Characterization of Crystals in Ciliate Paramecium bursaria Harboring Endosymbiotic Chlorella variabilis.
Journal
Current microbiology
ISSN: 1432-0991
Titre abrégé: Curr Microbiol
Pays: United States
ID NLM: 7808448
Informations de publication
Date de publication:
13 Jul 2024
13 Jul 2024
Historique:
received:
15
04
2024
accepted:
30
06
2024
medline:
14
7
2024
pubmed:
14
7
2024
entrez:
13
7
2024
Statut:
epublish
Résumé
Protists, including ciliates retain crystals in their cytoplasm. However, their functions and properties remain unclear. To comparatively analyze the crystals of Paramecium bursaria, a ciliate, associated with and without the endosymbiotic Chlorella variabilis, we investigated the isolated crystals using a light microscope and analyzed their length and solubility. A negligible number of crystals was found in P. bursaria cells harboring symbiotic algae. The average crystal length in alga-free and algae-reduced cells was about 6.8 μm and 14.4 μm, respectively. The crystals of alga-free cells were spherical, whereas those of algae-reduced cells were angular in shape. The crystals of alga-free cells immediately dissolved in acids and bases, but not in water or organic solvents, and were stable at - 20 °C for more than 3 weeks. This study, for the first time, reveals that the characteristics of crystals present in the cytoplasm of P. bursaria vary greatly depending on the amount of symbiotic algae.
Identifiants
pubmed: 39003318
doi: 10.1007/s00284-024-03793-8
pii: 10.1007/s00284-024-03793-8
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
265Subventions
Organisme : Japan Society for the Promotion of Science
ID : (Grant-in-Aid for Scientific Research (C) (Grant No. 20K06768))
Organisme : Japan Society for the Promotion of Science
ID : (Grant-in-Aid for Scientific Research (B) (Grant No. 23H02529))
Informations de copyright
© 2024. The Author(s).
Références
Bernheimer AW (1938) a comparative study of crystalline inclusions of protozoa. Trans Am Microsc Soc 57:336–343
doi: 10.2307/3222488
Pautard. FGE, Calcification in Unicellular Organisms (1970) In. Biological Calcification: Schraer H(ed) Cellular and Molecular Aspects. 105–201 Appleton-Century-Crofts, New York. https://doi.org/10.1007/978-1-4684-8485-4_4
doi: 10.1007/978-1-4684-8485-4_4
Creutz CE, Mohanty S, Defalco T, Kretsinger RH (2002) Purine composition of the crystalline cytoplasmic inclusions of Paramecium tetraurelia. Protist 153:39–45. https://doi.org/10.1078/1434-4610-00081
doi: 10.1078/1434-4610-00081
pubmed: 12022274
Grover JE, Rope AF, Kaneshiro ES (1997) The occurrence of biogenic calcian struvite, (Mg, Ca) NH
doi: 10.1111/j.1550-7408.1997.tb05679.x
Pautard FGE (1959) Hydroxyapatite as a developmental feature of Spirostomum ambiguum. Biochem Biophys Acta 35:33–46. https://doi.org/10.1016/0006-3002(59)90332-4
doi: 10.1016/0006-3002(59)90332-4
pubmed: 14431058
Fogel M, Schmitter RE, Hastings JW (1972) On the physical identity of scientillons; bioluminescent particles in Gonyaulax polyedra. J Cell Sci 11:305–317
doi: 10.1242/jcs.11.1.305
pubmed: 4341991
Soldo AT, Godoy GA, Larin F (1978) Purine-excretory nature of refractile bodies in the marine ciliate Parauronema acutum. J Protozool 25:416–418. https://doi.org/10.1111/j.1550-7408.1978.tb03917.x
doi: 10.1111/j.1550-7408.1978.tb03917.x
Pilátová J, Pánek T, Oborník M, Ivan Č, Peter M (2022) Revisiting biocrystallization: purine crystalline inclusions are widespread in eukaryotes. ISME J 16:2290–2294. https://doi.org/10.1038/s41396-022-01264-1
doi: 10.1038/s41396-022-01264-1
pubmed: 35672454
pmcid: 9381591
Hausmann. K, Hulsmann. N, Radek. R (2003) Protistology. Schweizerbart Science Publishers, Stuttgart
Greczek-Stachura M, Leśnicka PZ, Tarcz S, Rautian M, Możdżeń K (2021) Genetic diversity of symbiotic green algae of Paramecium bursaria Syngens originating from distant geographical locations. Plants 10(3):609. https://doi.org/10.3390/plants10030609
doi: 10.3390/plants10030609
pubmed: 33806926
pmcid: 8005025
Reisser W (1980) The metabolic interactions between Paramecium bursaria Ehrbg. and Chlorella spec. in the Paramecium bursaria-symbiosis. III. The influence of different CO
doi: 10.1007/BF00446890
Albers D, Reisser W, Wiessner W (1982) Studies on the nitrogen supply of endosymbiotic chlorellae in green Paramecium bursaria. Plant Sci Lett 25:85–90. https://doi.org/10.1016/0304-4211(82)90210-3
doi: 10.1016/0304-4211(82)90210-3
Alberts D, Wiessner W (1985) Nitrogen nutrition of endosymbiotic Chlorella spec. Endocyt Cell Res 1:55–64
Kawakami H, Kawakami N (1978) Behavior of a virus in a symbiotic system, Paramecium bursaria-zoochlorella. J Protozool 25:217–225. https://doi.org/10.1111/j.1550-7408.1978.tb04399.x
doi: 10.1111/j.1550-7408.1978.tb04399.x
Brown JA, Nielsen PJ (1974) Transfer of photosynthetically produced carbohydrate from endosymbiotic Chlorellae to Paramecium bursaria. J Protozool 21:569–570. https://doi.org/10.1111/j.1550-7408.1974
doi: 10.1111/j.1550-7408.1974
pubmed: 4214362
Reisser W (1986) Endosymbiotic associations of freshwater protozoa and algae. Prog Protistol 1:195–214.
doi: 10.1007/s00709-005-0087-5
Kodama Y, Fujishima M (2005) Symbiotic Chlorella sp. of the ciliate Paramecium bursaria do not prevent acidification and lysosomal fusion of host digestive vacuole during infection. Protoplasma 225:191–203. https://doi.org/10.1007/s00709-005-0087-5
doi: 10.1007/s00709-005-0087-5
pubmed: 15997335
Fujishima M, Kodama Y (2022) Mechanisms for establishing primary and secondary endosymbiosis in Paramecium. J Eukaryot Microbiol. https://doi.org/10.1111/jeu.12901
doi: 10.1111/jeu.12901
pubmed: 35243727
Blanc G, Duncan G, Agarkova I, Borodovsky M, Gurnon J, Kuo A, Lindquist E, Lucas S, Pangilinan J, Polle J, Salamov A, Terry A, Yamada T, Dunigan DD, Grigoriev IV, Claverie JM, Van Etten JL (2010) The Chlorella variabilis NC64A genome reveals adaptation to photosynthesis, coevolution with viruses, and cryptic sex. Plant Cell 22:2943–2955. https://doi.org/10.1105/tpc.110.076406
doi: 10.1105/tpc.110.076406
pubmed: 20852019
pmcid: 2965543
Cheng YH, Liu CFJ, Yu YH, Jhou YT, Fujishima M, Tsai IJ, Leu JY (2020) Genome plasticity in Paramecium bursaria revealed by population genomics. BMC Biol 18:180. https://doi.org/10.1186/s12915-020-00912-2
doi: 10.1186/s12915-020-00912-2
pubmed: 33250052
pmcid: 7702705
Jenkins BH (2024) Mutualism on the edge: understanding the Paramecium-Chlorella symbiosis. PLoS Biol 22(4):e3002563. https://doi.org/10.1371/journal.pbio.3002563
doi: 10.1371/journal.pbio.3002563
pubmed: 38573881
pmcid: 10994274
Greczek-Stachura M, Potekhin A, Przyboś E, Rautian M, Skoblo I, Tarcz S (2012) Identification of Paramecium bursaria syngens through molecular markers–comparative analysis of three loci in the nuclear and mitochondrial DNA. Protist 163:671–685. https://doi.org/10.1016/j.protis.2011.10.009
doi: 10.1016/j.protis.2011.10.009
pubmed: 22154394
Spanner C, Darienko T, Filker S, Sonntag B, Pröschold T (2022) Morphological diversity and molecular phylogeny of five Paramecium bursaria (Alveolata, Ciliophora, Oligohymenophorea) syngens and the identification of their green algal endosymbionts. Sci Rep 12:18089. https://doi.org/10.1038/s41598-022-22284-z
doi: 10.1038/s41598-022-22284-z
pubmed: 36302793
pmcid: 9613978
Kodama Y, Fujishima M (2011) Endosymbiosis of Chlorella species to the ciliate Paramecium bursaria alters the distribution of the host’s trichocysts beneath the host cell cortex. Protoplasma 248:325–337. https://doi.org/10.1007/s00709-010-0175-z
doi: 10.1007/s00709-010-0175-z
pubmed: 20582727
Kodama Y, Fujishima M (2022) Endosymbiotic Chlorella variabilis reduces mitochondrial number in the ciliate Paramecium bursaria. Sci Rep 12:8216. https://doi.org/10.1038/s41598-022-12496-8
doi: 10.1038/s41598-022-12496-8
pubmed: 35637201
pmcid: 9151773
Tsukii Y, Harumoto T, Yazaki K (1995) Evidence for a viral macronuclear endosymbiont in Paramecium caudatum. J Euk Micro- biol 42:109–115. https://doi.org/10.1111/j.1550-7408.1995.tb01550.x
doi: 10.1111/j.1550-7408.1995.tb01550.x
Dryl S (1959) Antigensic transformation in Paramecium aurelia after homologous antiserum treatment during autogamy and conjugation. J Protozool 6:25
Fujishima M, Nagahara K, Kojima Y (1990) Changes in morphol- ogy, buoyant density and protein composition in differentiation from the reproductive short form to the infectious long form of Holospora obtusa, a macronucleus-specific symbiont of the ciliate Paramecium caudatum. Zool Sci 7(5):849–860
Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comp Graph Stat 5:299–314
doi: 10.1080/10618600.1996.10474713
Kodama Y, Endoh Y (2024) Comparative analyses of the symbiotic associations of the host Paramecium bursaria with free-living and native symbiotic species of Chlorella. Curr Microbiol 81:66. https://doi.org/10.1007/s00284-023-03590-9
doi: 10.1007/s00284-023-03590-9
pubmed: 38231280
Karakashian SJ (1963) Growth of Paramecium bursaria as influenced by the presence of algal symbionts. Physiol Biochem Zool 36:52–68
Kodama Y, Fujishima M (2008) Cycloheximide induces synchronous swelling of perialgal vacuoles enclosing symbiotic Chlorella vulgaris and digestion of the algae in the ciliate Paramecium bursaria. Protist 159:483–494 https://doi.org/10.1016/j.protis.2008.02.005 .
doi: 10.1016/j.protis.2008.02.005
pubmed: 18479967
Wichterman R (1986) The Biology of Paramecium, 2nd edn. Plenum Press, New York
doi: 10.1007/978-1-4757-0372-6
Kodama Y, Fujishima M (2009) Localization of perialgal vacuoles beneath the host cell surface is not a prerequisite phenomenon for protection from the host’s lysosomal fusion in the ciliate Parameium bursaria. Protist 160:319–329. https://doi.org/10.1016/j.protis.2008.06.001
doi: 10.1016/j.protis.2008.06.001
pubmed: 19162542
Daniels. EW, Ultrastructure (1973) ,In. ed Jeon KW (ed) The Biology of Amoeb.a Academic Press, New York, pp 125–1691
Daniels EW (1973) Ultrastructure. In: Jeon KW (ed) The Biology of Amoeba. Academic Press, New York, pp 125–169
doi: 10.1007/BF00446564
pubmed: 1015958
Sommaruga R, Sonntag B (2009) Photobiological aspects of the mutualistic association between Paramecium bursaria and Chlorella, In. Fujishima M (ed) Endosymbionts in Paramecium microbiology monographs. Springer, Heidelberg, pp 111–130
Summerer M, Sonntag B, Hörtnagl P, Sommaruga R (2009) Symbiotic ciliates receive protection against UV damage from their algae: a test with Paramecium bursaria and Chlorella. Protist 160:233–243. https://doi.org/10.1016/j.protis.2008.11.005
doi: 10.1016/j.protis.2008.11.005
pubmed: 19195930
Mojzeš P, Gao L, Ismagulova T, Pilátová J, Moudříková Š, Gorelova O, Solovchenko A, Nedbal L, Salih A (2020) Guanine, a high-capacity and rapid-turnover nitrogen reserve in microalgal cells. Proc Natl Acad Sci 117:32722–32730. https://doi.org/10.1073/pnas.2005460117
doi: 10.1073/pnas.2005460117
pubmed: 33293415
pmcid: 7768779
Yashima Y (2005) A comparative study on shape and elemental composition of microgranules and crystals present in the cytoplasm of amoebae. Annual report of Iwate Medical University School of liberal Arts and Sciences (Ann Rep of Iwate Med Univ Sch of Liberal Arts and Sci) 40:27–38
Tonooka Y, Watanabe T (2002) A natural strain of Paramecium bursaria lacking symbiotic algae. Europ J Protistol 38:55–58. https://doi.org/10.1078/0932-4739-00846
doi: 10.1078/0932-4739-00846