Reassortment incompetent live attenuated and replicon influenza vaccines provide improved protection against influenza in piglets.


Journal

NPJ vaccines
ISSN: 2059-0105
Titre abrégé: NPJ Vaccines
Pays: England
ID NLM: 101699863

Informations de publication

Date de publication:
13 Jul 2024
Historique:
received: 24 02 2024
accepted: 24 06 2024
medline: 14 7 2024
pubmed: 14 7 2024
entrez: 13 7 2024
Statut: epublish

Résumé

Swine influenza A viruses (swIAV) cause an economically important respiratory disease in modern pig production. Continuous virus transmission and antigenic drift are difficult to control in enzootically infected pig herds. Here, antibody-positive piglets from a herd enzootically infected with swIAV H1N2 (clade 1 A.3.3.2) were immunized using a homologous prime-boost vaccination strategy with novel live attenuated influenza virus (LAIV) based on a reassortment-incompetent bat influenza-swIAV chimera or a vesicular stomatitis virus-based replicon vaccine. Challenge infection of vaccinated piglets by exposure to H1N2 swIAV-infected unvaccinated seeder pigs showed that both LAIV and replicon vaccine markedly reduced virus replication in the upper and lower respiratory tract, respectively, compared to piglets immunized with commercial heterologous or autologous adjuvanted whole-inactivated virus vaccines. Our novel vaccines may aid in interrupting continuous IAV transmission chains in large enzootically infected pig herds, improve the health status of the animals, and reduce the risk of zoonotic swIAV transmission.

Identifiants

pubmed: 39003272
doi: 10.1038/s41541-024-00916-x
pii: 10.1038/s41541-024-00916-x
doi:

Types de publication

Journal Article

Langues

eng

Pagination

127

Subventions

Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : DFG-434507207
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : DFG-434507207
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : DFG-434507207
Organisme : Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
ID : IZCOZO_189903
Organisme : Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
ID : IZCOZO_189903

Informations de copyright

© 2024. The Author(s).

Références

Cador, C. et al. Maternally-derived antibodies do not prevent transmission of swine influenza A virus between pigs. Vet. Res. 47, 86 (2016).
pubmed: 27530456 pmcid: 4988049 doi: 10.1186/s13567-016-0365-6
Anderson, T. K. et al. A phylogeny-based global nomenclature system and automated annotation tool for H1 hemagglutinin genes from swine influenza A viruses. Msphere 1, e00275–16 (2016).
pubmed: 27981236 pmcid: 5156671 doi: 10.1128/mSphere.00275-16
Chauhan, R. P. & Gordon, M. L. A systematic review analyzing the prevalence and circulation of influenza viruses in swine population worldwide. Pathogens 9, 355 (2020).
pubmed: 32397138 pmcid: 7281378 doi: 10.3390/pathogens9050355
Hennig, C. et al. Are pigs overestimated as a source of zoonotic influenza viruses? Porcine Health Manag. 8, 30 (2022).
pubmed: 35773676 pmcid: 9244577 doi: 10.1186/s40813-022-00274-x
Abdelwhab, E. M. & Mettenleiter, T. C. Zoonotic animal influenza virus and potential mixing vessel hosts. Viruses 15, 980 (2023).
pubmed: 37112960 pmcid: 10145017 doi: 10.3390/v15040980
Pitzer, V. E. et al. High turnover drives prolonged persistence of influenza in managed pig herds. J. R. Soc. Interface 13, 20160138 (2016).
pubmed: 27358277 pmcid: 4938081 doi: 10.1098/rsif.2016.0138
Kessler, S., Harder, T. C., Schwemmle, M. & Ciminski, K. Influenza A viruses and zoonotic events-are we creating our own reservoirs? Viruses 13, 2250 (2021).
pubmed: 34835056 pmcid: 8624301 doi: 10.3390/v13112250
Henritzi, D. et al. Surveillance of European domestic pig populations identifies an emerging reservoir of potentially zoonotic swine influenza A viruses. Cell Host Microbe 28, 614–627.e6 (2020).
pubmed: 32721380 doi: 10.1016/j.chom.2020.07.006
Sun, H. L. et al. Prevalent Eurasian avian-like H1N1 swine influenza virus with 2009 pandemic viral genes facilitating human infection. Proc. Natl Acad. Sci. USA 117, 17204–17210 (2020).
pubmed: 32601207 pmcid: 7382246 doi: 10.1073/pnas.1921186117
Vincent, A. L., Ma, W. J., Lager, K. M., Janke, B. H. & Richt, J. A. Swine influenza viruses: a North American perspective. Adv. Virus Res. 72, 127–154 (2008).
pubmed: 19081490 doi: 10.1016/S0065-3527(08)00403-X
Kristensen, C. et al. Experimental infection of pigs and ferrets with “pre-pandemic,” human-adapted, and swineadapted variants of the H1N1pdm09 Influenza A virus reveals significant differences in viral dynamics and pathological manifestations. PLos Pathog. 19, e1011838 (2023).
pubmed: 38048355 pmcid: 10721187 doi: 10.1371/journal.ppat.1011838
Souza, C. K. et al. Antigenic distance between North American swine and human seasonal H3N2 influenza A viruses as an indication of zoonotic risk to humans. J. Virol. 96, e0137421 (2022).
Lopez-Moreno, G., Schmitt, C., Spronk, T., Culhane, M. & Torremorell, M. Evaluation of internal farm biosecurity measures combined with sow vaccination to prevent influenza A virus infection in groups of due-to-wean pigs. BMC Vet. Res. 18, 393 (2022).
pubmed: 36348373 pmcid: 9643894 doi: 10.1186/s12917-022-03494-z
Diaz, A. et al. Association between influenza A virus infection and pigs subpopulations in endemically infected breeding herds. PLos ONE 10, e0129213 (2015).
pubmed: 26076494 pmcid: 4468154 doi: 10.1371/journal.pone.0129213
Keay, S. et al. Does vaccine-induced maternally-derived immunity protect swine offspring against influenza A viruses? A systematic review and meta-analysis of challenge trials from 1990 to May 2021. Animals 13, 3085 (2023).
pubmed: 37835692 pmcid: 10571953 doi: 10.3390/ani13193085
Van Reeth, K. & Ma, W. Swine influenza virus vaccines: to change or not to change-that’s the question. Curr. Top. Microbiol. Immunol. 370, 173–200 (2013).
pubmed: 22976350
Deblanc, C. et al. Maternally-derived antibodies do not inhibit swine influenza virus replication in piglets but decrease excreted virus infectivity and impair post-infectious immune responses. Vet. Microbiol. 216, 142–152 (2018).
pubmed: 29519509 doi: 10.1016/j.vetmic.2018.01.019
Everett, H. E. et al. Vaccines that reduce viral shedding do not prevent transmission of H1N1 pandemic 2009 swine influenza A virus infection to unvaccinated pigs. J. Virol. 95, e01787-20 (2021).
Shin, S., Park, S. H., Park, J. H., Kim, S. M. & Lee, M. J. Age-dependent dynamics of maternally derived antibodies (MDAs) and understanding MDA-mediated immune tolerance in foot-and-mouth disease-vaccinated pigs. Vaccines 10, 677 (2022).
pubmed: 35632433 pmcid: 9143745 doi: 10.3390/vaccines10050677
Vono, M. et al. Maternal antibodies inhibit neonatal and infant responses to vaccination by shaping the early-life B cell repertoire within germinal centers. Cell Rep. 28, 1773–1784.e1775 (2019).
pubmed: 31412246 doi: 10.1016/j.celrep.2019.07.047
Deblanc, C. et al. Evaluation of the pathogenicity and the escape from vaccine protection of a new antigenic variant derived from the European human-like reassortant swine H1N2 influenza virus. Viruses 12, 1155 (2020).
pubmed: 33053905 pmcid: 7599989 doi: 10.3390/v12101155
Ryt-Hansen, P. et al. Substantial antigenic drift in the hemagglutinin protein of swine influenza A viruses. Viruses 12, 248 (2020).
pubmed: 32102230 pmcid: 7077184 doi: 10.3390/v12020248
Ryt-Hansen, P. et al. Acute Influenza A virus outbreak in an enzootic infected sow herd: impact on viral dynamics, genetic and antigenic variability and effect of maternally derived antibodies and vaccination. PLos ONE 14, e0224854 (2019).
pubmed: 31725751 pmcid: 6855628 doi: 10.1371/journal.pone.0224854
Trovão, N. S., Khan, S. M., Lemey, P., Nelson, M. I. & Cherry, J. L. Comparative evolution of influenza A virus H1 and H3 head and stalk domains across host species. mBio 15, e0264923 (2023).
pubmed: 38078770 doi: 10.1128/mbio.02649-23
Platt, R. et al. Comparison of humoral and cellular immune responses to inactivated swine influenza virus vaccine in weaned pigs. Vet. Immunol. Immunopathol. 142, 252–257 (2011).
pubmed: 21664701 doi: 10.1016/j.vetimm.2011.05.005
Rahn, J., Hoffmann, D., Harder, T. C. & Beer, M. Vaccines against influenza A viruses in poultry and swine: Status and future developments. Vaccine 33, 2414–2424 (2015).
pubmed: 25835575 doi: 10.1016/j.vaccine.2015.03.052
Vincent, A. L. et al. Influenza A virus vaccines for swine. Vet. Microbiol. 206, 35–44 (2017).
pubmed: 27923501 doi: 10.1016/j.vetmic.2016.11.026
Chan, L. et al. Review of influenza virus vaccines: the qualitative nature of immune responses to infection and vaccination is a critical consideration. Vaccines 9, 979 (2021).
pubmed: 34579216 pmcid: 8471734 doi: 10.3390/vaccines9090979
Graaf, A. et al. Cold-passaged isolates and bat-swine influenza a chimeric viruses as modified live-attenuated vaccines against influenza a viruses in pigs. Vaccine 40, 6255–6270 (2022).
pubmed: 36137904 doi: 10.1016/j.vaccine.2022.09.013
Lee, J. et al. Bat influenza vectored NS1-truncated live vaccine protects pigs against heterologous virus challenge. Vaccine 39, 1943–1950 (2021).
pubmed: 33715905 pmcid: 8650617 doi: 10.1016/j.vaccine.2021.02.077
Gracia, J. C. M., Pearce, D. S., Masic, A. & Balasch, M. Influenza A virus in swine: epidemiology, challenges and vaccination strategies. Front. Vet. Sci. 7, 647 (2020).
doi: 10.3389/fvets.2020.00647
Ciminski, K., Thamamongood, T., Zimmer, G. & Schwemmle, M. Novel insights into bat influenza A viruses. J. Gen. Virol. 98, 2393–2400 (2017).
pubmed: 28906230 pmcid: 5725989 doi: 10.1099/jgv.0.000927
Juozapaitis, M. et al. An infectious bat-derived chimeric influenza virus harbouring the entry machinery of an influenza A virus. Nat. Commun. 5, 4448 (2014).
pubmed: 25055345 doi: 10.1038/ncomms5448
Ma, W. J., Garcia-Sastre, A. & Schwemmle, M. Expected and unexpected features of the newly discovered bat influenza A-like viruses. PLos Pathog. 11, e1004819 (2015).
pubmed: 26042416 pmcid: 4456350 doi: 10.1371/journal.ppat.1004819
Yang, J. et al. Pathogenicity of modified bat influenza virus with different M genes and its reassortment potential with swine influenza A virus. J. Gen. Virol. 98, 577–584 (2017).
pubmed: 28100299 doi: 10.1099/jgv.0.000715
Ricklin, M. E. et al. Partial protection against porcine influenza A virus by a hemagglutinin-expressing virus replicon particle vaccine in the absence of neutralizing antibodies. Front. Immunol. 7, 253 (2016).
pubmed: 27446083 pmcid: 4928594 doi: 10.3389/fimmu.2016.00253
Finkelshtein, D., Werman, A., Novick, D., Barak, S. & Rubinstein, M. LDL receptor and its family members serve as the cellular receptors for vesicular stomatitis virus. Proc. Natl Acad. Sci. USA 110, 7306–7311 (2013).
pubmed: 23589850 pmcid: 3645523 doi: 10.1073/pnas.1214441110
Walz, L., Kays, S. K., Zimmer, G. & von Messling, V. Neuraminidase-inhibiting antibody titers correlate with protection from heterologous influenza virus strains of the same neuraminidase subtype. J. Virol. 92, e01006–e01018 (2018).
pubmed: 29925654 pmcid: 6096819 doi: 10.1128/JVI.01006-18
Halbherr, S. J. et al. Vaccination with recombinant RNA replicon particles protects chickens from H5N1 highly pathogenic avian influenza virus. PLos ONE 8, e66059 (2013).
pubmed: 23762463 pmcid: 3677925 doi: 10.1371/journal.pone.0066059
Kalhoro, N. H., Veits, J., Rautenschlein, S. & Zimmer, G. A recombinant vesicular stomatitis virus replicon vaccine protects chickens from highly pathogenic avian influenza virus (H7N1). Vaccine 27, 1174–1183 (2009).
pubmed: 19135116 doi: 10.1016/j.vaccine.2008.12.019
Simon-Grifé, M. et al. Swine influenza virus infection dynamics in two pig farms; results of a longitudinal assessment. Vet. Res. 43, 24 (2012).
pubmed: 22452923 pmcid: 3353254 doi: 10.1186/1297-9716-43-24
Loeffen, W. L., Heinen, P. P., Bianchi, A. T., Hunneman, W. A. & Verheijden, J. H. Effect of maternally derived antibodies on the clinical signs and immune response in pigs after primary and secondary infection with an influenza H1N1 virus. Vet. Immunol. Immunopathol. 92, 23–35 (2003).
pubmed: 12628761 doi: 10.1016/S0165-2427(03)00019-9
Kitikoon, P. et al. The immune response and maternal antibody interference to a heterologous H1N1 swine influenza virus infection following vaccination. Vet. Immunol. Immunopathol. 112, 117–128 (2006).
pubmed: 16621020 doi: 10.1016/j.vetimm.2006.02.008
Vincent, A. L. et al. Live attenuated influenza vaccine provides superior protection from heterologous infection in pigs with maternal antibodies without inducing vaccine-associated enhanced respiratory disease. J. Virol. 86, 10597–10605 (2012).
pubmed: 22811541 pmcid: 3457301 doi: 10.1128/JVI.01439-12
Allerson, M. et al. The impact of maternally derived immunity on influenza A virus transmission in neonatal pig populations. Vaccine 31, 500–505 (2013).
pubmed: 23174202 doi: 10.1016/j.vaccine.2012.11.023
Andraud, M. et al. Evaluation of early single dose vaccination on swine influenza A virus transmission in piglets: from experimental data to mechanistic modelling. Vaccine 41, 3119–3127 (2023).
pubmed: 37061373 doi: 10.1016/j.vaccine.2023.04.018
Rajao, D. S. et al. Heterologous challenge in the presence of maternally-derived antibodies results in vaccine-associated enhanced respiratory disease in weaned piglets. Virology 491, 79–88 (2016).
pubmed: 26874588 doi: 10.1016/j.virol.2016.01.015
Fu, Y. G. et al. Infection studies in pigs and porcine airway epithelial cells reveal an evolution of A(H1N1)pdm09 influenza A viruses toward lower virulence. J. Infect. Dis. 219, 1596–1604 (2019).
pubmed: 30776304 doi: 10.1093/infdis/jiy719
Sunwoo, S. Y. et al. A universal influenza virus vaccine candidate tested in a pig vaccination-infection model in the presence of maternal antibodies. Vaccines 6, 64 (2018).
pubmed: 30223475 pmcid: 6161263 doi: 10.3390/vaccines6030064
McNee, A. et al. A direct contact pig influenza challenge model for assessing protective efficacy of monoclonal antibodies. Front. Immunol. 14, 1229051 (2023).
pubmed: 37965320 pmcid: 10641767 doi: 10.3389/fimmu.2023.1229051
Corzo, C. A. et al. Relationship between airborne detection of influenza A virus and the number of infected pigs. Vet. J. 196, 171–175 (2013).
pubmed: 23164957 doi: 10.1016/j.tvjl.2012.09.024
Mo, J. S. et al. Transmission of human influenza A virus in pigs selects for adaptive mutations on the HA gene. J. Virol. 96, e0148022 (2022).
Schmies, K. et al. Dynamic of swine influenza virus infection in weaned piglets in five enzootically infected herds in Germany. Porcine Health Manag. (2024, submitted).
Cox, R. J., Brokstad, K. A. & Ogra, P. Influenza virus: immunity and vaccination strategies. Comparison of the immune response to inactivated and live, attenuated influenza vaccines. Scand. J. Immunol. 59, 1–15 (2004).
pubmed: 14723616 doi: 10.1111/j.0300-9475.2004.01382.x
Patil, V. et al. A split influenza vaccine formulated with a combination adjuvant composed of alpha-D-glucan nanoparticles and a STING agonist elicits cross-protective immunity in pigs. J. Nanobiotechnol. 20, 477 (2022).
doi: 10.1186/s12951-022-01677-2
Renu, S. et al. Immunity and protective efficacy of mannose conjugated chitosan-based influenza nanovaccine in maternal antibody positive pigs. Front. Immunol. 12, 584299 (2021).
pubmed: 33746943 pmcid: 7969509 doi: 10.3389/fimmu.2021.584299
Renu, S. et al. Poly(I:C) augments inactivated influenza virus-chitosan nanovaccine induced cell mediated immune response in pigs vaccinated intranasally. Vet. Microbiol. 242, 108611 (2020).
pubmed: 32122615 doi: 10.1016/j.vetmic.2020.108611
Patil, V. et al. Intranasal delivery of inactivated influenza virus and poly(I:C) adsorbed corn-based nanoparticle vaccine elicited robust antigen-specific cell-mediated immune responses in maternal antibody positive nursery pigs. Front. Immunol. 11, 596964 (2020).
pubmed: 33391267 pmcid: 7772411 doi: 10.3389/fimmu.2020.596964
Barber, W. H. & Small, P. A. Jr. Local and systemic immunity to influenza infections in ferrets. Infect. Immun. 21, 221–228 (1978).
pubmed: 711316 pmcid: 421980 doi: 10.1128/iai.21.1.221-228.1978
Halbherr, S. J. et al. Biological and protective properties of immune sera directed to the influenza virus neuraminidase. J. Virol. 89, 1550–1563 (2015).
pubmed: 25392225 doi: 10.1128/JVI.02949-14
Van Reeth, K. et al. Heterologous prime-boost vaccination with H3N2 influenza viruses of swine favors cross-clade antibody responses and protection. NPJ Vaccines 2, 11 (2017).
pubmed: 29250437 pmcid: 5604745 doi: 10.1038/s41541-017-0012-x
Parys, A., Vandoorn, E., Chiers, K. & Van Reeth, K. Alternating 3 different influenza vaccines for swine in Europe for a broader antibody response and protection. Vet. Res. 53, 44 (2022).
pubmed: 35705993 pmcid: 9202218 doi: 10.1186/s13567-022-01060-x
Parys, A. et al. Exploring prime-boost vaccination regimens with different H1N1 swine influenza A virus strains and vaccine platforms. Vaccines 10, 1826 (2022).
WOAH. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 12th edn (2023).
Hanika, A. et al. Use of influenza C virus glycoprotein HEF for generation of vesicular stomatitis virus pseudotypes. J. Gen. Virol. 86, 1455–1465 (2005).
pubmed: 15831958 doi: 10.1099/vir.0.80788-0
Schön, J. et al. A modified live bat influenza A virus-based vaccine prototype provides full protection against HPAIV H5N1. NPJ Vaccines 5, 40 (2020).
pubmed: 32435514 pmcid: 7229168 doi: 10.1038/s41541-020-0185-6
Ran, W. et al. Generation of an attenuated chimeric bat influenza A virus live-vaccine prototype. Microbiol. Spectr. 10, e0142422 (2022).
pubmed: 36445145 doi: 10.1128/spectrum.01424-22
Brunborg, I. M., Moldal, T. & Jonassen, C. M. Quantitation of porcine circovirus type 2 isolated from serum/plasma and tissue samples of healthy pigs and pigs with postweaning multisystemic wasting syndrome using a TaqMan-based real-time PCR. J. Virol. Methods 122, 171–178 (2004).
pubmed: 15542141 doi: 10.1016/j.jviromet.2004.08.014
Kleiboeker, S. B. et al. Simultaneous detection of North American and European porcine reproductive and respiratory syndrome virus using real-time quantitative reverse transcriptase-PCR. J. Vet. Diagn. Investig. 17, 165–170 (2005).
doi: 10.1177/104063870501700211
Hassan, K. E. et al. Improved subtyping of avian influenza viruses using an RT-qPCR-based low density array: ‘Riems influenza a typing array’, Version 2 (RITA-2). Viruses 14, 415 (2022).
pubmed: 35216008 pmcid: 8879595 doi: 10.3390/v14020415
Schwaiger, T. et al. Experimental H1N1pdm09 infection in pigs mimics human seasonal influenza infections. PLos ONE 14, e0222943 (2019).
pubmed: 31539406 pmcid: 6754157 doi: 10.1371/journal.pone.0222943

Auteurs

Annika Graaf-Rau (A)

Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Greifswald, Germany. annika.graaf-rau@fli.de.

Kathrin Schmies (K)

Field Station for Epidemiology, University of Veterinary Medicine Hannover, Foundation, Bakum, Germany.

Angele Breithaupt (A)

Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler- Institut, Greifswald, Insel Riems, Germany.

Kevin Ciminski (K)

Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany.
Faculty of Medicine, University of Freiburg, Freiburg, Germany.

Gert Zimmer (G)

Institute of Virology and Immunology, Bern & Mittelhaeusern, Switzerland, and Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.

Artur Summerfield (A)

Institute of Virology and Immunology, Bern & Mittelhaeusern, Switzerland, and Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.

Julia Sehl-Ewert (J)

Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler- Institut, Greifswald, Insel Riems, Germany.

Kathrin Lillie-Jaschniski (K)

Ceva Santé Animale, Duesseldorf, Germany.

Carina Helmer (C)

SAN Group Biotech Germany GmbH, Hoeltinghausen, Germany.

Wiebke Bielenberg (W)

SAN Group Biotech Germany GmbH, Hoeltinghausen, Germany.

Elisabeth Grosse Beilage (E)

Field Station for Epidemiology, University of Veterinary Medicine Hannover, Foundation, Bakum, Germany.

Martin Schwemmle (M)

Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany.
Faculty of Medicine, University of Freiburg, Freiburg, Germany.

Martin Beer (M)

Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Greifswald, Germany.

Timm Harder (T)

Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Greifswald, Germany.

Classifications MeSH