Changes of in vivo electrical conductivity in the brain and torso related to age, fat fraction and sex using MRI.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
12 Jul 2024
Historique:
received: 15 04 2024
accepted: 08 07 2024
medline: 13 7 2024
pubmed: 13 7 2024
entrez: 12 7 2024
Statut: epublish

Résumé

This work was inspired by the observation that a majority of MR-electrical properties tomography studies are based on direct comparisons with ex vivo measurements carried out on post-mortem samples in the 90's. As a result, the in vivo conductivity values obtained from MRI in the megahertz range in different types of tissues (brain, liver, tumors, muscles, etc.) found in the literature may not correspond to their ex vivo equivalent, which still serves as a reference for electromagnetic modelling. This study aims to pave the way for improving current databases since the definition of personalized electromagnetic models (e.g. for Specific Absorption Rate estimation) would benefit from better estimation. Seventeen healthy volunteers underwent MRI of both brain and thorax/abdomen using a three-dimensional ultrashort echo-time (UTE) sequence. We estimated conductivity (S/m) in several classes of macroscopic tissue using a customized reconstruction method from complex UTE images, and give general statistics for each of these regions (mean-median-standard deviation). These values are used to find possible correlations with biological parameters such as age, sex, body mass index and/or fat volume fraction, using linear regression analysis. In short, the collected in vivo values show significant deviations from the ex vivo values in conventional databases, and we show significant relationships with the latter parameters in certain organs for the first time, e.g. a decrease in brain conductivity with age.

Identifiants

pubmed: 38997324
doi: 10.1038/s41598-024-67014-9
pii: 10.1038/s41598-024-67014-9
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

16109

Informations de copyright

© 2024. The Author(s).

Références

Gabriel, C., Gabriel, S. & Corthout, E. The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol. 41, 2231–2249 (1996).
pubmed: 8938024 doi: 10.1088/0031-9155/41/11/001
Pethig, R. Dielectric properties of body tissues. Clin. Phys. Physiol. Meas. Off. J. Hosp. Phys. Assoc. Dtsch. Ges. Med. Phys. Eur. Fed. Organ. Med. Phys. 8(Suppl A), 5–12 (1987).
IT’IS Foundation. Tissue Properties Database V4.1. IT’IS Foundation https://doi.org/10.13099/VIP21000-04-1 (2022).
Gabriel, S., Lau, R. W. & Gabriel, C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 41, 2251 (1996).
pubmed: 8938025 doi: 10.1088/0031-9155/41/11/002
Joines, W. T., Zhang, Y., Li, C. & Jirtle, R. L. The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz. Med. Phys. 21, 547–550 (1994).
pubmed: 8058021 doi: 10.1118/1.597312
Holder, D. S. Electrical Impedance Tomography: Methods, History, and Applications (Institute of Physics Medical Physics Series) (Institute of Physics Publishing, 2005).
Griffiths, H. Magnetic induction tomography. Meas. Sci. Technol. 12, 1126 (2001).
doi: 10.1088/0957-0233/12/8/319
Haacke, E. M., Petropoulos, L. S., Nilges, E. W. & Wu, D. H. Extraction of conductivity and permittivity using magnetic resonance imaging. Phys. Med. Biol. 36, 723–734 (1991).
doi: 10.1088/0031-9155/36/6/002
Wen, H. 2003 Noninvasive quantitative mapping of conductivity and dielectric distributions using RF wave propagation effects in high-field MRI in Medical Imaging. Phys. Med. Imaging 5030, 471–477 (2003).
Voigt, T., Katscher, U. & Doessel, O. Quantitative conductivity and permittivity imaging of the human brain using electric properties tomography. Magn. Reson. Med. 66, 456–466 (2011).
pubmed: 21773985 doi: 10.1002/mrm.22832
Katscher, U. et al. Determination of electric conductivity and local SAR Via B1 mapping. IEEE Trans. Med. Imaging 28, 1365–1374 (2009).
pubmed: 19369153 doi: 10.1109/TMI.2009.2015757
Collins, C. M. & Wang, Z. Calculation of radiofrequency electromagnetic fields and their effects in MRI of human subjects: RF Field Calculations in MRI. Magn. Reson. Med. 65, 1470–1482 (2011).
pubmed: 21381106 pmcid: 3078983 doi: 10.1002/mrm.22845
Jin Keun Seo & Eung Je Woo. Electrical tissue property imaging at low frequency using MREIT. IEEE Trans. Biomed. Eng. 61, 1390–1399 (2014).
pubmed: 24759274 doi: 10.1109/TBME.2014.2298859
Katscher, U., Kim, D.-H. & Seo, J. K. Recent progress and future challenges in MR electric properties tomography. Comput. Math. Methods Med. 2013, 1–11 (2013).
doi: 10.1155/2013/546562
Lee, S.-K. et al. Tissue electrical property mapping from zero echo-time magnetic resonance imaging. IEEE Trans. Med. Imaging 34, 541–550 (2015).
pubmed: 25312919 doi: 10.1109/TMI.2014.2361810
van Lier, A. L. H. M. W. B. et al. Phase mapping at 7 T and its application for in vivo electrical conductivity mapping. Magn. Reson. Med. 67, 552–561 (2012).
pubmed: 21710613 doi: 10.1002/mrm.22995
Lee, S.-K., Bulumulla, S. & Hancu, I. Theoretical investigation of random noise-limited signal-to-noise ratio in MR-based electrical properties tomography. IEEE Trans. Med. Imaging 34, 2220–2232 (2015).
pubmed: 25955582 pmcid: 4628908 doi: 10.1109/TMI.2015.2427236
Mandija, S., Sbrizzi, A., Katscher, U., Luijten, P. R. & van den Berg, C. A. T. Error analysis of helmholtz-based MR-electrical properties tomography. Magn. Reson. Med. 80, 90–100 (2018).
pubmed: 29144031 doi: 10.1002/mrm.27004
Soullié, P., Missoffe, A., Ambarki, K., Felblinger, J. & Odille, F. MR electrical properties imaging using a generalized image-based method. Magn. Reson. Med. 85, 762–776 (2021).
pubmed: 32783236 doi: 10.1002/mrm.28458
Seo, J. K. et al. Error analysis of nonconstant admittivity for mr-based electric property imaging. IEEE Transact. Med. Imaging 31(2), 430–437 (2011).
Duan, S. et al. Quantitative analysis of the reconstruction errors of the currently popular algorithm of magnetic resonance electrical property tomography at the interfaces of adjacent tissues. NMR Biomed. 29, 744–750 (2016).
pubmed: 27037715 doi: 10.1002/nbm.3522
Shin, J., Kim, J.-H. & Kim, D.-H. Redesign of the Laplacian kernel for improvements in conductivity imaging using MRI. Magn. Reson. Med. 81, 2167–2175 (2019).
pubmed: 30298524 doi: 10.1002/mrm.27528
Katscher, U. et al. Estimation of breast tumor conductivity using parabolic phase fitting. Proc. 20th Sci. Meet. Int. Soc. Magn. Reson. Med. (2012).
He, Z., Chen, B., Lefebvre, P. & Odille, F. An Adaptative Savitzky-Golay Kernel for Laplacian Estimation in Magnetic Resonance Electrical Property Tomography. In: 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) 1–4 (IEEE, Sidney, France, 2023). https://doi.org/10.1109/embc40787.2023.10341200 .
Liu, C. et al. MR-based electrical property tomography using a modified finite difference scheme. Phys. Med. Biol. 63, 145013 (2018).
pubmed: 29897046 doi: 10.1088/1361-6560/aacc35
Katscher, U. & van den Berg, C. A. T. Electric properties tomography: Biochemical, physical and technical background, evaluation and clinical applications. NMR Biomed. 30, e3729 (2017).
doi: 10.1002/nbm.3729
Marques, J. P., Sodickson, D. K., Ipek, O., Collins, C. M. & Gruetter, R. Single acquisition electrical property mapping based on relative coil sensitivities: a proof-of-concept demonstration. Magn. Reson. Med. 74, 185–195 (2015).
pubmed: 25099920 doi: 10.1002/mrm.25399
Liu, J., Zhang, X., Schmitter, S., Van de Moortele, P.-F. & He, B. Gradient-based electrical properties tomography (gEPT): a robust method for mapping electrical properties of biological tissues in vivo using magnetic resonance imaging. Magn. Reson. Med. 74, 634–646 (2015).
pubmed: 25213371 doi: 10.1002/mrm.25434
Wang, Y., Van de Moortele, P.-F. & He, B. Automated gradient-based electrical properties tomography in the human brain using 7 Tesla MRI. Magn. Reson. Imaging 63, 258–266 (2019).
pubmed: 31425805 pmcid: 6861698 doi: 10.1016/j.mri.2019.08.003
Gurler, N. & Ider, Y. Z. Gradient-based electrical conductivity imaging using MR phase. Magn. Reson. Med. 77, 137–150 (2017).
pubmed: 26762771 doi: 10.1002/mrm.26097
Hafalir, F. S., Oran, O. F., Gurler, N. & Ider, Y. Z. Convection-reaction equation based magnetic resonance electrical properties tomography (cr-MREPT). IEEE Trans. Med. Imaging 33, 777–793 (2014).
pubmed: 24595349 doi: 10.1109/TMI.2013.2296715
He, Z. et al. Phantom evaluation of electrical conductivity mapping by MRI: Comparison to vector network analyzer measurements and spatial resolution assessment. Magn. Resonance Med. 91(6), 2374–2390 (2024).
doi: 10.1002/mrm.30009
Serralles, J. E. C. et al. Noninvasive estimation of electrical properties from magnetic resonance measurements via global maxwell tomography and match regularization. IEEE Trans. Biomed. Eng. 67, 3–15 (2020).
pubmed: 30908189 doi: 10.1109/TBME.2019.2907442
Borsic, A., Perreard, I., Mahara, A. & Halter, R. J. An inverse problems approach to MR-EPT image reconstruction. IEEE Trans. Med. Imaging 35, 244–256 (2016).
pubmed: 26302510 doi: 10.1109/TMI.2015.2466082
Balidemaj, E. et al. CSI-EPT: a contrast source inversion approach for improved mri-based electric properties tomography. IEEE Trans. Med. Imaging 34, 1788–1796 (2015).
pubmed: 25706578 doi: 10.1109/TMI.2015.2404944
Ammari, H., Kwon, H., Lee, Y., Kang, K. & Seo, J. K. Magnetic resonance-based reconstruction method of conductivity and permittivity distributions at the Larmor frequency. Inverse Probl. 31, 105001 (2015).
doi: 10.1088/0266-5611/31/10/105001
Mandija, S., Meliadò, E. F., Huttinga, N. R. F., Luijten, P. R. & van den Berg, C. A. T. Opening a new window on MR-based electrical properties tomography with deep learning. Sci. Rep. 9, 8895 (2019).
pubmed: 31222055 pmcid: 6586684 doi: 10.1038/s41598-019-45382-x
Jung, K.-J. et al. Data-driven electrical conductivity brain imaging using 3 T MRI. Hum. Brain Mapp. 44, 4986–5001 (2023).
pubmed: 37466309 pmcid: 10502651 doi: 10.1002/hbm.26421
Inda, A. J. G. et al. Physics informed neural networks (PINN) for low snr magnetic resonance electrical properties tomography (MREPT). Diagn. Basel Switz. 12, 2627 (2022).
Hernandez, D. & Kim, K.-N. Use of machine learning to improve the estimation of conductivity and permittivity based on longitudinal relaxation time T1 in magnetic resonance at 7 T. Sci. Rep. 13, 7837 (2023).
pubmed: 37188769 pmcid: 10185549 doi: 10.1038/s41598-023-35104-9
Hampe, N. et al. Dictionary-based electric properties tomography. Magn. Reson. Med. 81, 342–349 (2019).
pubmed: 30246342 doi: 10.1002/mrm.27401
Michel, E., Hernandez, D. & Lee, S. Y. Electrical conductivity and permittivity maps of brain tissues derived from water content based on T1-weighted acquisition. Magn. Reson. Med. 77, 1094–1103 (2017).
pubmed: 26946979 doi: 10.1002/mrm.26193
Mandija, S., Petrov, P. I., Vink, J. J. T., Neggers, S. F. W. & van den Berg, C. A. T. Brain tissue conductivity measurements with MR-electrical properties tomography: an in vivo study. Brain Topogr. 34, 56–63 (2021).
pubmed: 33289858 doi: 10.1007/s10548-020-00813-1
Cao, J., Ball, I., Humburg, P., Dokos, S. & Rae, C. Repeatability of brain phase-based magnetic resonance electric properties tomography methods and effect of compressed SENSE and RF shimming. Phys. Eng. Sci. Med. 46, 753–766 (2023).
pubmed: 36995580 pmcid: 10209292 doi: 10.1007/s13246-023-01248-1
Tha, K. K. et al. Noninvasive electrical conductivity measurement by MRI: a test of its validity and the electrical conductivity characteristics of glioma. Eur. Radiol. 28, 348–355 (2018).
pubmed: 28698943 doi: 10.1007/s00330-017-4942-5
Park, J. E. et al. Low conductivity on electrical properties tomography demonstrates unique tumor habitats indicating progression in glioblastoma. Eur. Radiol. 31, 6655–6665 (2021).
pubmed: 33880619 doi: 10.1007/s00330-021-07976-w
Mori, N. et al. Diagnostic value of electric properties tomography (EPT) for differentiating benign from malignant breast lesions: comparison with standard dynamic contrast-enhanced MRI. Eur. Radiol. 29, 1778–1786 (2019).
pubmed: 30255252 doi: 10.1007/s00330-018-5708-4
Shin, J. et al. Initial study on in vivo conductivity mapping of breast cancer using MRI. J. Magn. Reson. Imaging JMRI 42, 371–378 (2015).
pubmed: 25413153 doi: 10.1002/jmri.24803
Suh, J. et al. Noncontrast-enhanced MR-based conductivity imaging for breast cancer detection and lesion differentiation. J. Magn. Reson. Imaging 54, 631–645 (2021).
pubmed: 33894088 doi: 10.1002/jmri.27655
Lee, J. H. et al. In vivo electrical conductivity measurement of muscle, cartilage, and peripheral nerve around knee joint using MR-electrical properties tomography. Sci. Rep. 12, 73 (2022).
pubmed: 34996978 pmcid: 8741940 doi: 10.1038/s41598-021-03928-y
Balidemaj, E., van Lier, A. L. H. M. W., Nederveen, A. J., Crezee, J. & van den Berg, C. Feasibility of EPT in the Human Pelvis at 3T. In: Proc. 20th Sci. Meet. Int. Soc. Magn. Reson. Med. 3468 (2012).
Lesbats, C. et al. High-frequency electrical properties tomography at 9.4T as a novel contrast mechanism for brain tumors. Magn. Reson. Med. 86, 382–392 (2021).
pubmed: 33533114 pmcid: 8603929 doi: 10.1002/mrm.28685
Kim, J. W. et al. MR-based electrical conductivity imaging of liver fibrosis in an experimental rat model. J. Magn. Resonance Imaging 53(2), 554–563 (2021).
doi: 10.1002/jmri.27275
Gavazzi, S. et al. Accuracy and precision of electrical permittivity mapping at 3T: the impact of three mapping techniques. Magn. Reson. Med. 81, 3628–3642 (2019).
pubmed: 30737816 pmcid: 6593818 doi: 10.1002/mrm.27675
Liao, Y. et al. Correlation of quantitative conductivity mapping and total tissue sodium concentration at 3T/4T. Magn. Reson. Med. 82, 1518–1526 (2019).
pubmed: 31095776 doi: 10.1002/mrm.27787
Ropella, K. M. & Noll, D. C. A regularized, model-based approach to phase-based conductivity mapping using MRI. Magn. Reson. Med. 78, 2011–2021 (2017).
pubmed: 28039883 doi: 10.1002/mrm.26590
McCann, H., Pisano, G. & Beltrachini, L. Variation in reported human head tissue electrical conductivity values. Brain Topogr. 32, 825–858 (2019).
pubmed: 31054104 pmcid: 6708046 doi: 10.1007/s10548-019-00710-2
Gho, S.-M., Shin, J., Kim, M.-O. & Kim, D.-H. Simultaneous quantitative mapping of conductivity and susceptibility using a double-echo ultrashort echo time sequence: example using a hematoma evolution study. Magn. Reson. Med. 76, 214–221 (2016).
pubmed: 26301950 doi: 10.1002/mrm.25869
Katscher, U. & Börnert, P. Imaging of Lung Conductivity Using Ultrashort Echo-Time Imaging. In: Proc. 24th Sci. Meet. Int. Soc. Magn. Reson. Med. 2923 (2016).
Schweser, F. et al. Conductivity mapping using ultrashort echo time (UTE) imaging. In: Proc. 21st Sci. Meet. Int. Soc. Magn. Reson. Med. 4190 (2013).
Qian, Y. & Boada, F. E. Acquisition-weighted stack of spirals for fast high-resolution three-dimensional ultra-short echo time MR imaging. Magn. Reson. Med. 60, 135–145 (2008).
pubmed: 18581326 doi: 10.1002/mrm.21620
Mugler, I. J., Meyer, C., Pfeuffer, J., Stemmer, A. & Kiefer, B. Breath-hold UTE lung imaging using a stack-of-spirals acquisition. In: Proc. 26th Sci. Meet. Int. Soc. Magn. Reson. Med. 4904 (2017).
Fauveau, V. et al. Performance of spiral UTE-MRI of the lung in post-COVID patients. Magn. Reson. Imaging 96, 135–143 (2023).
pubmed: 36503014 doi: 10.1016/j.mri.2022.12.002
Grimm, A. et al. Evaluation of 2-point, 3-point, and 6-point Dixon magnetic resonance imaging with flexible echo timing for muscle fat quantification. Eur. J. Radiol. 103, 57–64 (2018).
pubmed: 29803386 doi: 10.1016/j.ejrad.2018.04.011
Panagiotelis, I. & Blasche, M. TrueForm
Walsh, D. O., Gmitro, A. F. & Marcellin, M. W. Adaptive reconstruction of phased array MR imagery. Magn. Reson. Med. 43, 682–690 (2000).
pubmed: 10800033 doi: 10.1002/(SICI)1522-2594(200005)43:5<682::AID-MRM10>3.0.CO;2-G
Lustig, M. & Pauly, J. M. SPIRiT: Iterative self-consistent parallel imaging reconstruction from arbitrary k-space. Magn. Reson. Med. 64, 457–471 (2010).
pubmed: 20665790 pmcid: 2925465 doi: 10.1002/mrm.22428
Vishnevskiy, V., Gass, T., Szekely, G., Tanner, C. & Goksel, O. Isotropic total variation regularization of displacements in parametric image registration. IEEE Trans. Med. Imaging 36, 385–395 (2017).
pubmed: 27654322 doi: 10.1109/TMI.2016.2610583
Isensee, F., Jaeger, P. F., Kohl, S. A. A., Petersen, J. & Maier-Hein, K. H. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18, 203–211 (2021).
pubmed: 33288961 doi: 10.1038/s41592-020-01008-z
YUANFENG, J. Amos: A large-scale abdominal multi-organ benchmark for versatile medical image segmentation. Zenodo https://doi.org/10.5281/zenodo.7155725 (2022).
Paszke, A. et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: Advances in Neural Information Processing Systems vol. 32 (Curran Associates, Inc., 2019).
Egger, J. et al. GBM volumetry using the 3D slicer medical image computing platform. Sci. Rep. 3, 1364 (2013).
pubmed: 23455483 pmcid: 3586703 doi: 10.1038/srep01364
Hoult, D. I. The principle of reciprocity in signal strength calculations?A mathematical guide. Concepts Magn. Reson. 12, 173–187 (2000).
doi: 10.1002/1099-0534(2000)12:4<173::AID-CMR1>3.0.CO;2-Q
Zhu, D. & Smith, W. A. P. Least squares surface reconstruction on arbitrary domains. Preprint at https://doi.org/10.48550/arXiv.2007.08661 (2020).
Leijsen, R., Brink, W., van den Berg, C., Webb, A. & Remis, R. Electrical properties tomography: a methodological review. Diagnostics 11, 176 (2021).
pubmed: 33530587 pmcid: 7910937 doi: 10.3390/diagnostics11020176
Lee, J., Shin, J. & Kim, D.-H. MR-based conductivity imaging using multiple receiver coils. Magn. Reson. Med. 76, 530–539 (2016).
pubmed: 26375762 doi: 10.1002/mrm.25891
Voigt, T., Homann, H., Katscher, U. & Doessel, O. Patient-individual local SAR determination: in vivo measurements and numerical validation. Magn. Reson. Med. 68, 1117–1126 (2012).
pubmed: 22213053 doi: 10.1002/mrm.23322
Katscher, U., Stehning, C. & Tha, K. K. The impact of CSF pulsation on reconstructed brain conductivity. In: Proc. 26th Sci. Meet. Int. Soc. Magn. Reson. Med. 0546 (2018).
Tha, K. K. et al. Higher electrical conductivity of liver parenchyma in fibrotic patients: noninvasive assessment by electric properties tomography. J. Magn. Reson. Imaging 54, 1689–1691 (2021).
pubmed: 33998080 doi: 10.1002/jmri.27701
Katscher, U. & Weiss, S. Mapping electric bulk conductivity in the human heart. Magnetic Res. Med. 87(3), 1500–1506 (2022).
doi: 10.1002/mrm.29067
Gabriel, C. Dielectric properties of biological tissue: Variation with age. Bioelectromagnetics 26, S12–S18 (2005).
doi: 10.1002/bem.20147
Gullett, J. M. et al. The association of white matter free water with cognition in older adults. NeuroImage 219, 117040 (2020).
pubmed: 32534124 doi: 10.1016/j.neuroimage.2020.117040
Filo, S. et al. Disentangling molecular alterations from water-content changes in the aging human brain using quantitative MRI. Nat. Commun. 10, 3403 (2019).
pubmed: 31363094 pmcid: 6667463 doi: 10.1038/s41467-019-11319-1
Gottschalk, A., Scafidi, S. & Toung, T. J. K. Brain water as a function of age and weight in normal rats. PLoS ONE 16, e0249384 (2021).
pubmed: 34525113 pmcid: 8443050 doi: 10.1371/journal.pone.0249384
He, M. et al. Age-related EEG power reductions cannot be explained by changes of the conductivity distribution in the head due to brain atrophy. Front. Aging Neurosci. 13, 632310 (2021).
pubmed: 33679380 pmcid: 7929986 doi: 10.3389/fnagi.2021.632310
Simmonds, M. J., Meiselman, H. J. & Baskurt, O. K. Blood rheology and aging. J. Geriatr. Cardiol. JGC 10, 291 (2013).
pubmed: 24133519
Wáng, Y. X. J. Gender-specific liver aging and magnetic resonance imaging. Quant. Imaging Med. Surg. 11, 2893 (2021).
pubmed: 34249621 pmcid: 8250034 doi: 10.21037/qims-21-227

Auteurs

Zhongzheng He (Z)

IADI U1254, INSERM and Université de Lorraine, Nancy, France.

Paul Soullié (P)

IADI U1254, INSERM and Université de Lorraine, Nancy, France. paul.soullie@univ-lorraine.fr.

Pauline Lefebvre (P)

IADI U1254, INSERM and Université de Lorraine, Nancy, France.

Khalid Ambarki (K)

Siemens Healthcare SAS, Saint Denis, France.

Jacques Felblinger (J)

IADI U1254, INSERM and Université de Lorraine, Nancy, France.
CIC-IT 1433, INSERM, Université de Lorraine and CHRU Nancy, Nancy, France.

Freddy Odille (F)

IADI U1254, INSERM and Université de Lorraine, Nancy, France.
CIC-IT 1433, INSERM, Université de Lorraine and CHRU Nancy, Nancy, France.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH