Cytokinetic abscission in Toxoplasma gondii is governed by protein phosphatase 2A and the daughter cell scaffold complex.
Abscission
Cytokinesis
Cytoskeleton
Division Plane
Phosphatase
Journal
The EMBO journal
ISSN: 1460-2075
Titre abrégé: EMBO J
Pays: England
ID NLM: 8208664
Informations de publication
Date de publication:
15 Jul 2024
15 Jul 2024
Historique:
received:
12
08
2023
accepted:
30
06
2024
revised:
21
06
2024
medline:
16
7
2024
pubmed:
16
7
2024
entrez:
15
7
2024
Statut:
aheadofprint
Résumé
Cytokinetic abscission marks the final stage of cell division, during which the daughter cells physically separate through the generation of new barriers, such as the plasma membrane or cell wall. While the contractile ring plays a central role during cytokinesis in bacteria, fungi and animal cells, the process diverges in Apicomplexa. In Toxoplasma gondii, two daughter cells are formed within the mother cell by endodyogeny. The mechanism by which the progeny cells acquire their plasma membrane during the disassembly of the mother cell, allowing daughter cells to emerge, remains unknown. Here we identify and characterize five T. gondii proteins, including three protein phosphatase 2A subunits, which exhibit a distinct and dynamic localization pattern during parasite division. Individual downregulation of these proteins prevents the accumulation of plasma membrane at the division plane, preventing the completion of cellular abscission. Remarkably, the absence of cytokinetic abscission does not hinder the completion of subsequent division cycles. The resulting progeny are able to egress from the infected cells but fail to glide and invade, except in cases of conjoined twin parasites.
Identifiants
pubmed: 39009675
doi: 10.1038/s44318-024-00171-9
pii: 10.1038/s44318-024-00171-9
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Swiss National Science Foundation
ID : 310030-185325
Pays : Switzerland
Organisme : Swiss National Science Foundation
ID : 310030_215445
Pays : Switzerland
Organisme : EC | European Research Council (ERC)
ID : 695596
Organisme : Faculty of Medecine of Geneva
ID : Maitre-Assistant position
Informations de copyright
© 2024. The Author(s).
Références
Agop-Nersesian C, Naissant B, Ben Rached F, Rauch M, Kretzschmar A, Thiberge S, Menard R, Ferguson DJP, Meissner M, Langsley G (2009) Rab11A-controlled assembly of the inner membrane complex is required for completion of apicomplexan cytokinesis. PLoS Pathog 5:e1000270
pubmed: 19165333
pmcid: 2622761
doi: 10.1371/journal.ppat.1000270
Amos B, Aurrecoechea C, Barba M, Barreto A, Basenko EY, Bażant W, Belnap R, Blevins AS, Böhme U, Brestelli J et al (2022) VEuPathDB: the eukaryotic pathogen, vector and host bioinformatics resource center. Nucleic Acids Res 50:D898–D911
pubmed: 34718728
doi: 10.1093/nar/gkab929
Andenmatten N, Egarter S, Jackson AJ, Jullien N, Herman JP, Meissner M (2013) Conditional genome engineering in Toxoplasma gondii uncovers alternative invasion mechanisms. Nat Methods 10:125–127
pubmed: 23263690
doi: 10.1038/nmeth.2301
Anderson-White B, Beck JR, Chen Ch-T, Meissner M, Bradley PJ, Gubbels M (2012) Cytoskeleton assembly in Toxoplasma gondii cell division. Int Rev Cell Mol Biol 298:1–31
Antunes AV, Shahinas M, Swale C, Farhat DC, Ramakrishnan C, Bruley C, Cannella D, Robert MG, Corrao C, Couté Y et al (2024) In vitro production of cat-restricted Toxoplasma pre-sexual stages. Nature 625:366–376
pubmed: 38093015
doi: 10.1038/s41586-023-06821-y
Atilla-Gokcumen GE, Muro E, Relat-Goberna J, Sasse S, Bedigian A, Coughlin ML, Garcia-Manyes S, Eggert US (2014) Dividing cells regulate their lipid composition and localization. Cell 156:428–439
pubmed: 24462247
pmcid: 3909459
doi: 10.1016/j.cell.2013.12.015
Back PS, Moon AS, Pasquarelli RR, Bell HN, Torres JA, Chen AL, Sha J, Vashisht AA, Wohlschlegel JA, Bradley PJ (2023) IMC29 plays an important role in Toxoplasma endodyogeny and reveals new components of the daughter-enriched IMC proteome. MBio 14:1–33
doi: 10.1128/mbio.03042-22
Bartolini F, Bhamidipati A, Thomas S, Schwahn U, Lewis SA, Cowan NJ (2002) Functional overlap between retinitis pigmentosa 2 protein and the tubulin-specific chaperone cofactor C. J Biol Chem 277:14629–14634
pubmed: 11847227
doi: 10.1074/jbc.M200128200
Barylyuk K, Koreny L, Ke H, Butterworth S, Crook OM, Lassadi I, Gupta V, Tromer E, Mourier T, Stevens TJ et al (2020) A comprehensive subcellular atlas of the Toxoplasma proteome via hyperLOPIT provides spatial context for protein functions. Cell Host Microbe 28:752–766.e9
pubmed: 33053376
pmcid: 7670262
doi: 10.1016/j.chom.2020.09.011
Beck JR, Rodriguez-fernandez IA, de Leon JC, Huynh M, Vern B, Morrissette NS, Bradley PJ (2010) A novel family of Toxoplasma IMC proteins displays a hierarchical organization and functions in coordinating parasite division. PLoS Pathog 6:e1001094
pubmed: 20844581
pmcid: 2936552
doi: 10.1371/journal.ppat.1001094
Brown K, Long S, Sibley L (2018) Conditional knockdown of proteins using auxin-inducible degron (AID) fusions in Toxoplasma gondii. Bio-Protocol 8:1–18
doi: 10.21769/BioProtoc.2728
Bullen HE, Tonkin CJ, Donnell RAO, Tham W, Papenfuss AT, Gould S, Cowman AF, Crabb BS, Gilson PR (2009) A novel family of apicomplexan glideosome-associated proteins with an inner membrane-anchoring role. J Biol Chem 284:25353–25363
pubmed: 19561073
pmcid: 2757237
doi: 10.1074/jbc.M109.036772
Burki F, Roger AJ, Brown MW, Simpson AGB (2020) The new tree of eukaryotes. Trends Ecol Evol 35:43–55
pubmed: 31606140
doi: 10.1016/j.tree.2019.08.008
Chen C, Gubbels M (2013) The Toxoplasma gondii centrosome is the platform for internal daughter budding as revealed by a Nek1 kinase mutant. J Cell Sci 126:3344–3355
pubmed: 23729737
pmcid: 3730244
Chen CT, Kelly M, De Leon J, Nwagbara B, Ebbert P, Ferguson DJP, Lowery LA, Morrissette N, Gubbels MJ (2015) Compartmentalized Toxoplasma EB1 bundles spindle microtubules to secure accurate chromosome segregation. Mol Biol Cell 26:4562–4576
pubmed: 26466679
pmcid: 4678015
doi: 10.1091/mbc.E15-06-0437
Emoto K, Inadome H, Kanaho Y, Narumiya S, Umeda M (2005) Local change in phospholipid composition at the cleavage furrow is essential for completion of cytokinesis. J Biol Chem 280:37901–37907
pubmed: 16162509
doi: 10.1074/jbc.M504282200
Engelberg K, Bechtel T, Michaud C, Gubbels M (2022) Proteomic characterization of the Toxoplasma gondii cytokinesis machinery portrays an expanded hierarchy of its assembly and function. Nat Commun 13:4644. 2022
pubmed: 35941170
pmcid: 9360017
doi: 10.1038/s41467-022-32151-0
Ferreira JL, Pražák V, Vasishtan D, Siggel M, Hentzschel F, Binder AM, Pietsch E, Kosinski J, Frischknecht F, Gilberger TW et al (2023) Variable microtubule architecture in the malaria parasite. Nat Commun 14:1–17
doi: 10.1038/s41467-023-36627-5
Francia ME, Jordan CN, Patel JD, Sheiner L, Demerly JL, Fellows JD, de Leon JC, Morrissette NS, Dubremetz JF, Striepen B (2012) Cell division in apicomplexan parasites is organized by a homolog of the striated rootlet fiber of algal flagella. PLoS Biol 10:e1001444
pubmed: 23239939
pmcid: 3519896
doi: 10.1371/journal.pbio.1001444
Fraschini R (2020) Cytokinesis in Eukaryotic cells: the furrow complexity at a glance. Cells 9:271
pubmed: 31979090
pmcid: 7072619
doi: 10.3390/cells9020271
Fremont S, Echard A (2018) Membrane traffic in the late steps of cytokinesis. Curr Biol 28:458–470
doi: 10.1016/j.cub.2018.01.019
Frénal K, Jacot D, Hammoudi PM, Graindorge A, MacO B, Soldati-Favre D (2017) Myosin-dependent cell-cell communication controls synchronicity of division in acute and chronic stages of Toxoplasma gondii. Nat Commun 8:15710
pubmed: 28593938
pmcid: 5477499
doi: 10.1038/ncomms15710
Frénal K, Marq JB, Jacot D, Polonais V, Soldati-Favre D (2014) Plasticity between MyoC- and MyoA-glideosomes: an example of functional compensation in Toxoplasma gondii invasion. PLoS Pathog 10:e1004504
pubmed: 25393004
pmcid: 4231161
doi: 10.1371/journal.ppat.1004504
Frénal K, Polonais V, Marq JB, Stratmann R, Limenitakis J, Soldati-Favre D (2010) Functional dissection of the apicomplexan glideosome molecular architecture. Cell Host Microbe 8:343–357
pubmed: 20951968
doi: 10.1016/j.chom.2010.09.002
Fung SYS, Kitagawa M, Liao PJ, Wong J, Lee SH (2017) Opposing activities of aurora B kinase and B56-PP2A phosphatase on MKlp2 determine abscission timing. Curr Biol 27:78–86
pubmed: 27939310
doi: 10.1016/j.cub.2016.10.042
Gaji RY, Behnke MS, Lehmann MM, White MW, Carruthers VB (2011) Cell cycle-dependent, intercellular transmission of Toxoplasma gondii is accompanied by marked changes in parasite gene expression. Mol Microbiol 79:192–204
pubmed: 21166903
doi: 10.1111/j.1365-2958.2010.07441.x
Gajria B, Bahl A, Brestelli J, Dommer J, Fischer S, Gao X, Heiges M, Iodice J, Kissinger JC, Mackey AJ et al (2008) ToxoDB: An integrated toxoplasma gondii database resource. Nucleic Acids Res 36:553–556
doi: 10.1093/nar/gkm981
Gaskins E, Gilk S, Devore N, Mann T, Ward G, Beckers C (2004) Identification of the membrane receptor of a class XIV myosin in Toxoplasma gondii. J Cell Biol 165:383–393
pubmed: 15123738
pmcid: 2172186
doi: 10.1083/jcb.200311137
Gonçalves J, Nolasco S, Nascimento R, Fanarraga ML, Zabala JC, Soares H (2010a) TBCCD1, a new centrosomal protein, is required for centrosome and Golgi apparatus positioning. EMBO Rep 11:194–200
pubmed: 20168327
pmcid: 2838703
doi: 10.1038/embor.2010.5
Gonçalves J, Tavares A, Carvalhal S, Soares H (2010b) Revisiting the tubulin folding pathway: new roles in centrosomes and cilia. Biomol Concepts 1:423–434
pubmed: 25962015
doi: 10.1515/bmc.2010.033
Gromley A, Yeaman C, Rosa J, Redick S, Chen CT, Mirabelle S, Guha M, Sillibourne J, Doxsey SJ (2005) Centriolin anchoring of exocyst and SNARE complexes at the midbody is required for secretory-vesicle-mediated abscission. Cell 123:75–87
pubmed: 16213214
doi: 10.1016/j.cell.2005.07.027
Gubbels M, Keroack CD, Dangoudoubiyam S, Worliczek HL, Paul AS, Bauwens C, Elsworth B, Engelberg K, Howe DK, Coppens I et al (2020) Fussing about fission: defining variety among mainstream and exotic apicomplexan cell division modes. Front Cell Infect Microbiol 10:269
pubmed: 32582569
pmcid: 7289922
doi: 10.3389/fcimb.2020.00269
Gubbels M-J, Coppens I, Zarringhalam K, Duraisingh MT, Engelberg K (2021) The modular circuitry of apicomplexan cell division plasticity. Front Cell Infect Microbiol 11:1–17
doi: 10.3389/fcimb.2021.670049
Gubbels MJ, Ferguson DJP, Saha S, Romano JD, Chavan S, Primo VA, Michaud C, Coppens I, Engelberg K (2022) Toxoplasma gondii’s basal complex: the other apicomplexan business end is multifunctional. Front Cell Infect Microbiol 12:882166
pubmed: 35573773
pmcid: 9103881
doi: 10.3389/fcimb.2022.882166
Gubbels MJ, Vaishnava S, Boot N, Dubremetz JF, Striepen B (2006) A MORN-repeat protein is a dynamic component of the Toxoplasma gondii cell division apparatus. J Cell Sci 119:2236–2245
pubmed: 16684814
doi: 10.1242/jcs.02949
Guo F, Stanevich V, Wlodarchak N, Sengupta R, Jiang L, Satyshur KA, Xing Y (2014) Structural basis of PP2A activation by PTPA, an ATPdependent activation chaperone. Cell Res 24:190–203
pubmed: 24100351
doi: 10.1038/cr.2013.138
Hammarton TC (2019) Who needs a contractile actomyosin ring? The plethora of alternative ways to divide a protozoan parasite. Front Cell Infect Microbiol 9:1–30
doi: 10.3389/fcimb.2019.00397
Hardin WR, Li R, Xu J, Shelton AM, Alas GCM, Minin VN, Paredez AR (2017) Myosin-independent cytokinesis in Giardia utilizes flagella to coordinate force generation and direct membrane trafficking. Proc Natl Acad Sci USA 114:E5854–E5863
pubmed: 28679631
pmcid: 5530689
doi: 10.1073/pnas.1705096114
Harding CR, Egarter S, Gow M, Jiménez-Ruiz E, Ferguson DJP, Meissner M (2016) Gliding associated proteins play essential roles during the formation of the inner membrane complex of Toxoplasma gondii. PLoS Pathog 12:1–24
doi: 10.1371/journal.ppat.1005403
Harding CR, Gow M, Kang JH, Shortt E, Manalis SR, Meissner M, Lourido S (2019) Alveolar proteins stabilize cortical microtubules in Toxoplasma gondii. Nat Commun 10:401
pubmed: 30674885
pmcid: 6344517
doi: 10.1038/s41467-019-08318-7
Hawkins LM, Wang C, Chaput D, Batra M, Marsilia C, Awshah D, Suvorova ES (2024) The Crk4-Cyc4 complex regulates G 2 / M transition in Toxoplasma gondii. EMBO J 43:2094–2126
pubmed: 38600241
pmcid: 11148040
doi: 10.1038/s44318-024-00095-4
Hu K (2008) Organizational changes of the daughter basal complex during the parasite replication of Toxoplasma gondii. PLoS Pathog 4:0108–0121
doi: 10.1371/journal.ppat.0040010
Hu K, Johnson J, Florens L, Fraunholz M, Suravajjala S, DiLullo C, Yates J, Roos DS, Murray JM (2006) Cytoskeletal components of an invasion machine—the apical complex of Toxoplasma gondii. PLoS Pathog 2:0121–0138
doi: 10.1371/journal.ppat.0020013
Hu K, Roos DS, Murray JM (2002) A novel polymer of tubulin forms the conoid of Toxoplasma gondii. J Cell Biol 156:1039–1050
pubmed: 11901169
pmcid: 2173456
doi: 10.1083/jcb.200112086
Hunt A, Russell MRG, Wagener J, Kent R, Carmeille R, Peddie CJ, Collinson L, Heaslip A, Ward GE, Treeck M (2019) Differential requirements for cyclase-associated protein (CAP) in actin-dependent processes of Toxoplasma gondii. Elife 8:1–41
doi: 10.7554/eLife.50598
Huynh MH, Carruthers VB (2009) Tagging of endogenous genes in a Toxoplasma gondii strain lacking Ku80. Eukaryot Cell 8:530–539
pubmed: 19218426
pmcid: 2669203
doi: 10.1128/EC.00358-08
Jackson AJ, Clucas C, Mamczur NJ, Ferguson DJ, Meissner M (2013) Toxoplasma gondii syntaxin 6 is required for vesicular transport between endosomal-like compartments and the Golgi complex. Traffic 14:1166–1181
pubmed: 23962112
pmcid: 3963449
doi: 10.1111/tra.12102
Jiang Y (2006) Regulation of the cell cycle by protein phosphatase 2A in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70:440–449
pubmed: 16760309
pmcid: 1489537
doi: 10.1128/MMBR.00049-05
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589
pubmed: 34265844
pmcid: 8371605
doi: 10.1038/s41586-021-03819-2
Käll L, Storey JD, Noble WS (2008) Non-parametric estimation of posterior error probabilities associated with peptides identified by tandem mass spectrometry. Bioinformatics 24:42–48
doi: 10.1093/bioinformatics/btn294
Kats LM, Cooke BM, Coppel RL, Black CG (2008) Protein trafficking to apical organelles of malaria parasites—building an invasion machine. Traffic 9:176–186
pubmed: 18047549
doi: 10.1111/j.1600-0854.2007.00681.x
Kono M, Heincke D, Wilcke L, Wong TWY, Bruns C, Herrmann S, Spielmann T, Gilberger TW (2016) Pellicle formation in the malaria parasite. J Cell Biol 129:673–680
Krasinska L, Domingo-Sananes MR, Kapuy O, Parisis N, Harker B, Moorhead G, Rossignol M, Novák B, Fisher D (2011) Protein phosphatase 2A controls the order and dynamics of cell-cycle transitions. Mol Cell 44:437–450
pubmed: 22055189
doi: 10.1016/j.molcel.2011.10.007
Kunduri G, Acharya U, Acharya JK (2022) Lipid polarization during cytokinesis. Cells 11:3977
pubmed: 36552741
pmcid: 9776629
doi: 10.3390/cells11243977
Lorestani A, Sheiner L, Yang K, Robertson SD, Sahoo N, Brooks CF, Ferguson DJP, Striepen B, Gubbels MJ (2010) A Toxoplasma MORN1 null mutant undergoes repeated divisions but is defective in basal assembly, apicoplast division and cytokinesis. PLoS ONE 5:e12302
pubmed: 20808817
pmcid: 2924399
doi: 10.1371/journal.pone.0012302
Lyons SP, Greiner EC, Cressey LE, Adamo ME, Kettenbach AN (2021) Regulation of PP2A, PP4, and PP6 holoenzyme assembly by carboxyl-terminal methylation. Sci Rep 11:23031
pubmed: 34845248
pmcid: 8630191
doi: 10.1038/s41598-021-02456-z
Marsilia C, Batra M, Pokrovskaya ID, Wang C, Chaput D, Naumova DA, Lupashin VV, Suvorova ES (2023) Essential role of the conserved oligomeric Golgi complex in Toxoplasma gondii. MBio 14:1–24
doi: 10.1128/mbio.02513-23
Martins-Duarte ES, Carias M, Vommaro R, Surolia N, de Souza W (2016) Apicoplast fatty acid synthesis is essential for pellicle formation at the end of cytokinesis in Toxoplasma gondii. J Cell Sci 129:3320–3331
pubmed: 27457282
doi: 10.1242/jcs.185223
Martins-Duarte ES, Dubar F, Lawton P, Da Silva CF, Soeiro MDNC, De Souza W, Biot C, Vommaro RC (2015) Ciprofloxacin derivatives affect parasite cell division and increase the survival of mice infected with Toxoplasma gondii. PLoS ONE 10:1–23
doi: 10.1371/journal.pone.0125705
Masgrau A, Battola A, Sanmartin T, Pryszcz LP, Gabaldón T, Mendoza M (2017) Distinct roles of the polarity factors Boi1 and Boi2 in the control of exocytosis and abscission in budding yeast. Mol Biol Cell 28:3082–3094
pubmed: 28904204
pmcid: 5662264
doi: 10.1091/mbc.e17-06-0404
Meissner M, Schlüter D, Soldati D (2002) Role of Toxoplasma gondii myosin A in powering parasite gliding and host cell invasion. Science 298:837
pubmed: 12399593
doi: 10.1126/science.1074553
Morano AA, Dvorin JD (2021) The ringleaders: understanding the apicomplexan basal complex through comparison to established contractile ring systems. Front Cell Infect Microbiol 11:1–16
doi: 10.3389/fcimb.2021.656976
Moyano-Rodríguez Y, Vaquero D, Vilalta-Castany O, Foltman M, Sanchez-Diaz A, Queralt E (2022) PP2A-Cdc55 phosphatase regulates actomyosin ring contraction and septum formation during cytokinesis. Cell Mol Life Sci 79:1–16
doi: 10.1007/s00018-022-04209-1
Müller S, Jürgens G (2016) Plant cytokinesis-No ring, No constriction but centrifugal construction of the partitioning membrane. Semin Cell Dev Biol 53:10–18
pubmed: 26529278
doi: 10.1016/j.semcdb.2015.10.037
Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75:4646–4658
pubmed: 14632076
doi: 10.1021/ac0341261
Normand G, King RW (2010) Understanding cytokinesis failure. Adv Exp Med Biol 675:27–55
doi: 10.1007/978-1-4419-6199-0_3
Onishi M, Umen JG, Cross FR, Pringle JR (2020) Cleavage-furrow formation without F-actin in Chlamydomonas. Proc Natl Acad Sci USA 117:18511–18520
pubmed: 32690698
pmcid: 7414186
doi: 10.1073/pnas.1920337117
O’Shaughnessy WJ, Hu X, Henriquez SA, Reese ML (2023) Toxoplasma ERK7 protects the apical complex from premature degradation. J Cell Biol 222:e202209098
pubmed: 37027006
pmcid: 10083718
doi: 10.1083/jcb.202209098
Ouologuem DT, Roos DS (2014) Dynamics of the Toxoplasma gondii inner membrane complex. J Cell Sci 127:3320–3330
pubmed: 24928899
pmcid: 4134349
Perez-Riverol Y, Bai J, Bandla C, García-Seisdedos D, Hewapathirana S, Kamatchinathan S, Kundu DJ, Prakash A, Frericks-Zipper A, Eisenacher M et al (2022) The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res 50:D543–D552
pubmed: 34723319
doi: 10.1093/nar/gkab1038
Periz J, Whitelaw J, Harding C, Gras S, Minina MIDR, Latorre-Barragan F, Lemgruber L, Reimer MA, Insall R, Heaslip A et al (2017) Toxoplasma gondii F-actin forms an extensive filamentous network required for material exchange and parasite maturation. Elife 6:1–29
doi: 10.7554/eLife.24119
Pfluger SL, Goodson HV, Moran JM, Ruggiero CJ, Ye X, Emmons KM, Hager KM (2005) Receptor for retrograde transport in the apicomplexan parasite Toxoplasma gondii. Eukaryot Cell 4:432–442
pubmed: 15701805
pmcid: 549326
doi: 10.1128/EC.4.2.432-442.2005
Pieperhoff MS, Pall GS, Jiménez-Ruiz E, Das S, Melatti C, Gow M, Wong EH, Heng J, Müller S, Blackman MJ et al (2015) Conditional U1 gene silencing in Toxoplasma gondii. PLoS ONE 10:1–24
doi: 10.1371/journal.pone.0130356
Renaud EA, Pamukcu S, Cerutti A, Berry L, Lemaire-Vieille C, Yamaryo-Botté Y, Botté CY, Besteiro S (2022) Disrupting the plastidic iron-sulfur cluster biogenesis pathway in Toxoplasma gondii has pleiotropic effects irreversibly impacting parasite viability. J Biol Chem 298:102243
pubmed: 35810787
pmcid: 9386495
doi: 10.1016/j.jbc.2022.102243
Richards TA, Cavalier-Smith T (2005) Myosin domain evolution and the primary divergence of eukaryotes. Nature 436:1113–1118
pubmed: 16121172
doi: 10.1038/nature03949
Roumégous C, Abou Hammoud A, Fuster D, Dupuy JW, Blancard C, Salin B, Robinson DR, Renesto P, Tardieux I, Frénal K (2022) Identification of new components of the basal pole of Toxoplasma gondii provides novel insights into its molecular organization and functions. Front Cell Infect Microbiol 12:1–21
doi: 10.3389/fcimb.2022.1010038
Salamun J, Kallio JP, Daher W, Soldati-favre D, Kursula I (2014) Structure of Toxoplasma gondii coronin, an actin-binding protein that relocalizes to the posterior pole of invasive parasites and contributes to invasion and egress. FASEB J 28:4729–4747
pubmed: 25114175
doi: 10.1096/fj.14-252569
Sebé-Pedrós A, Grau-Bové X, Richards TA, Ruiz-Trillo I (2014) Evolution and classification of myosins, a paneukaryotic whole-genome approach. Genome Biol Evol 6:290–305
pubmed: 24443438
pmcid: 3942036
doi: 10.1093/gbe/evu013
Shen B, Brown KM, Lee TD, Sibley LD (2014) Efficient gene disruption in diverse strains of Toxoplasma gondii using CRISPR/CAS9. MBio 5:1–11
doi: 10.1128/mBio.01114-14
Shi Y (2009) Serine/threonine phosphatases: mechanism through structure. Cell 139:468–484
pubmed: 19879837
doi: 10.1016/j.cell.2009.10.006
Shuster CB, Burgess DR (2002) Targeted new membrane addition in the cleavage furrow is a late, separate event in cytokinesis. Proc Natl Acad Sci USA 99:3633–3638
Sidik SM, Huet D, Ganesan SM, Huynh M-H, Wang T, Nasamu AS, Thiru P, Saeij JPJ, Carruthers VB, Niles JC et al (2016) A genome-wide CRISPR screen in Toxoplasma identifies essential apicomplexan genes. Cell 166:29–39
doi: 10.1016/j.cell.2016.08.019
Sloves PJ, Delhaye S, Mouveaux T, Werkmeister E, Slomianny C, Hovasse A, Dilezitoko Alayi T, Callebaut I, Gaji RY, Schaeffer-Reiss C et al (2012) Toxoplasma sortilin-like receptor regulates protein transport and is essential for apical secretory organelle biogenesis and host infection. Cell Host Microbe 11:515–527
pubmed: 22607804
doi: 10.1016/j.chom.2012.03.006
Soldati D, Boothroyd JC (1993) Transient transfection and expression in the obligate intracellular parasite Toxoplasma gondii. Science 260:349–352
pubmed: 8469986
doi: 10.1126/science.8469986
Striepen B, Jordan CN, Reiff S, Van Dooren GG (2007) Building the perfect parasite: cell division in apicomplexa. PLoS Pathog 3:0691–0698
doi: 10.1371/journal.ppat.0030078
Tian G, Cowan NJ (2013) Tubulin-specific chaperones: components of a molecular machine that assembles the α/β heterodimer. Methods Cell Biol 115:155–171
pubmed: 23973072
pmcid: 4961357
doi: 10.1016/B978-0-12-407757-7.00011-6
Tolstykh T, Lee J, Vafai S, Stock JB (2000) Carboxyl methylation regulates phosphoprotein phosphatase 2A by controlling the association of regulatory B subunits. EMBO J 19:5682–5691
pubmed: 11060019
pmcid: 305779
doi: 10.1093/emboj/19.21.5682
Treeck M, Sanders JL, Elias JE, Boothroyd JC (2012) The phosphoproteomes of Plasmodium falciparum and Toxoplasma gondii reveal unusual adaptations within and beyond the parasites’ boundaries. Cell Host Microbe 10:410–419
doi: 10.1016/j.chom.2011.09.004
Tymoshenko S, Oppenheim RD, Agren R, Nielsen J, Soldati-Favre D, Hatzimanikatis V (2015) Metabolic needs and capabilities of Toxoplasma gondii through combined computational and experimental analysis. PLoS Comput Biol 11:1–28
doi: 10.1371/journal.pcbi.1004261
van Kempen M, Kim SS, Tumescheit C, Mirdita M, Lee J, Gilchrist CLM, Söding J, Steinegger M (2024) Fast and accurate protein structure search with Foldseek. Nat Biotechnol 42:243–246
pubmed: 37156916
doi: 10.1038/s41587-023-01773-0
Venugopal K, Chehade S, Werkmeister E, Barois N, Periz J, Lafont F, Tardieux I, Khalife J, Langsley G, Meissner M et al (2020) Rab11A regulates dense granule transport and secretion during Toxoplasma gondii invasion of host cells and parasite replication. PLoS Pathog 16:1–28
doi: 10.1371/journal.ppat.1008106
Venugopal K, Werkmeister E, Barois N, Saliou JM, Poncet A, Huot L, Sindikubwabo F, Hakimi MA, Langsley G, Lafont F et al (2017) Dual role of the Toxoplasma gondii clathrin adaptor AP1 in the sorting of rhoptry and microneme proteins and in parasite division. PLoS Pathog 13:e1006331
pubmed: 28430827
pmcid: 5415223
doi: 10.1371/journal.ppat.1006331
Wang JL, Li TT, Elsheikha HM, Liang QL, Zhang ZW, Wang M, Sibley LD, Zhu XQ (2022) The protein phosphatase 2A holoenzyme is a key regulator of starch metabolism and bradyzoite differentiation in Toxoplasma gondii. Nat Commun 13:7560
pubmed: 36476594
pmcid: 9729606
doi: 10.1038/s41467-022-35267-5
Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ (2009) Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191
pubmed: 19151095
pmcid: 2672624
doi: 10.1093/bioinformatics/btp033
Xu Y, Xing Y, Chen Y, Chao Y, Lin Z, Fan E, Yu JW, Strack S, Jeffrey PD, Shi Y (2006) Structure of the protein phosphatase 2A holoenzyme. Cell 127:1239–1251
pubmed: 17174897
doi: 10.1016/j.cell.2006.11.033
Yang C, Arrizabalaga G (2017) The serine/threonine phosphatases of apicomplexan parasites. Mol Microbiol 106:1–21
pubmed: 28556455
pmcid: 5787372
doi: 10.1111/mmi.13715
Zhang AM, Wang C, Otto TD, Oberstaller J, Liao X, Swamy R, Udenze K, Bronner IF, Cassandra D, Mayho M et al (2018) Uncovering the essential genome of the human malaria parasite Plasmodium falciparum by saturation mutagenesis. Science 360:eaap7847
pubmed: 29724925
pmcid: 6360947
doi: 10.1126/science.aap7847
Zhao M, Yang Y, Shi Y, Chen X, Yang Y, Pan L, Du Z, Sun H, Yao C, Ma G et al (2023) PP2Acα-B′/PR61 holoenzyme of Toxoplasma gondii is required for the amylopectin metabolism and proliferation of tachyzoites. Microbiol Spectr 11:e0010423
pubmed: 37199633
doi: 10.1128/spectrum.00104-23