Reassortment incompetent live attenuated and replicon influenza vaccines provide improved protection against influenza in piglets.
Journal
NPJ vaccines
ISSN: 2059-0105
Titre abrégé: NPJ Vaccines
Pays: England
ID NLM: 101699863
Informations de publication
Date de publication:
13 Jul 2024
13 Jul 2024
Historique:
received:
24
02
2024
accepted:
24
06
2024
medline:
14
7
2024
pubmed:
14
7
2024
entrez:
13
7
2024
Statut:
epublish
Résumé
Swine influenza A viruses (swIAV) cause an economically important respiratory disease in modern pig production. Continuous virus transmission and antigenic drift are difficult to control in enzootically infected pig herds. Here, antibody-positive piglets from a herd enzootically infected with swIAV H1N2 (clade 1 A.3.3.2) were immunized using a homologous prime-boost vaccination strategy with novel live attenuated influenza virus (LAIV) based on a reassortment-incompetent bat influenza-swIAV chimera or a vesicular stomatitis virus-based replicon vaccine. Challenge infection of vaccinated piglets by exposure to H1N2 swIAV-infected unvaccinated seeder pigs showed that both LAIV and replicon vaccine markedly reduced virus replication in the upper and lower respiratory tract, respectively, compared to piglets immunized with commercial heterologous or autologous adjuvanted whole-inactivated virus vaccines. Our novel vaccines may aid in interrupting continuous IAV transmission chains in large enzootically infected pig herds, improve the health status of the animals, and reduce the risk of zoonotic swIAV transmission.
Identifiants
pubmed: 39003272
doi: 10.1038/s41541-024-00916-x
pii: 10.1038/s41541-024-00916-x
doi:
Types de publication
Journal Article
Langues
eng
Pagination
127Subventions
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : DFG-434507207
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : DFG-434507207
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : DFG-434507207
Organisme : Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
ID : IZCOZO_189903
Organisme : Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
ID : IZCOZO_189903
Informations de copyright
© 2024. The Author(s).
Références
Cador, C. et al. Maternally-derived antibodies do not prevent transmission of swine influenza A virus between pigs. Vet. Res. 47, 86 (2016).
pubmed: 27530456
pmcid: 4988049
doi: 10.1186/s13567-016-0365-6
Anderson, T. K. et al. A phylogeny-based global nomenclature system and automated annotation tool for H1 hemagglutinin genes from swine influenza A viruses. Msphere 1, e00275–16 (2016).
pubmed: 27981236
pmcid: 5156671
doi: 10.1128/mSphere.00275-16
Chauhan, R. P. & Gordon, M. L. A systematic review analyzing the prevalence and circulation of influenza viruses in swine population worldwide. Pathogens 9, 355 (2020).
pubmed: 32397138
pmcid: 7281378
doi: 10.3390/pathogens9050355
Hennig, C. et al. Are pigs overestimated as a source of zoonotic influenza viruses? Porcine Health Manag. 8, 30 (2022).
pubmed: 35773676
pmcid: 9244577
doi: 10.1186/s40813-022-00274-x
Abdelwhab, E. M. & Mettenleiter, T. C. Zoonotic animal influenza virus and potential mixing vessel hosts. Viruses 15, 980 (2023).
pubmed: 37112960
pmcid: 10145017
doi: 10.3390/v15040980
Pitzer, V. E. et al. High turnover drives prolonged persistence of influenza in managed pig herds. J. R. Soc. Interface 13, 20160138 (2016).
pubmed: 27358277
pmcid: 4938081
doi: 10.1098/rsif.2016.0138
Kessler, S., Harder, T. C., Schwemmle, M. & Ciminski, K. Influenza A viruses and zoonotic events-are we creating our own reservoirs? Viruses 13, 2250 (2021).
pubmed: 34835056
pmcid: 8624301
doi: 10.3390/v13112250
Henritzi, D. et al. Surveillance of European domestic pig populations identifies an emerging reservoir of potentially zoonotic swine influenza A viruses. Cell Host Microbe 28, 614–627.e6 (2020).
pubmed: 32721380
doi: 10.1016/j.chom.2020.07.006
Sun, H. L. et al. Prevalent Eurasian avian-like H1N1 swine influenza virus with 2009 pandemic viral genes facilitating human infection. Proc. Natl Acad. Sci. USA 117, 17204–17210 (2020).
pubmed: 32601207
pmcid: 7382246
doi: 10.1073/pnas.1921186117
Vincent, A. L., Ma, W. J., Lager, K. M., Janke, B. H. & Richt, J. A. Swine influenza viruses: a North American perspective. Adv. Virus Res. 72, 127–154 (2008).
pubmed: 19081490
doi: 10.1016/S0065-3527(08)00403-X
Kristensen, C. et al. Experimental infection of pigs and ferrets with “pre-pandemic,” human-adapted, and swineadapted variants of the H1N1pdm09 Influenza A virus reveals significant differences in viral dynamics and pathological manifestations. PLos Pathog. 19, e1011838 (2023).
pubmed: 38048355
pmcid: 10721187
doi: 10.1371/journal.ppat.1011838
Souza, C. K. et al. Antigenic distance between North American swine and human seasonal H3N2 influenza A viruses as an indication of zoonotic risk to humans. J. Virol. 96, e0137421 (2022).
Lopez-Moreno, G., Schmitt, C., Spronk, T., Culhane, M. & Torremorell, M. Evaluation of internal farm biosecurity measures combined with sow vaccination to prevent influenza A virus infection in groups of due-to-wean pigs. BMC Vet. Res. 18, 393 (2022).
pubmed: 36348373
pmcid: 9643894
doi: 10.1186/s12917-022-03494-z
Diaz, A. et al. Association between influenza A virus infection and pigs subpopulations in endemically infected breeding herds. PLos ONE 10, e0129213 (2015).
pubmed: 26076494
pmcid: 4468154
doi: 10.1371/journal.pone.0129213
Keay, S. et al. Does vaccine-induced maternally-derived immunity protect swine offspring against influenza A viruses? A systematic review and meta-analysis of challenge trials from 1990 to May 2021. Animals 13, 3085 (2023).
pubmed: 37835692
pmcid: 10571953
doi: 10.3390/ani13193085
Van Reeth, K. & Ma, W. Swine influenza virus vaccines: to change or not to change-that’s the question. Curr. Top. Microbiol. Immunol. 370, 173–200 (2013).
pubmed: 22976350
Deblanc, C. et al. Maternally-derived antibodies do not inhibit swine influenza virus replication in piglets but decrease excreted virus infectivity and impair post-infectious immune responses. Vet. Microbiol. 216, 142–152 (2018).
pubmed: 29519509
doi: 10.1016/j.vetmic.2018.01.019
Everett, H. E. et al. Vaccines that reduce viral shedding do not prevent transmission of H1N1 pandemic 2009 swine influenza A virus infection to unvaccinated pigs. J. Virol. 95, e01787-20 (2021).
Shin, S., Park, S. H., Park, J. H., Kim, S. M. & Lee, M. J. Age-dependent dynamics of maternally derived antibodies (MDAs) and understanding MDA-mediated immune tolerance in foot-and-mouth disease-vaccinated pigs. Vaccines 10, 677 (2022).
pubmed: 35632433
pmcid: 9143745
doi: 10.3390/vaccines10050677
Vono, M. et al. Maternal antibodies inhibit neonatal and infant responses to vaccination by shaping the early-life B cell repertoire within germinal centers. Cell Rep. 28, 1773–1784.e1775 (2019).
pubmed: 31412246
doi: 10.1016/j.celrep.2019.07.047
Deblanc, C. et al. Evaluation of the pathogenicity and the escape from vaccine protection of a new antigenic variant derived from the European human-like reassortant swine H1N2 influenza virus. Viruses 12, 1155 (2020).
pubmed: 33053905
pmcid: 7599989
doi: 10.3390/v12101155
Ryt-Hansen, P. et al. Substantial antigenic drift in the hemagglutinin protein of swine influenza A viruses. Viruses 12, 248 (2020).
pubmed: 32102230
pmcid: 7077184
doi: 10.3390/v12020248
Ryt-Hansen, P. et al. Acute Influenza A virus outbreak in an enzootic infected sow herd: impact on viral dynamics, genetic and antigenic variability and effect of maternally derived antibodies and vaccination. PLos ONE 14, e0224854 (2019).
pubmed: 31725751
pmcid: 6855628
doi: 10.1371/journal.pone.0224854
Trovão, N. S., Khan, S. M., Lemey, P., Nelson, M. I. & Cherry, J. L. Comparative evolution of influenza A virus H1 and H3 head and stalk domains across host species. mBio 15, e0264923 (2023).
pubmed: 38078770
doi: 10.1128/mbio.02649-23
Platt, R. et al. Comparison of humoral and cellular immune responses to inactivated swine influenza virus vaccine in weaned pigs. Vet. Immunol. Immunopathol. 142, 252–257 (2011).
pubmed: 21664701
doi: 10.1016/j.vetimm.2011.05.005
Rahn, J., Hoffmann, D., Harder, T. C. & Beer, M. Vaccines against influenza A viruses in poultry and swine: Status and future developments. Vaccine 33, 2414–2424 (2015).
pubmed: 25835575
doi: 10.1016/j.vaccine.2015.03.052
Vincent, A. L. et al. Influenza A virus vaccines for swine. Vet. Microbiol. 206, 35–44 (2017).
pubmed: 27923501
doi: 10.1016/j.vetmic.2016.11.026
Chan, L. et al. Review of influenza virus vaccines: the qualitative nature of immune responses to infection and vaccination is a critical consideration. Vaccines 9, 979 (2021).
pubmed: 34579216
pmcid: 8471734
doi: 10.3390/vaccines9090979
Graaf, A. et al. Cold-passaged isolates and bat-swine influenza a chimeric viruses as modified live-attenuated vaccines against influenza a viruses in pigs. Vaccine 40, 6255–6270 (2022).
pubmed: 36137904
doi: 10.1016/j.vaccine.2022.09.013
Lee, J. et al. Bat influenza vectored NS1-truncated live vaccine protects pigs against heterologous virus challenge. Vaccine 39, 1943–1950 (2021).
pubmed: 33715905
pmcid: 8650617
doi: 10.1016/j.vaccine.2021.02.077
Gracia, J. C. M., Pearce, D. S., Masic, A. & Balasch, M. Influenza A virus in swine: epidemiology, challenges and vaccination strategies. Front. Vet. Sci. 7, 647 (2020).
doi: 10.3389/fvets.2020.00647
Ciminski, K., Thamamongood, T., Zimmer, G. & Schwemmle, M. Novel insights into bat influenza A viruses. J. Gen. Virol. 98, 2393–2400 (2017).
pubmed: 28906230
pmcid: 5725989
doi: 10.1099/jgv.0.000927
Juozapaitis, M. et al. An infectious bat-derived chimeric influenza virus harbouring the entry machinery of an influenza A virus. Nat. Commun. 5, 4448 (2014).
pubmed: 25055345
doi: 10.1038/ncomms5448
Ma, W. J., Garcia-Sastre, A. & Schwemmle, M. Expected and unexpected features of the newly discovered bat influenza A-like viruses. PLos Pathog. 11, e1004819 (2015).
pubmed: 26042416
pmcid: 4456350
doi: 10.1371/journal.ppat.1004819
Yang, J. et al. Pathogenicity of modified bat influenza virus with different M genes and its reassortment potential with swine influenza A virus. J. Gen. Virol. 98, 577–584 (2017).
pubmed: 28100299
doi: 10.1099/jgv.0.000715
Ricklin, M. E. et al. Partial protection against porcine influenza A virus by a hemagglutinin-expressing virus replicon particle vaccine in the absence of neutralizing antibodies. Front. Immunol. 7, 253 (2016).
pubmed: 27446083
pmcid: 4928594
doi: 10.3389/fimmu.2016.00253
Finkelshtein, D., Werman, A., Novick, D., Barak, S. & Rubinstein, M. LDL receptor and its family members serve as the cellular receptors for vesicular stomatitis virus. Proc. Natl Acad. Sci. USA 110, 7306–7311 (2013).
pubmed: 23589850
pmcid: 3645523
doi: 10.1073/pnas.1214441110
Walz, L., Kays, S. K., Zimmer, G. & von Messling, V. Neuraminidase-inhibiting antibody titers correlate with protection from heterologous influenza virus strains of the same neuraminidase subtype. J. Virol. 92, e01006–e01018 (2018).
pubmed: 29925654
pmcid: 6096819
doi: 10.1128/JVI.01006-18
Halbherr, S. J. et al. Vaccination with recombinant RNA replicon particles protects chickens from H5N1 highly pathogenic avian influenza virus. PLos ONE 8, e66059 (2013).
pubmed: 23762463
pmcid: 3677925
doi: 10.1371/journal.pone.0066059
Kalhoro, N. H., Veits, J., Rautenschlein, S. & Zimmer, G. A recombinant vesicular stomatitis virus replicon vaccine protects chickens from highly pathogenic avian influenza virus (H7N1). Vaccine 27, 1174–1183 (2009).
pubmed: 19135116
doi: 10.1016/j.vaccine.2008.12.019
Simon-Grifé, M. et al. Swine influenza virus infection dynamics in two pig farms; results of a longitudinal assessment. Vet. Res. 43, 24 (2012).
pubmed: 22452923
pmcid: 3353254
doi: 10.1186/1297-9716-43-24
Loeffen, W. L., Heinen, P. P., Bianchi, A. T., Hunneman, W. A. & Verheijden, J. H. Effect of maternally derived antibodies on the clinical signs and immune response in pigs after primary and secondary infection with an influenza H1N1 virus. Vet. Immunol. Immunopathol. 92, 23–35 (2003).
pubmed: 12628761
doi: 10.1016/S0165-2427(03)00019-9
Kitikoon, P. et al. The immune response and maternal antibody interference to a heterologous H1N1 swine influenza virus infection following vaccination. Vet. Immunol. Immunopathol. 112, 117–128 (2006).
pubmed: 16621020
doi: 10.1016/j.vetimm.2006.02.008
Vincent, A. L. et al. Live attenuated influenza vaccine provides superior protection from heterologous infection in pigs with maternal antibodies without inducing vaccine-associated enhanced respiratory disease. J. Virol. 86, 10597–10605 (2012).
pubmed: 22811541
pmcid: 3457301
doi: 10.1128/JVI.01439-12
Allerson, M. et al. The impact of maternally derived immunity on influenza A virus transmission in neonatal pig populations. Vaccine 31, 500–505 (2013).
pubmed: 23174202
doi: 10.1016/j.vaccine.2012.11.023
Andraud, M. et al. Evaluation of early single dose vaccination on swine influenza A virus transmission in piglets: from experimental data to mechanistic modelling. Vaccine 41, 3119–3127 (2023).
pubmed: 37061373
doi: 10.1016/j.vaccine.2023.04.018
Rajao, D. S. et al. Heterologous challenge in the presence of maternally-derived antibodies results in vaccine-associated enhanced respiratory disease in weaned piglets. Virology 491, 79–88 (2016).
pubmed: 26874588
doi: 10.1016/j.virol.2016.01.015
Fu, Y. G. et al. Infection studies in pigs and porcine airway epithelial cells reveal an evolution of A(H1N1)pdm09 influenza A viruses toward lower virulence. J. Infect. Dis. 219, 1596–1604 (2019).
pubmed: 30776304
doi: 10.1093/infdis/jiy719
Sunwoo, S. Y. et al. A universal influenza virus vaccine candidate tested in a pig vaccination-infection model in the presence of maternal antibodies. Vaccines 6, 64 (2018).
pubmed: 30223475
pmcid: 6161263
doi: 10.3390/vaccines6030064
McNee, A. et al. A direct contact pig influenza challenge model for assessing protective efficacy of monoclonal antibodies. Front. Immunol. 14, 1229051 (2023).
pubmed: 37965320
pmcid: 10641767
doi: 10.3389/fimmu.2023.1229051
Corzo, C. A. et al. Relationship between airborne detection of influenza A virus and the number of infected pigs. Vet. J. 196, 171–175 (2013).
pubmed: 23164957
doi: 10.1016/j.tvjl.2012.09.024
Mo, J. S. et al. Transmission of human influenza A virus in pigs selects for adaptive mutations on the HA gene. J. Virol. 96, e0148022 (2022).
Schmies, K. et al. Dynamic of swine influenza virus infection in weaned piglets in five enzootically infected herds in Germany. Porcine Health Manag. (2024, submitted).
Cox, R. J., Brokstad, K. A. & Ogra, P. Influenza virus: immunity and vaccination strategies. Comparison of the immune response to inactivated and live, attenuated influenza vaccines. Scand. J. Immunol. 59, 1–15 (2004).
pubmed: 14723616
doi: 10.1111/j.0300-9475.2004.01382.x
Patil, V. et al. A split influenza vaccine formulated with a combination adjuvant composed of alpha-D-glucan nanoparticles and a STING agonist elicits cross-protective immunity in pigs. J. Nanobiotechnol. 20, 477 (2022).
doi: 10.1186/s12951-022-01677-2
Renu, S. et al. Immunity and protective efficacy of mannose conjugated chitosan-based influenza nanovaccine in maternal antibody positive pigs. Front. Immunol. 12, 584299 (2021).
pubmed: 33746943
pmcid: 7969509
doi: 10.3389/fimmu.2021.584299
Renu, S. et al. Poly(I:C) augments inactivated influenza virus-chitosan nanovaccine induced cell mediated immune response in pigs vaccinated intranasally. Vet. Microbiol. 242, 108611 (2020).
pubmed: 32122615
doi: 10.1016/j.vetmic.2020.108611
Patil, V. et al. Intranasal delivery of inactivated influenza virus and poly(I:C) adsorbed corn-based nanoparticle vaccine elicited robust antigen-specific cell-mediated immune responses in maternal antibody positive nursery pigs. Front. Immunol. 11, 596964 (2020).
pubmed: 33391267
pmcid: 7772411
doi: 10.3389/fimmu.2020.596964
Barber, W. H. & Small, P. A. Jr. Local and systemic immunity to influenza infections in ferrets. Infect. Immun. 21, 221–228 (1978).
pubmed: 711316
pmcid: 421980
doi: 10.1128/iai.21.1.221-228.1978
Halbherr, S. J. et al. Biological and protective properties of immune sera directed to the influenza virus neuraminidase. J. Virol. 89, 1550–1563 (2015).
pubmed: 25392225
doi: 10.1128/JVI.02949-14
Van Reeth, K. et al. Heterologous prime-boost vaccination with H3N2 influenza viruses of swine favors cross-clade antibody responses and protection. NPJ Vaccines 2, 11 (2017).
pubmed: 29250437
pmcid: 5604745
doi: 10.1038/s41541-017-0012-x
Parys, A., Vandoorn, E., Chiers, K. & Van Reeth, K. Alternating 3 different influenza vaccines for swine in Europe for a broader antibody response and protection. Vet. Res. 53, 44 (2022).
pubmed: 35705993
pmcid: 9202218
doi: 10.1186/s13567-022-01060-x
Parys, A. et al. Exploring prime-boost vaccination regimens with different H1N1 swine influenza A virus strains and vaccine platforms. Vaccines 10, 1826 (2022).
WOAH. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 12th edn (2023).
Hanika, A. et al. Use of influenza C virus glycoprotein HEF for generation of vesicular stomatitis virus pseudotypes. J. Gen. Virol. 86, 1455–1465 (2005).
pubmed: 15831958
doi: 10.1099/vir.0.80788-0
Schön, J. et al. A modified live bat influenza A virus-based vaccine prototype provides full protection against HPAIV H5N1. NPJ Vaccines 5, 40 (2020).
pubmed: 32435514
pmcid: 7229168
doi: 10.1038/s41541-020-0185-6
Ran, W. et al. Generation of an attenuated chimeric bat influenza A virus live-vaccine prototype. Microbiol. Spectr. 10, e0142422 (2022).
pubmed: 36445145
doi: 10.1128/spectrum.01424-22
Brunborg, I. M., Moldal, T. & Jonassen, C. M. Quantitation of porcine circovirus type 2 isolated from serum/plasma and tissue samples of healthy pigs and pigs with postweaning multisystemic wasting syndrome using a TaqMan-based real-time PCR. J. Virol. Methods 122, 171–178 (2004).
pubmed: 15542141
doi: 10.1016/j.jviromet.2004.08.014
Kleiboeker, S. B. et al. Simultaneous detection of North American and European porcine reproductive and respiratory syndrome virus using real-time quantitative reverse transcriptase-PCR. J. Vet. Diagn. Investig. 17, 165–170 (2005).
doi: 10.1177/104063870501700211
Hassan, K. E. et al. Improved subtyping of avian influenza viruses using an RT-qPCR-based low density array: ‘Riems influenza a typing array’, Version 2 (RITA-2). Viruses 14, 415 (2022).
pubmed: 35216008
pmcid: 8879595
doi: 10.3390/v14020415
Schwaiger, T. et al. Experimental H1N1pdm09 infection in pigs mimics human seasonal influenza infections. PLos ONE 14, e0222943 (2019).
pubmed: 31539406
pmcid: 6754157
doi: 10.1371/journal.pone.0222943