Levels of Sex Hormones and Abdominal Muscle Composition in Men from The Multi-Ethnic Study of Atherosclerosis.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
12 Jul 2024
Historique:
received: 29 01 2024
accepted: 05 07 2024
medline: 13 7 2024
pubmed: 13 7 2024
entrez: 12 7 2024
Statut: epublish

Résumé

Information on the associations of testosterone levels with abdominal muscle volume and density in men is limited, while the role of estradiol and SHBG on these muscle characteristics are unclear. Therefore, this study aimed to investigate the association between fasting serum sex hormones and CT-derived abdominal muscle area and radiodensity in adult men. Conducted as a cross sectional observational study using data from the Multi-Ethnic Study of Atherosclerosis, our analyses focused on a community-based sample of 907 men aged 45-84 years, with 878 men having complete data. CT scans of the abdomen were interrogated for muscle characteristics, and multivariable linear regressions were used to test the associations. After adjustment for relevant factors, higher levels of both total testosterone and estradiol were associated with higher abdominal muscle area (1.74, 0.1-3.4, and 1.84, 0.4-3.3, respectively). In the final analyses, levels of total testosterone showed a positive association, while an inverse relationship was observed for SHBG with abdominal muscle radiodensity (0.3, 0.0-0.6, and - 0.33, - 0.6 to - 0.1, respectively). Our results indicate a complex association between sex hormones and abdominal muscle characteristics in men. Specifically, total testosterone and estradiol were associated with abdominal muscle area, while only total testosterone was associated with muscle radiodensity and SHBG was inversely associated with muscle radiodensity.Clinical Trial: NCT00005487.

Identifiants

pubmed: 38997435
doi: 10.1038/s41598-024-66948-4
pii: 10.1038/s41598-024-66948-4
doi:

Substances chimiques

Testosterone 3XMK78S47O
Estradiol 4TI98Z838E
Sex Hormone-Binding Globulin 0
Gonadal Steroid Hormones 0

Banques de données

ClinicalTrials.gov
['NCT00005487']

Types de publication

Journal Article Observational Study

Langues

eng

Sous-ensembles de citation

IM

Pagination

16114

Subventions

Organisme : VGR Regional Research and Development Council Grants
ID : ALFGBG-966255
Organisme : VGR Regional Research and Development Council Grants
ID : ALFGBG-966255
Organisme : NHLBI NIH HHS
ID : 75N92020D00001, HHSN268201500003I, N01-HC-95159, 75N92020D00005, N01-HC-95160, 75N92020D00002, N01-HC-95161, 75N92020D00003, N01-HC-95162, 75N92020D00006, N01-HC-95163, 75N92020D00004, N01-HC-95164, 75N92020D00007, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168 and N01-HC-95169
Pays : United States
Organisme : NHLBI NIH HHS
ID : 75N92020D00001, HHSN268201500003I, N01-HC-95159, 75N92020D00005, N01-HC-95160, 75N92020D00002, N01-HC-95161, 75N92020D00003, N01-HC-95162, 75N92020D00006, N01-HC-95163, 75N92020D00004, N01-HC-95164, 75N92020D00007, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168 and N01-HC-95169
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1-TR-000040, UL1-TR-001079, and UL1-TR-001420
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1-TR-000040, UL1-TR-001079, and UL1-TR-001420
Pays : United States

Informations de copyright

© 2024. The Author(s).

Références

Zhang, C., Rexrode, K. M., van Dam, R. M., Li, T. Y. & Hu, F. B. Abdominal obesity and the risk of all-cause, cardiovascular, and cancer mortality. Circulation 117(13), 1658–1667. https://doi.org/10.1161/CIRCULATIONAHA.107.739714 (2008).
doi: 10.1161/CIRCULATIONAHA.107.739714 pubmed: 18362231
Miljkovic, I., Vella, C. A. & Allison, M. Computed tomography-derived myosteatosis and metabolic disorders. Diabetes Metab. J. 45(4), 482–491. https://doi.org/10.4093/dmj.2020.0277 (2021).
doi: 10.4093/dmj.2020.0277 pubmed: 34352985 pmcid: 8369205
De Marco, D. et al. Muscle area and density assessed by abdominal computed tomography in healthy adults: Effect of normal aging and derivation of reference values. J. Nutr. Health Aging 26(2), 243–246. https://doi.org/10.1007/s12603-022-1746-3 (2022).
doi: 10.1007/s12603-022-1746-3 pubmed: 35297466
Singh, R., Artaza, J. N., Taylor, W. E., Gonzalez-Cadavid, N. F. & Bhasin, S. Androgens stimulate myogenic differentiation and inhibit adipogenesis in C3H 10T1/2 pluripotent cells through an androgen receptor-mediated pathway. Endocrinology 144(11), 5081–5088. https://doi.org/10.1210/en.2003-0741 (2003).
doi: 10.1210/en.2003-0741 pubmed: 12960001
Sinha-Hikim, I. et al. Testosterone-induced increase in muscle size in healthy young men is associated with muscle fiber hypertrophy. Am. J. Physiol. Endocrinol. Metab. 283(1), E154–E164. https://doi.org/10.1152/ajpendo.00502.2001 (2002).
doi: 10.1152/ajpendo.00502.2001 pubmed: 12067856
Kelly, D. M. & Jones, T. H. Testosterone: A metabolic hormone in health and disease. J. Endocrinol. 217(3), R25-45. https://doi.org/10.1530/joe-12-0455 (2013).
doi: 10.1530/joe-12-0455 pubmed: 23378050
Srinivas-Shankar, U. et al. Effects of testosterone on muscle strength, physical function, body composition, and quality of life in intermediate-frail and frail elderly men: A randomized, double-blind, placebo-controlled study. J. Clin. Endocrinol. Metab. 95(2), 639–650. https://doi.org/10.1210/jc.2009-1251 (2010).
doi: 10.1210/jc.2009-1251 pubmed: 20061435
Russell, N. & Grossmann, M. MECHANISMS IN ENDOCRINOLOGY: Estradiol as a male hormone. Eur. J. Endocrinol. 181(1), R23–R43. https://doi.org/10.1530/eje-18-1000 (2019).
doi: 10.1530/eje-18-1000 pubmed: 31096185
Vandenput, L. et al. Serum estradiol is associated with lean mass in elderly Swedish men. Eur. J. Endocrinol. 162(4), 737–745. https://doi.org/10.1530/eje-09-0696 (2010).
doi: 10.1530/eje-09-0696 pubmed: 20061331
Finkelstein, J. S. et al. Gonadal steroids and body composition, strength, and sexual function in men. N. Engl. J. Med. 369(11), 1011–1022. https://doi.org/10.1056/NEJMoa1206168 (2013).
doi: 10.1056/NEJMoa1206168 pubmed: 24024838 pmcid: 4142768
Baracos, V. E. Psoas as a sentinel muscle for sarcopenia: A flawed premise. J Cachexia Sarcopenia Muscle. 8(4), 527–528. https://doi.org/10.1002/jcsm.12221 (2017).
doi: 10.1002/jcsm.12221 pubmed: 28675689 pmcid: 5566635
Häggmark, T. & Thorstensson, A. Fibre types in human abdominal muscles. Acta Physiol. Scand. 107(4), 319–325. https://doi.org/10.1111/j.1748-1716.1979.tb06482.x (1979).
doi: 10.1111/j.1748-1716.1979.tb06482.x pubmed: 161688
Goodpaster, B. H. et al. Attenuation of skeletal muscle and strength in the elderly: The Health ABC Study. J. Appl. Physiol. (1985) 90(6), 2157–2165. https://doi.org/10.1152/jappl.2001.90.6.2157 (2001).
doi: 10.1152/jappl.2001.90.6.2157 pubmed: 11356778
He, J., Watkins, S. & Kelley, D. E. Skeletal muscle lipid content and oxidative enzyme activity in relation to muscle fiber type in type 2 diabetes and obesity. Diabetes 50(4), 817–823. https://doi.org/10.2337/diabetes.50.4.817 (2001).
doi: 10.2337/diabetes.50.4.817 pubmed: 11289047
Herbst, K. L. & Bhasin, S. Testosterone action on skeletal muscle. Curr. Opin. Clin. Nutr. Metab. Care 7(3), 271–277. https://doi.org/10.1097/00075197-200405000-00006 (2004).
doi: 10.1097/00075197-200405000-00006 pubmed: 15075918
Woodhouse, L. J. et al. Dose-dependent effects of testosterone on regional adipose tissue distribution in healthy young men. J. Clin. Endocrinol. Metab. 89(2), 718–726. https://doi.org/10.1210/jc.2003-031492 (2004).
doi: 10.1210/jc.2003-031492 pubmed: 14764787
Han, S. et al. Testosterone is associated with abdominal body composition derived from computed tomography: A large cross sectional study. Sci. Rep. 12(1), 22528. https://doi.org/10.1038/s41598-022-27182-y (2022).
doi: 10.1038/s41598-022-27182-y pubmed: 36581676 pmcid: 9800400
Hammes, A. et al. Role of endocytosis in cellular uptake of sex steroids. Cell 122(5), 751–762. https://doi.org/10.1016/j.cell.2005.06.032 (2005).
doi: 10.1016/j.cell.2005.06.032 pubmed: 16143106
Poole, C. N., Roberts, M. D., Dalbo, V. J., Sunderland, K. L. & Kerksick, C. M. Megalin and androgen receptor gene expression in young and old human skeletal muscle before and after three sequential exercise bouts. J. Strength Condition. Res. 25(2), 309–317. https://doi.org/10.1519/JSC.0b013e318202e45d (2011).
doi: 10.1519/JSC.0b013e318202e45d
Matsumine, H., Hirato, K., Yanaihara, T., Tamada, T. & Yoshida, M. Aromatization by skeletal muscle. J. Clin. Endocrinol. Metab. 63(3), 717–720. https://doi.org/10.1210/jcem-63-3-717 (1986).
doi: 10.1210/jcem-63-3-717 pubmed: 3734038
Barros Rodrigo, P. A. & Gustafsson, J. -Å. Estrogen receptors and the metabolic network. Cell Metab. 14(3), 289–299. https://doi.org/10.1016/j.cmet.2011.08.005 (2011).
doi: 10.1016/j.cmet.2011.08.005 pubmed: 21907136
Velez, L. M. et al. Genetic variation of putative myokine signaling is dominated by biological sex and sex hormones. Elife 11, e76887. https://doi.org/10.7554/eLife.76887 (2022).
doi: 10.7554/eLife.76887 pubmed: 35416774 pmcid: 9094747
Wiik, A. et al. Expression of oestrogen receptor alpha and beta is higher in skeletal muscle of highly endurance-trained than of moderately active men. Acta Physiol. Scand. 184(2), 105–112. https://doi.org/10.1111/j.1365-201X.2005.01433.x (2005).
doi: 10.1111/j.1365-201X.2005.01433.x pubmed: 15916670
Maher, A. C., Akhtar, M. & Tarnopolsky, M. A. Men supplemented with 17beta-estradiol have increased beta-oxidation capacity in skeletal muscle. Physiol Genomics 42(3), 342–347. https://doi.org/10.1152/physiolgenomics.00016.2010 (2010).
doi: 10.1152/physiolgenomics.00016.2010 pubmed: 20484157
Svensson, J., Movérare-Skrtic, S., Windahl, S., Swanson, C. & Sjögren, K. Stimulation of both estrogen and androgen receptors maintains skeletal muscle mass in gonadectomized male mice but mainly via different pathways. J. Mol. Endocrinol. 45(1), 45–57. https://doi.org/10.1677/jme-09-0165 (2010).
doi: 10.1677/jme-09-0165 pubmed: 20435684
Wang, Q. et al. Sex hormone-binding globulin associations with circulating lipids and metabolites and the risk for type 2 diabetes: Observational and causal effect estimates. Int. J. Epidemiol. 44(2), 623–637. https://doi.org/10.1093/ije/dyv093 (2015).
doi: 10.1093/ije/dyv093 pubmed: 26050255
Osmancevic, A., Daka, B., Michos, E. D., Trimpou, P. & Allison, M. The association between inflammation, testosterone and SHBG in men: A cross-sectional Multi-Ethnic Study of Atherosclerosis. Clin. Endocrinol. (Oxf.) https://doi.org/10.1111/cen.14930 (2023).
doi: 10.1111/cen.14930 pubmed: 37221937
Yuki, A. et al. Relationship between low free testosterone levels and loss of muscle mass. Sci. Rep. 3(1), 1818. https://doi.org/10.1038/srep01818 (2013).
doi: 10.1038/srep01818 pubmed: 23660939 pmcid: 6504823
Auyeung, T. W. et al. Testosterone but not estradiol level is positively related to muscle strength and physical performance independent of muscle mass: A cross-sectional study in 1489 older men. Eur. J. Endocrinol. 164(5), 811–817. https://doi.org/10.1530/eje-10-0952 (2011).
doi: 10.1530/eje-10-0952 pubmed: 21346095
Narinx, N. et al. Role of sex hormone-binding globulin in the free hormone hypothesis and the relevance of free testosterone in androgen physiology. Cell Mol. Life Sci. 79(11), 543. https://doi.org/10.1007/s00018-022-04562-1 (2022).
doi: 10.1007/s00018-022-04562-1 pubmed: 36205798
Larsen, B. et al. Muscle area and density and risk of all-cause mortality: The Multi-Ethnic Study of Atherosclerosis. Metabolism 111, 154321. https://doi.org/10.1016/j.metabol.2020.154321 (2020).
doi: 10.1016/j.metabol.2020.154321 pubmed: 32712219 pmcid: 8062068
Al-Sharefi, A. & Quinton, R. Current national and international guidelines for the management of male hypogonadism: Helping clinicians to navigate variation in diagnostic criteria and treatment recommendations. Endocrinol. Metab. (Seoul) 35(3), 526–540. https://doi.org/10.3803/EnM.2020.760 (2020).
doi: 10.3803/EnM.2020.760 pubmed: 32981295
Schweitzer, L. et al. What is the best reference site for a single MRI slice to assess whole-body skeletal muscle and adipose tissue volumes in healthy adults?. Am. J. Clin. Nutr. 102(1), 58–65. https://doi.org/10.3945/ajcn.115.111203 (2015).
doi: 10.3945/ajcn.115.111203 pubmed: 26016860
Trost, L. W. & Mulhall, J. P. Challenges in testosterone measurement, data interpretation, and methodological appraisal of interventional trials. J. Sex Med. 13(7), 1029–1046. https://doi.org/10.1016/j.jsxm.2016.04.068 (2016).
doi: 10.1016/j.jsxm.2016.04.068 pubmed: 27209182 pmcid: 5516925
Wang, C., Catlin, D. H., Demers, L. M., Starcevic, B. & Swerdloff, R. S. Measurement of total serum testosterone in adult men: Comparison of current laboratory methods versus liquid chromatography-tandem mass spectrometry. J. Clin. Endocrinol. Metab. 89(2), 534–543. https://doi.org/10.1210/jc.2003-031287 (2004).
doi: 10.1210/jc.2003-031287 pubmed: 14764758
Krasowski, M. D. et al. Cross-reactivity of steroid hormone immunoassays: Clinical significance and two-dimensional molecular similarity prediction. BMC Clin. Pathol. 14, 33. https://doi.org/10.1186/1472-6890-14-33 (2014).
doi: 10.1186/1472-6890-14-33 pubmed: 25071417 pmcid: 4112981
Ly, L. P. & Handelsman, D. J. Empirical estimation of free testosterone from testosterone and sex hormone-binding globulin immunoassays. Eur. J. Endocrinol. 152(3), 471–478. https://doi.org/10.1530/eje.1.01844 (2005).
doi: 10.1530/eje.1.01844 pubmed: 15757865
Vermeulen, A., Verdonck, L. & Kaufman, J. M. A critical evaluation of simple methods for the estimation of free testosterone in serum. J. Clin. Endocrinol. Metab. 84(10), 3666–3672. https://doi.org/10.1210/jcem.84.10.6079 (1999).
doi: 10.1210/jcem.84.10.6079 pubmed: 10523012
de Ronde, W. et al. Calculation of bioavailable and free testosterone in men: A comparison of 5 published algorithms. Clin Chem. 52(9), 1777–1784. https://doi.org/10.1373/clinchem.2005.063354 (2006).
doi: 10.1373/clinchem.2005.063354 pubmed: 16793931
Bild, D. E. et al. Multi-Ethnic Study of atherosclerosis: Objectives and design. Am. J. Epidemiol. 156(9), 871–881. https://doi.org/10.1093/aje/kwf113 (2002).
doi: 10.1093/aje/kwf113 pubmed: 12397006
Bhatraju, P. K., Zelnick, L. R., Shlipak, M., Katz, R. & Kestenbaum, B. Association of soluble TNFR-1 concentrations with long-term decline in kidney function: The Multi-Ethnic Study of atherosclerosis. J. Am. Soc. Nephrol. 29(11), 2713–2721. https://doi.org/10.1681/asn.2018070719 (2018).
doi: 10.1681/asn.2018070719 pubmed: 30287518 pmcid: 6218870
Ainsworth, B. E., Irwin, M. L., Addy, C. L., Whitt, M. C. & Stolarczyk, L. M. Moderate physical activity patterns of minority women: The Cross-Cultural Activity Participation Study. J. Womens Health Gend Based Med. 8(6), 805–813. https://doi.org/10.1089/152460999319129 (1999).
doi: 10.1089/152460999319129 pubmed: 10495261
Psaty, B. M. et al. Assessing the use of medications in the elderly: Methods and initial experience in the Cardiovascular Health Study. The Cardiovascular Health Study Collaborative Research Group. J. Clin. Epidemiol. 45(6), 683–692. https://doi.org/10.1016/0895-4356(92)90143-b (1992).
doi: 10.1016/0895-4356(92)90143-b pubmed: 1607909
Kramer, H. et al. Racial/ethnic differences in hypertension and hypertension treatment and control in the Multi-Ethnic Study of atherosclerosis (MESA). Am. J. Hypertens. 17(10), 963–970. https://doi.org/10.1016/j.amjhyper.2004.06.001 (2004).
doi: 10.1016/j.amjhyper.2004.06.001 pubmed: 15485761
Bertoni, A. G., Kramer, H., Watson, K. & Post, W. S. Diabetes and clinical and subclinical CVD. Glob Heart. 11(3), 337–342. https://doi.org/10.1016/j.gheart.2016.07.005 (2016).
doi: 10.1016/j.gheart.2016.07.005 pubmed: 27741980
Harhay, M. O. et al. Relationship of CRP, IL-6, and fibrinogen with right ventricular structure and function: The MESA-Right Ventricle Study. Int. J. Cardiol. 168(4), 3818–3824. https://doi.org/10.1016/j.ijcard.2013.06.028 (2013).
doi: 10.1016/j.ijcard.2013.06.028 pubmed: 23932860 pmcid: 3805818
Aubrey, J. et al. Measurement of skeletal muscle radiation attenuation and basis of its biological variation. Acta Physiol. (Oxf.) 210(3), 489–497. https://doi.org/10.1111/apha.12224 (2014).
doi: 10.1111/apha.12224 pubmed: 24393306
Goodpaster, B. H., Thaete, F. L. & Kelley, D. E. Composition of skeletal muscle evaluated with computed tomography. Ann. N. Y. Acad. Sci. 904, 18–24. https://doi.org/10.1111/j.1749-6632.2000.tb06416.x (2000).
doi: 10.1111/j.1749-6632.2000.tb06416.x pubmed: 10865705
Zhao, D. et al. Endogenous sex hormones and incident cardiovascular disease in post-menopausal women. J. Am. Coll. Cardiol. 71(22), 2555–2566. https://doi.org/10.1016/j.jacc.2018.01.083 (2018).
doi: 10.1016/j.jacc.2018.01.083 pubmed: 29852978 pmcid: 5986086
Michos, E. D. et al. Sex hormones, sex hormone binding globulin, and abdominal aortic calcification in women and men in the Multi-Ethnic Study of atherosclerosis (MESA). Atherosclerosis. 200(2), 432–438. https://doi.org/10.1016/j.atherosclerosis.2007.12.032 (2008).
doi: 10.1016/j.atherosclerosis.2007.12.032 pubmed: 18262187 pmcid: 2607033
Golden, S. H. et al. Endogenous sex hormones and glucose tolerance status in postmenopausal women. J. Clin. Endocrinol. Metab. 92(4), 1289–1295. https://doi.org/10.1210/jc.2006-1895 (2007).
doi: 10.1210/jc.2006-1895 pubmed: 17244779
Södergård, R., Bäckström, T., Shanbhag, V. & Carstensen, H. Calculation of free and bound fractions of testosterone and estradiol-17 beta to human plasma proteins at body temperature. J. Steroid. Biochem. 16(6), 801–810. https://doi.org/10.1016/0022-4731(82)90038-3 (1982).
doi: 10.1016/0022-4731(82)90038-3 pubmed: 7202083

Auteurs

Amar Osmancevic (A)

General Practice / Family Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. amar.osmancevic@gu.se.

Matthew Allison (M)

Division of Preventive Medicine, School of Medicine, UC San Diego, San Diego, CA, USA.

Iva Miljkovic (I)

Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.

Chantal A Vella (CA)

Department of Movement Sciences, University of Idaho, Moscow, ID, USA.

Pamela Ouyang (P)

Institute for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Penelope Trimpou (P)

Department of Endocrinology, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden.

Bledar Daka (B)

General Practice / Family Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH