425–1428
Kabalin JN. Holmium: YAG laser prostatectomy canine feasibility study. Lasers Surg Med 1996; 18: 221–224

Auteurs

Stessy Kutchukian (S)

Service d'Urologie, AP-HP, Hôpital Tenon, Sorbonne Université, Paris, France.
GRC n°20, Groupe de Recherche Clinique sur la Lithiase Urinaire, Hôpital Tenon, Sorbonne Université, Paris, France.
PIMM, UMR 8006 CNRS, Arts et Métiers ParisTech, Paris, France.
Service d'Urologie, CHU de Poitiers, Poitiers, France.

Marie Chicaud (M)

Service d'Urologie, AP-HP, Hôpital Tenon, Sorbonne Université, Paris, France.
GRC n°20, Groupe de Recherche Clinique sur la Lithiase Urinaire, Hôpital Tenon, Sorbonne Université, Paris, France.
PIMM, UMR 8006 CNRS, Arts et Métiers ParisTech, Paris, France.
Service d'Urologie, CHU de Limoges, Limoges, France.

Laurent Berthe (L)

PIMM, UMR 8006 CNRS, Arts et Métiers ParisTech, Paris, France.

Frédéric Coste (F)

PIMM, UMR 8006 CNRS, Arts et Métiers ParisTech, Paris, France.

Pierre Lapouge (P)

PIMM, UMR 8006 CNRS, Arts et Métiers ParisTech, Paris, France.

Hussa Alshehhi (H)

Service d'Anatomopathologie, AP-HP, Hôpital Tenon, Sorbonne Université, Paris, France.

David Buob (D)

Service d'Anatomopathologie, AP-HP, Hôpital Tenon, Sorbonne Université, Paris, France.

Olivier Traxer (O)

Service d'Urologie, AP-HP, Hôpital Tenon, Sorbonne Université, Paris, France.
GRC n°20, Groupe de Recherche Clinique sur la Lithiase Urinaire, Hôpital Tenon, Sorbonne Université, Paris, France.
PIMM, UMR 8006 CNRS, Arts et Métiers ParisTech, Paris, France.

Frédéric Panthier (F)

Service d'Urologie, AP-HP, Hôpital Tenon, Sorbonne Université, Paris, France.
GRC n°20, Groupe de Recherche Clinique sur la Lithiase Urinaire, Hôpital Tenon, Sorbonne Université, Paris, France.
PIMM, UMR 8006 CNRS, Arts et Métiers ParisTech, Paris, France.

Steeve Doizi (S)

Service d'Urologie, AP-HP, Hôpital Tenon, Sorbonne Université, Paris, France.
GRC n°20, Groupe de Recherche Clinique sur la Lithiase Urinaire, Hôpital Tenon, Sorbonne Université, Paris, France.
PIMM, UMR 8006 CNRS, Arts et Métiers ParisTech, Paris, France.

Classifications MeSH