Cardiac involvement in Chagas disease and African trypanosomiasis.
Journal
Nature reviews. Cardiology
ISSN: 1759-5010
Titre abrégé: Nat Rev Cardiol
Pays: England
ID NLM: 101500075
Informations de publication
Date de publication:
15 Jul 2024
15 Jul 2024
Historique:
accepted:
13
06
2024
medline:
16
7
2024
pubmed:
16
7
2024
entrez:
15
7
2024
Statut:
aheadofprint
Résumé
Trypanosomiases are diseases caused by various species of protozoan parasite in the genus Trypanosoma, each presenting with distinct clinical manifestations and prognoses. Infections can affect multiple organs, with Trypanosoma cruzi predominantly affecting the heart and digestive system, leading to American trypanosomiasis or Chagas disease, and Trypanosoma brucei primarily causing a disease of the central nervous system known as human African trypanosomiasis or sleeping sickness. In this Review, we discuss the effects of these infections on the heart, with particular emphasis on Chagas disease, which continues to be a leading cause of cardiomyopathy in Latin America. The epidemiology of Chagas disease has changed substantially since 1990 owing to the emigration of over 30 million Latin American citizens, primarily to Europe and the USA. This movement of people has led to the global dissemination of individuals infected with T. cruzi. Therefore, cardiologists worldwide must familiarize themselves with Chagas disease and the severe, chronic manifestation - Chagas cardiomyopathy - because of the expanded prevalence of this disease beyond traditional endemic regions.
Identifiants
pubmed: 39009679
doi: 10.1038/s41569-024-01057-3
pii: 10.1038/s41569-024-01057-3
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. Springer Nature Limited.
Références
Haag, J. The molecular phylogeny of trypanosomes: evidence for an early divergence of the salivaria. Mol. Biochem. Parasitol. 91, 37–49 (1998).
pubmed: 9574924
doi: 10.1016/S0166-6851(97)00185-0
Stevens, J., Noyes, H. & Gibson, W. The evolution of trypanosomes infecting humans and primates. Mem. Inst. Oswaldo Cruz 93, 669–676 (1998).
pubmed: 9830536
doi: 10.1590/S0074-02761998000500019
Pérez-Molina, J. A. & Molina, I. Chagas disease. Lancet 391, 82–94 (2018).
pubmed: 28673423
doi: 10.1016/S0140-6736(17)31612-4
International Organization for Migration. World Migration Report 2024: Chapter 3 — Migration and migrants: regional dimensions and developments. Latin America and Caribbean (IOM, 2024).
Schmunis, G. A. & Yadon, Z. E. Chagas disease: a Latin American health problem becoming a world health problem. Acta Trop. 115, 14–21 (2010).
pubmed: 19932071
doi: 10.1016/j.actatropica.2009.11.003
Echeverría, L. E. et al. WHF IASC roadmap on Chagas disease. Glob. Heart 15, 26 (2020).
pubmed: 32489799
pmcid: 7218776
doi: 10.5334/gh.484
Chagas, C. Nova especie morbida do homem, produzida por um Trypanozoma (Trypanozoma cruzi): nota prévia. Braz. Med. 23, 161 (1909).
Kropf, S. P. & Sá, M. R. The discovery of Trypanosoma cruzi and Chagas disease (1908–1909): tropical medicine in Brazil. Hist. Cienc. Saude Manguinhos 16, 13–34 (2009).
pubmed: 20027916
doi: 10.1590/S0104-59702009000500002
Tarleton, R. L., Gürtler, R. E., Urbina, J. A., Ramsey, J. & Viotti, R. Chagas disease and the London declaration on neglected tropical diseases. PLoS Negl. Trop. Dis. 8, e3219 (2014).
pubmed: 25299701
pmcid: 4191937
doi: 10.1371/journal.pntd.0003219
WHO Expert Committee. Control of Chagas disease. World Health Organ. Tech. Rep. Ser. 905, 1–109 (2002); https://iris.who.int/handle/10665/42443 .
Lima-Costa, M. F., Peixoto, S. V. & Ribeiro, A. L. P. Chagas disease and mortality in old age as an emerging issue: 10 year follow-up of the Bambuí population-based cohort study (Brazil). Int. J. Cardiol. 145, 362–363 (2010).
pubmed: 20399519
doi: 10.1016/j.ijcard.2010.02.036
de Almeida, E. A., Barbosa Neto, R. M., Guariento, M. E., Wanderley Jda, S. & de Souza, M. L. Clinical presentation of chronic Chagas disease in elderly individuals. Rev. Soc. Bras. Med. Trop. 40, 311–315 (2007).
pubmed: 17653467
doi: 10.1590/S0037-86822007000300012
Shikanai-Yasuda, M. A. & Carvalho, N. B. Oral transmission of Chagas disease. Clin. Infect. Dis. 54, 845–852 (2012).
pubmed: 22238161
doi: 10.1093/cid/cir956
Gurevitz, J. M. et al. Intensified surveillance and insecticide-based control of the Chagas disease vector Triatoma infestans in the Argentinean Chaco. PLoS Negl. Trop. Dis. 7, e2158 (2013).
pubmed: 23593525
pmcid: 3623707
doi: 10.1371/journal.pntd.0002158
Vinhaes, M. C. et al. Assessing the vulnerability of Brazilian municipalities to the vectorial transmission of Trypanosoma cruzi using multi-criteria decision analysis. Acta Trop. 137, 105–110 (2014).
pubmed: 24857942
doi: 10.1016/j.actatropica.2014.05.007
Campos, M. C. O. A. et al. Occurrence and spatial distribution of triatomines (Hemiptera: Reduviidae) in the urban area of the municipality of Montes Claros, Northern Minas Gerais, Brazil. Zoonoses Public Health 69, 83–94 (2022).
pubmed: 34825495
doi: 10.1111/zph.12897
Ribeiro, G. Jr et al. Frequent house invasion of Trypanosoma cruzi-infected triatomines in a suburban area of Brazil. PLoS Negl. Trop. Dis. 9, e0003678 (2015).
pubmed: 25909509
doi: 10.1371/journal.pntd.0003678
World Health Organization. Chagas disease in Latin America: an epidemiological update based on 2010 estimates. Wkly. Epidemiol. Rec. 90, 33–43 (2015).
Irish, A., Whitman, J. D., Clark, E. H., Marcus, R. & Bern, C. Updated estimates and mapping for prevalence of Chagas disease among adults, United States. Emerg. Infect. Dis. 28, 1313–1320 (2022).
pubmed: 35731040
pmcid: 9239882
doi: 10.3201/eid2807.212221
Basile, L. et al. Chagas disease in European countries: the challenge of a surveillance system. Eur. Surveill. 16, 19968 (2011).
doi: 10.2807/ese.16.37.19968-en
Ribeiro, A. L. P. The burden of Chagas disease in the contemporary world: the RAISE study. Glob. Heart 19, 2 (2024).
pubmed: 38222097
pmcid: 10785959
doi: 10.5334/gh.1280
Pan American Health Organization. Less than 10% of those infected with Chagas disease receive timely diagnosis and treatment. PAHO https://www.paho.org/en/news/13-4-2022-less-10-those-infected-chagas-disease-receive-timely-diagnosis-and-treatment (2022).
Damasceno, R. F. et al. Challenges in the care of patients with Chagas disease in the Brazilian public health system: a qualitative study with primary health care doctors. PLoS Negl. Trop. Dis. 14, e0008782 (2020).
pubmed: 33166280
pmcid: 7676681
doi: 10.1371/journal.pntd.0008782
Stimpert, K. K. & Montgomery, S. P. Physician awareness of Chagas disease, USA. Emerg. Infect. Dis. 16, 871–872 (2010).
pubmed: 20409389
pmcid: 2953998
doi: 10.3201/eid1605.091440
Capuani, L. et al. Mortality among blood donors seropositive and seronegative for Chagas disease (1996–2000) in São Paulo, Brazil: a death certificate linkage study. PLoS Negl. Trop. Dis. 11, e0005542 (2017).
pubmed: 28545053
pmcid: 5436632
doi: 10.1371/journal.pntd.0005542
França, E. B. et al. Chagas disease deaths detected among garbage codes registered in mortality statistics in Brazil: a study from the burden of Chagas disease in the contemporary world (RAISE) project. Public Health 227, 112–118 (2023).
pubmed: 38157737
doi: 10.1016/j.puhe.2023.11.034
Martins-Melo, F. R. et al. The burden of neglected tropical diseases in Brazil, 1990–2016: a subnational analysis from the Global Burden of Disease Study 2016. PLoS Negl. Trop. Dis. 12, e0006559 (2018).
pubmed: 29864133
pmcid: 6013251
doi: 10.1371/journal.pntd.0006559
Stanaway, J. D. & Roth, G. The burden of Chagas disease: estimates and challenges. Glob. Heart 10, 139–144 (2015).
pubmed: 26407508
doi: 10.1016/j.gheart.2015.06.001
Andrade, M. V. et al. The economic burden of Chagas disease: a systematic review. PLoS Negl. Trop. Dis. 17, e0011757 (2023).
pubmed: 37992061
pmcid: 10699619
doi: 10.1371/journal.pntd.0011757
Lee, B. Y., Bacon, K. M., Bottazzi, M. E. & Hotez, P. J. Global economic burden of Chagas disease: a computational simulation model. Lancet Infect. Dis. 13, 342–348 (2013).
pubmed: 23395248
pmcid: 3763184
doi: 10.1016/S1473-3099(13)70002-1
de Sousa, A. S., Vermeij, D., Ramos, A. N. Jr & Luquetti, A. O. Chagas disease. Lancet 403, 203–218 (2024).
pubmed: 38071985
doi: 10.1016/S0140-6736(23)01787-7
Otani, M. M. et al. WHO comparative evaluation of serologic assays for Chagas disease. Transfusion 49, 1076–1082 (2009).
pubmed: 19290995
doi: 10.1111/j.1537-2995.2009.02107.x
Sánchez-Camargo Claudia, L. et al. Comparative evaluation of 11 commercialized rapid diagnostic tests for detecting Trypanosoma cruzi antibodies in serum banks in areas of endemicity and nonendemicity. J. Clin. Microbiol. 52, 2506–2512 (2020).
doi: 10.1128/JCM.00144-14
Whitman, J. D. et al. Chagas disease serological test performance in U.S. blood donor specimens. J. Clin. Microbiol. 57, e01217–e01219 (2019).
pubmed: 31511333
pmcid: 6879282
doi: 10.1128/JCM.01217-19
Pan American Health Organization. Guidelines for the diagnosis and treatment of Chagas disease (PAHO, 2019).
Lapa, J. S. et al. Dealing with initial inconclusive serological results for chronic Chagas disease in clinical practice. Eur. J. Clin. Microbiol. Infect. Dis. 31, 965–974 (2012).
pubmed: 21901637
doi: 10.1007/s10096-011-1393-9
Remesar, M. et al. Bimodal distribution of Trypanosoma cruzi antibody levels in blood donors from a highly endemic area of Argentina: what is the significance of low-reactive samples? Transfusion 55, 2499–2504 (2015).
pubmed: 26014113
doi: 10.1111/trf.13180
Ferreira-Silva, M. M. et al. Chagas disease: performance analysis of immunodiagnostic tests anti-Trypanosoma cruzi in blood donors with inconclusive screening results. Hematol. Transfus. Cell Ther. 43, 410–416 (2021).
pubmed: 32943369
doi: 10.1016/j.htct.2020.06.016
Salles, N. A. et al. Risk of exposure to Chagas disease among seroreactive Brazilian blood donors. Transfusion 36, 969–973 (1996).
pubmed: 8937406
doi: 10.1046/j.1537-2995.1996.36111297091740.x
Sabino, E. C. et al. Enhanced classification of Chagas serologic results and epidemiologic characteristics of seropositive donors at three large blood centers in Brazil. Transfusion 50, 2628–2637 (2010).
pubmed: 20576017
pmcid: 2997114
doi: 10.1111/j.1537-2995.2010.02756.x
Luquetti, A. O. & Schmuñis, G. A. in American Trypanosomiasis 743–792 (eds Telleria, J. & Tibayrenc, M.) Ch. 28 (Elsevier, 2010).
Pirard, M. et al. The validity of serologic tests for Trypanosoma cruzi and the effectiveness of transfusional screening strategies in a hyperendemic region. Transfusion 45, 554–561 (2005).
pubmed: 15819677
doi: 10.1111/j.0041-1132.2005.04214.x
Rassi, A., Luquetti, A. O., Tavares, S. B. N. & Oliveira, R. A. Ausência de cura espontânea na doença de Chagas em 110 casos sem tratamento específico, com seguimento de 11 a 15 anos. Arq. Bras. Cardiol. 109 (5 Suppl. 1), 131 (2017); http://publicacoes.cardiol.br/portal/abc/portugues/resumo-das-comunicacoes.asp .
Buss, L. F. et al. Declining antibody levels to Trypanosoma cruzi correlate with polymerase chain reaction positivity and electrocardiographic changes in a retrospective cohort of untreated Brazilian blood donors. PLoS Negl. Trop. Dis. 14, e0008787 (2020).
pubmed: 33108390
pmcid: 7647114
doi: 10.1371/journal.pntd.0008787
Sabino, E. C. et al. Antibody levels correlate with detection of Trypanosoma cruzi DNA by sensitive polymerase chain reaction assays in seropositive blood donors and possible resolution of infection over time. Transfusion 53, 1257–1265 (2012).
pubmed: 23002996
pmcid: 3940448
doi: 10.1111/j.1537-2995.2012.03902.x
Nunes, M. C. P. et al. Incidence and predictors of progression to Chagas cardiomyopathy: long-term follow-up of Trypanosoma cruzi-seropositive individuals. Circulation 144, 1553–1566 (2021).
pubmed: 34565171
pmcid: 8578457
doi: 10.1161/CIRCULATIONAHA.121.055112
Georg, I. et al. Evolution of anti-Trypanosoma cruzi antibody production in patients with chronic Chagas disease: correlation between antibody titers and development of cardiac disease severity. PLoS Negl. Trop. Dis. 11, e0005796 (2017).
pubmed: 28723905
pmcid: 5536389
doi: 10.1371/journal.pntd.0005796
Zeledón, R. et al. Does a spontaneous cure for Chagas’ disease exist? Rev. Soc. Bras. Med. Trop. 21, 15–20 (1988).
pubmed: 3148163
doi: 10.1590/S0037-86821988000100003
Viotti, R. et al. Long-term cardiac outcomes of treating chronic Chagas disease with benznidazole versus no treatment: a nonrandomized trial. Ann. Intern. Med. 144, 724–734 (2006).
pubmed: 16702588
doi: 10.7326/0003-4819-144-10-200605160-00006
Forsyth, C. J. et al. Recommendations for screening and diagnosis of chagas disease in the United States. J. Infect. Dis. 225, 1601–1610 (2022).
pubmed: 34623435
doi: 10.1093/infdis/jiab513
World Health Organization. WHO Technical Report Series 905: Control of Chagas Disease — Second report of the WHO Expert Committee (WHO, 2002).
Gabaldón-Figueira, J. C. et al. Practical diagnostic algorithms for Chagas disease: a focus on low resource settings. Expert Rev. Anti Infect. Ther. 21, 1287–1299 (2023).
pubmed: 37933443
doi: 10.1080/14787210.2023.2279110
Schijman, A. G. et al. International study to evaluate PCR methods for detection of Trypanosoma cruzi DNA in blood samples from Chagas disease patients. PLoS Negl. Trop. Dis. 5, e931 (2011).
pubmed: 21264349
pmcid: 3019106
doi: 10.1371/journal.pntd.0000931
Sabino, E. C. et al. T. cruzi PCR positivity is associated with clinical and laboratory markers of severity of Chagas cardiomyopathy. Transfusion 52, 37A–38A (2012).
Ramírez, J. D. et al. Evaluation of adult chronic Chagas’ heart disease diagnosis by molecular and serological methods. J. Clin. Microbiol. 47, 3945–3951 (2009).
pubmed: 19846646
pmcid: 2786654
doi: 10.1128/JCM.01601-09
Lewis, M. D. & Kelly, J. M. Putting infection dynamics at the heart of Chagas disease. Trends Parasitol. 32, 899–911 (2016).
pubmed: 27612651
pmcid: 5086431
doi: 10.1016/j.pt.2016.08.009
Ferreira, A. V. M. et al. Evidence for Trypanosoma cruzi in adipose tissue in human chronic Chagas disease. Microbes Infect. 13, 1002–1005 (2011).
pubmed: 21726660
pmcid: 3552247
doi: 10.1016/j.micinf.2011.06.002
Andrade, D. V., Gollob, K. J. & Dutra, W. O. Acute Chagas disease: new global challenges for an old neglected disease. PLoS Negl. Trop. Dis. 8, e3010 (2014).
pubmed: 25077613
pmcid: 4117453
doi: 10.1371/journal.pntd.0003010
Andrade, Z. A. Immunopathology of Chagas disease. Mem. Inst. Oswaldo Cruz 94, 71–80 (1999).
pubmed: 10677693
doi: 10.1590/S0074-02761999000700007
Dutra, W. O. et al. Cellular and genetic mechanisms involved in the generation of protective and pathogenic immune responses in human Chagas disease. Mem. Inst. Oswaldo Cruz 104, 208–218 (2009).
pubmed: 19753476
doi: 10.1590/S0074-02762009000900027
Souza, P. E. A. et al. Trypanosoma cruzi infection induces differential modulation of costimulatory molecules and cytokines by monocytes and T cells from patients with indeterminate and cardiac Chagas’ disease. Infect. Immun. 75, 1886–1894 (2007).
pubmed: 17283096
pmcid: 1865727
doi: 10.1128/IAI.01931-06
Rodriguez-Salas, L. A. et al. Echocardiographic and clinical predictors of mortality in chronic Chagas’ disease. Echocardiography 15, 271–278 (1998).
pubmed: 11175040
doi: 10.1111/j.1540-8175.1998.tb00607.x
Marin-Neto, J. A., Cunha-Neto, E., Maciel, B. C. & Simões, M. V. Pathogenesis of chronic Chagas heart disease. Circulation 115, 1109–1123 (2007).
pubmed: 17339569
doi: 10.1161/CIRCULATIONAHA.106.624296
Bonney, K. M., Luthringer, D. J., Kim, S. A., Garg, N. J. & Engman, D. M. Pathology and pathogenesis of Chagas heart disease. Ann. Rev. Pathol. 14, 421–447 (2019).
doi: 10.1146/annurev-pathol-020117-043711
Bonney, K. M., Taylor, J. M., Daniels, M. D., Epting, C. L. & Engman, D. M. Heat-killed Trypanosoma cruzi induces acute cardiac damage and polyantigenic autoimmunity. PLoS ONE 6, e14571 (2011).
pubmed: 21283741
pmcid: 3024973
doi: 10.1371/journal.pone.0014571
Daliry, A. et al. Levels of circulating anti-muscarinic and anti-adrenergic antibodies and their effect on cardiac arrhythmias and dysautonomia in murine models of Chagas disease. Parasitology 141, 1769–1778 (2014).
pubmed: 25093253
doi: 10.1017/S0031182014001097
Giordanengo, L., Gea, S., Barbieri, G. & Rabinovich, G. A. Anti-galectin-1 autoantibodies in human Trypanosoma cruzi infection: differential expression of this β-galactoside-binding protein in cardiac Chagas’ disease. Clin. Exp. Immunol. 124, 266–273 (2001).
pubmed: 11422204
pmcid: 1906055
doi: 10.1046/j.1365-2249.2001.01512.x
Bonney, K. M., Gifford, K. M., Taylor, J. M., Chen, C.-I. & Engman, D. M. Cardiac damage induced by immunization with heat-killed Trypanosoma cruzi is not antibody mediated. Parasite Immunol. 35, 1–10 (2013).
pubmed: 23009341
doi: 10.1111/pim.12008
Talvani, A. et al. Levels of anti-M
pubmed: 16963301
doi: 10.1016/j.micinf.2006.06.006
Tarleton, R. L. Parasite persistence in the aetiology of Chagas disease. Int. J. Parasitol. 31, 550–554 (2001).
pubmed: 11334941
doi: 10.1016/S0020-7519(01)00158-8
Lewis, M. D. et al. Bioluminescence imaging of chronic Trypanosoma cruzi infections reveals tissue-specific parasite dynamics and heart disease in the absence of locally persistent infection. Cell. Microbiol. 16, 1285–1300 (2014).
pubmed: 24712539
pmcid: 4190689
doi: 10.1111/cmi.12297
Cruz, J. S. et al. Altered cardiomyocyte function and Trypanosoma cruzi persistence in Chagas disease. Am. J. Trop. Med. Hyg. 94, 1028–1033 (2016).
pubmed: 26976879
pmcid: 4856598
doi: 10.4269/ajtmh.15-0255
Nagajyothi, F. et al. Mechanisms of Trypanosoma cruzi persistence in Chagas disease. Cell. Microbiol. 14, 634–643 (2012).
pubmed: 22309180
pmcid: 3556388
doi: 10.1111/j.1462-5822.2012.01764.x
Zicker, F., Smith, P. G., Netto, J. C., Oliveira, R. M. & Zicker, E. M. Physical activity, opportunity for reinfection, and sibling history of heart disease as risk factors for Chagas’ cardiopathy. Am. J. Trop. Med. Hyg. 43, 498–505 (1990).
pubmed: 2240374
doi: 10.4269/ajtmh.1990.43.498
Espinosa-Pereiro, J. et al. A retrospective study on the influence of siblings’ relatedness in Bolivian patients with chronic Chagas disease. Parasite Vectors 12, 260 (2019).
doi: 10.1186/s13071-019-3518-4
Ayo, C. M. et al. Genetic susceptibility to Chagas disease: an overview about the infection and about the association between disease and the immune response genes. Biomed. Res. Int. 2013, 284729 (2013).
pubmed: 24069594
pmcid: 3771244
doi: 10.1155/2013/284729
Ayo, C. M. et al. Killer cell immunoglobulin-like receptors and their HLA ligands are related with the immunopathology of Chagas disease. PLoS Negl. Trop. Dis. 9, e0003753 (2015).
pubmed: 25978047
pmcid: 4433128
doi: 10.1371/journal.pntd.0003753
Drigo, S. A. et al. TNF gene polymorphisms are associated with reduced survival in severe Chagas’ disease cardiomyopathy patients. Microbes Infect. 8, 598–603 (2006).
pubmed: 16427798
doi: 10.1016/j.micinf.2005.08.009
Llop, E., Rothhammer, F., Acuña, M. & Apt, W. HLA antigens in cardiomyopathic Chilean chagasics. Am. J. Hum. Genet. 43, 770–773 (1988).
pubmed: 3189340
pmcid: 1715553
Chaves, A. T. et al. Immunoregulatory mechanisms in Chagas disease: modulation of apoptosis in T-cell mediated immune responses. BMC Infect. Dis. 16, 191 (2016).
pubmed: 27138039
pmcid: 4852404
doi: 10.1186/s12879-016-1523-1
Cunha-Neto, E. & Chevillard, C. Chagas disease cardiomyopathy: immunopathology and genetics. Mediat. Inflamm. 2014, 683230 (2014).
doi: 10.1155/2014/683230
Cunha-Neto, E. et al. Cardiac gene expression profiling provides evidence for cytokinopathy as a molecular mechanism in Chagas’ disease cardiomyopathy. Am. J. Pathol. 167, 305–313 (2005).
pubmed: 16049318
pmcid: 1603558
doi: 10.1016/S0002-9440(10)62976-8
Nogueira, L. G. et al. Myocardial chemokine expression and intensity of myocarditis in Chagas cardiomyopathy are controlled by polymorphisms in CXCL9 and CXCL10. PLoS Negl. Trop. Dis. 6, e1867 (2012).
pubmed: 23150742
pmcid: 3493616
doi: 10.1371/journal.pntd.0001867
Casares-Marfil, D. et al. A genome-wide association study identifies novel susceptibility loci in chronic Chagas cardiomyopathy. Clin. Infect. Dis. 73, 672–679 (2021).
pubmed: 33539531
pmcid: 8366831
doi: 10.1093/cid/ciab090
Sabino, E. C. et al. Genome-wide association study for Chagas cardiomyopathy identify a new risk locus on chromosome 18 associated with an immune-related protein and transcriptional signature. PLoS Negl. Trop. Dis. 16, e0010725 (2022).
pubmed: 36215317
pmcid: 9550069
doi: 10.1371/journal.pntd.0010725
Casares-Marfil, D. et al. GWAS loci associated with Chagas cardiomyopathy influences DNA methylation levels. PLoS Negl. Trop. Dis. 15, e0009874 (2021).
pubmed: 34714828
pmcid: 8580254
doi: 10.1371/journal.pntd.0009874
Lewis, M. D., Francisco, A. F., Taylor, M. C., Jayawardhana, S. & Kelly, J. M. Host and parasite genetics shape a link between Trypanosoma cruzi infection dynamics and chronic cardiomyopathy. Cell. Microbiol. 18, 1429–1443 (2016).
pubmed: 26918803
pmcid: 5031194
doi: 10.1111/cmi.12584
Olivo Freites, C. et al. Chronic Chagas disease-the potential role of reinfections in cardiomyopathy pathogenesis. Curr. Heart Fail. Rep. 19, 279–289 (2022).
pubmed: 35951245
doi: 10.1007/s11897-022-00568-9
Bosch-Nicolau, P., Espinosa-Pereiro, J., Salvador, F., Sánchez-Montalvá, A. & Molina, I. Association between Trypanosoma cruzi DNA in peripheral blood and chronic chagasic cardiomyopathy: a systematic review. Front. Cardiovasc. Med. 8, 787214 (2021).
pubmed: 35174221
doi: 10.3389/fcvm.2021.787214
Vela, A. et al. In vitro susceptibility of Trypanosoma cruzi discrete typing units (DTUs) to benznidazole: a systematic review and meta-analysis. PLoS Negl. Trop. Dis. 15, e0009269 (2021).
pubmed: 33750958
pmcid: 8016252
doi: 10.1371/journal.pntd.0009269
Zingales, B. & Macedo, A. M. Fifteen years after the definition of Trypanosoma cruzi DTUs: what have we learned? Life 13, 2339 (2023).
pubmed: 38137940
pmcid: 10744745
doi: 10.3390/life13122339
Tavares de Oliveira, M. et al. Correlation of TcII discrete typing units with severe chronic Chagas cardiomyopathy in patients from various Brazilian geographic regions. PLoS Negl. Trop. Dis. 16, e0010713 (2022).
pubmed: 36508471
pmcid: 9794067
doi: 10.1371/journal.pntd.0010713
Ianni, B. M., Arteaga, E., Frimm, C. C., Pereira Barretto, A. C. & Mady, C. Chagas’ heart disease: evolutive evaluation of electrocardiographic and echocardiographic parameters in patients with the indeterminate form. Arq. Bras. Cardiol. 77, 59–62 (2001).
pubmed: 11500748
doi: 10.1590/S0066-782X2001000700006
Ribeiro, A. L. P., Marcolino, M. S., Prineas, R. J. & Lima-Costa, M. F. Electrocardiographic abnormalities in elderly Chagas disease patients: 10-year follow-up of the Bambui Cohort Study of Aging. J. Am. Heart Assoc. 3, e000632 (2014).
pubmed: 24510116
pmcid: 3959704
doi: 10.1161/JAHA.113.000632
Nunes, M. C. P. et al. Chagas disease: an overview of clinical and epidemiological aspects. J. Am. Coll. Cardiol. 62, 767–776 (2013).
pubmed: 23770163
doi: 10.1016/j.jacc.2013.05.046
Rassi, A. Jr, Rassi, A. & Marin-Neto, J. A. Chagas disease. Lancet 375, 1388–1402 (2010).
pubmed: 20399979
doi: 10.1016/S0140-6736(10)60061-X
Barbosa, M. M. et al. Early detection of left ventricular contractility abnormalities by two-dimensional speckle tracking strain in Chagas’ disease. Echocardiography 31, 623–630 (2014).
pubmed: 25232573
doi: 10.1111/echo.12426
Marin-Neto, J. A. et al. SBC guideline on the diagnosis and treatment of patients with cardiomyopathy of Chagas disease — 2023. Arq. Bras. Cardiol. 120, e20230269 (2023).
pubmed: 37377258
pmcid: 10344417
doi: 10.36660/abc.20230269
Di Lorenzo Oliveira, C. et al. Risk score for predicting 2‐year mortality in patients with Chagas cardiomyopathy from endemic areas: SaMi‐Trop cohort study. J. Am. Heart Assoc. 9, e014176 (2020).
pubmed: 32157953
pmcid: 7335521
doi: 10.1161/JAHA.119.014176
Nunes, M. C. P. et al. Chagas cardiomyopathy: an update of current clinical knowledge and management: a scientific statement from the American Heart Association. Circulation 138, e169–e209 (2018).
pubmed: 30354432
doi: 10.1161/CIR.0000000000000599
Prata, A. Clinical and epidemiological aspects of Chagas disease. Lancet Infect. Dis. 1, 92–100 (2001).
pubmed: 11871482
doi: 10.1016/S1473-3099(01)00065-2
Nunes, M. C. P., Carmo, A. A. L., do, Rocha, M. O. C. & Ribeiro, A. L. Mortality prediction in Chagas heart disease. Expert Rev. Cardiovasc. Ther. 10, 1173–1184 (2012).
pubmed: 23098153
doi: 10.1586/erc.12.111
Nunes, M. do C. P., Barbosa, M. de M., Brum, V. A. A. & Rocha, M. O. da C. Morphofunctional characteristics of the right ventricle in Chagas’ dilated cardiomyopathy. Int. J. Cardiol. 94, 79–85 (2004).
pubmed: 14996479
doi: 10.1016/j.ijcard.2003.05.003
Nunes, M. C. P., Barbosa, M. M., Ribeiro, A. L. P., Barbosa, F. B. L. & Rocha, M. O. C. Ischemic cerebrovascular events in patients with Chagas cardiomyopathy: a prospective follow-up study. J. Neurol. Sci. 278, 96–101 (2009).
pubmed: 19162278
doi: 10.1016/j.jns.2008.12.015
Dias Junior, J. O. et al. Assessment of the source of ischemic cerebrovascular events in patients with Chagas disease. Int. J. Cardiol. 176, 1352–1354 (2014).
pubmed: 25131915
doi: 10.1016/j.ijcard.2014.07.266
Rocha, M. O. C., Nunes, M. C. P. & Ribeiro, A. L. Morbidity and prognostic factors in chronic chagasic cardiopathy. Mem. Inst. Oswaldo Cruz 104, 159–166 (2009).
pubmed: 19753471
doi: 10.1590/S0074-02762009000900022
Barbosa, M. P. T., da Costa Rocha, M. O., de Oliveira, A. B., Lombardi, F. & Ribeiro, A. L. P. Efficacy and safety of implantable cardioverter-defibrillators in patients with Chagas disease. Europace 15, 957–962 (2013).
pubmed: 23376978
doi: 10.1093/europace/eut011
Nunes, M. & do, C. P. Coronary microvascular dysfunction: does it really matter in Chagas disease? Arq. Bras. Cardiol. 115, 1102–1103 (2020).
pubmed: 33470308
pmcid: 8133722
Marin-Neto, J. A. et al. Myocardial perfusion abnormalities in chronic Chagas’ disease as detected by thallium-201 scintigraphy. Am. J. Cardiol. 69, 780–784 (1992).
pubmed: 1546653
doi: 10.1016/0002-9149(92)90505-S
Hiss, F. C., Lascala, T. F., Maciel, B. C., Marin-Neto, J. A. & Simões, M. V. Changes in myocardial perfusion correlate with deterioration of left ventricular systolic function in chronic Chagas’ cardiomyopathy. JACC Cardiovasc. Imaging 2, 164–172 (2009).
pubmed: 19356551
doi: 10.1016/j.jcmg.2008.09.012
Bierrenbach, A. L. et al. Hospitalizations due to gastrointestinal Chagas disease: National registry. PLoS Negl. Trop. Dis. 16, e0010796 (2022).
pubmed: 36121897
pmcid: 9522308
doi: 10.1371/journal.pntd.0010796
Baldoni, N. R. et al. Gastrointestinal manifestations of Chagas disease: a systematic review with meta-analysis. Am. J. Trop. Med. Hyg. 110, 10–19 (2024).
pubmed: 38052078
doi: 10.4269/ajtmh.23-0323
Jidling, C. et al. Screening for Chagas disease from the electrocardiogram using a deep neural network. PLoS Negl. Trop. Dis. 17, e0011118 (2023).
pubmed: 37399207
pmcid: 10361500
doi: 10.1371/journal.pntd.0011118
Brito, B. O. et al. Left ventricular systolic dysfunction predicted by artificial intelligence using the electrocardiogram in Chagas disease patients-the SaMi-Trop cohort. PLoS Negl. Trop. Dis. 15, e0009974 (2021).
pubmed: 34871321
pmcid: 8675930
doi: 10.1371/journal.pntd.0009974
Ribeiro, A. L. & Rocha, M. O. Indeterminate form of Chagas disease: considerations about diagnosis and prognosis. Rev. Soc. Bras. Med. Trop. 31, 301–314 (1998).
pubmed: 9612022
doi: 10.1590/S0037-86821998000300008
Maguire, J. H. et al. Cardiac morbidity and mortality due to Chagas’ disease: prospective electrocardiographic study of a Brazilian community. Circulation 75, 1140–1145 (1987).
pubmed: 3552307
doi: 10.1161/01.CIR.75.6.1140
Manzullo, E. C. & Chuit, R. Risk of death due to chronic chagasic cardiopathy. Mem. Inst. Oswaldo Cruz 94, 317–320 (1999).
pubmed: 10677746
doi: 10.1590/S0074-02761999000700060
Chadalawada, S. et al. Risk of chronic cardiomyopathy among patients with the acute phase or indeterminate form of Chagas disease: a systematic review and meta-analysis. JAMA Netw. Open 3, e2015072 (2020).
pubmed: 32865573
pmcid: 7489816
doi: 10.1001/jamanetworkopen.2020.15072
Sabino, E. C. et al. Ten-year incidence of Chagas cardiomyopathy among asymptomatic Trypanosoma cruzi–seropositive former blood donors. Circulation 127, 1105–1115 (2013).
pubmed: 23393012
pmcid: 3643805
doi: 10.1161/CIRCULATIONAHA.112.123612
Ramos Nascimento, B. et al. Prevalence of clinical forms of Chagas disease: a systematic review and meta-analysis — data from the RAISE study. Lancet Reg. Health Am. 30, 100681 (2024).
Brito, B. O. F. et al. The evolution of electrocardiographic abnormalities in the elderly with Chagas disease during 14 years of follow-up: the Bambui Cohort Study of Aging. PLoS Negl. Trop. Dis. 17, e0011419 (2023).
pubmed: 37285382
pmcid: 10281574
doi: 10.1371/journal.pntd.0011419
Chadalawada, S. et al. Mortality risk in chronic Chagas cardiomyopathy: a systematic review and meta-analysis. Esc. Heart Fail. 8, 5466–5481 (2021).
pubmed: 34716744
pmcid: 8712892
doi: 10.1002/ehf2.13648
Cucunubá, Z. M., Okuwoga, O., Basáñez, M.-G. & Nouvellet, P. Increased mortality attributed to Chagas disease: a systematic review and meta-analysis. Parasites Vectors 9, 42 (2016).
pubmed: 26813568
pmcid: 4728795
doi: 10.1186/s13071-016-1315-x
Damasceno, R. F. et al. Failure to use health services by people with Chagas disease: multilevel analysis of endemic area in Brazil. PLoS Negl. Trop. Dis. 16, e0010785 (2022).
pubmed: 36121849
pmcid: 9522310
doi: 10.1371/journal.pntd.0010785
Ferreira, A. M. et al. Impact of the social context on the prognosis of Chagas disease patients: multilevel analysis of a Brazilian cohort. PLoS Negl. Trop. Dis. 14, e0008399 (2020).
pubmed: 32598390
pmcid: 7351237
doi: 10.1371/journal.pntd.0008399
Rassi, A. Jr, Rassi, A. & Rassi, S. G. Predictors of mortality in chronic Chagas disease: a systematic review of observational studies. Circulation 115, 1101–1108 (2007).
pubmed: 17339568
doi: 10.1161/CIRCULATIONAHA.106.627265
Torres, R. M. et al. Prognosis of chronic Chagas heart disease and other pending clinical challenges. Mem. Inst. Oswaldo Cruz 117, e210172 (2022).
pubmed: 35674528
pmcid: 9172891
doi: 10.1590/0074-02760210172
Rassi, A. Jr et al. Development and validation of a risk score for predicting death in Chagas’ heart disease. N. Engl. J. Med. 355, 799–808 (2006).
pubmed: 16928995
doi: 10.1056/NEJMoa053241
Lima, E. M. et al. Deep neural network-estimated electrocardiographic age as a mortality predictor. Nat. Commun. 12, 5117 (2021).
pubmed: 34433816
pmcid: 8387361
doi: 10.1038/s41467-021-25351-7
Rodriques Coura, J. & de Castro, S. L. A critical review on Chagas disease chemotherapy. Mem. Inst. Oswaldo Cruz 97, 3–24 (2002).
pubmed: 11992141
doi: 10.1590/S0074-02762002000100001
Dias, J. C. P. et al. 2nd Brazilian consensus on Chagas disease, 2015. Rev. Soc. Bras. Med. Trop. 49, 3–60 (2016).
doi: 10.1590/0037-8682-0505-2016
Schijman, A. G. et al. Aetiological treatment of congenital Chagas’ disease diagnosed and monitored by the polymerase chain reaction. J. Antimicrob. Chemother. 52, 441–449 (2003).
pubmed: 12917253
doi: 10.1093/jac/dkg338
Russomando, G. et al. Treatment of congenital Chagas’ disease diagnosed and followed up by the polymerase chain reaction. Am. J. Trop. Med. Hyg. 59, 487–491 (1998).
pubmed: 9749649
doi: 10.4269/ajtmh.1998.59.487
Cancado, J. R. Long term evaluation of etiological treatment of Chagas disease with benznidazole. Rev. Inst. Med. Trop. Sao Paulo 44, 29–37 (2002).
pubmed: 11896410
doi: 10.1590/S0036-46652002000100006
Neves Pinto, A. Y. et al. Clinical, cardiological and serologic follow-up of Chagas disease in children and adolescents from the amazon region, Brazil: longitudinal study. Trop. Med. Infect. Dis. 5, 139 (2020).
pubmed: 32878335
pmcid: 7559478
doi: 10.3390/tropicalmed5030139
Pérez-Molina, J. A., Crespillo-Andújar, C., Bosch-Nicolau, P. & Molina, I. Trypanocidal treatment of Chagas disease. Enferm. Infecc. Microbiol. Clin. 39, 458–470 (2021).
doi: 10.1016/j.eimc.2020.04.011
Streiger, M. L., del Barco, M. L., Fabbro, D. L., Arias, E. D. & Amicone, N. A. Longitudinal study and specific chemotherapy in children with chronic Chagas’ disease, residing in a low endemicity area of Argentina. Rev. Soc. Bras. Med. Trop. 37, 365–375 (2004).
pubmed: 15361952
doi: 10.1590/S0037-86822004000500001
de Andrade, A. L. et al. Randomised trial of efficacy of benznidazole in treatment of early Trypanosoma cruzi infection. Lancet 348, 1407–1413 (1996).
pubmed: 8937280
doi: 10.1016/S0140-6736(96)04128-1
Sosa Estani, S. et al. Efficacy of chemotherapy with benznidazole in children in the indeterminate phase of Chagas’ disease. Am. J. Trop. Med. Hyg. 59, 526–529 (1998).
pubmed: 9790423
doi: 10.4269/ajtmh.1998.59.526
Fabbro, D. L. et al. Trypanocide treatment among adults with chronic Chagas disease living in Santa Fe city (Argentina), over a mean follow-up of 21 years: parasitological, serological and clinical evolution. Rev. Soc. Bras. Med. Trop. 40, 1–10 (2007).
pubmed: 17486245
doi: 10.1590/S0037-86822007000100001
Gallerano, R. R. & Sosa, R. R. Interventional study in the natural evolution of Chagas disease. Evaluation of specific antiparasitic treatment. Retrospective-prospective study of antiparasitic therapy. Rev. Fac. Cien. Med. Univ. Nac. Cordoba 57, 135–162 (2000).
pubmed: 12934232
Cançado, J. R. Criteria of Chagas disease cure. Mem. Inst. Oswaldo Cruz 94, 331–335 (1999).
pubmed: 10677750
doi: 10.1590/S0074-02761999000700064
Cardoso, C. S. et al. Beneficial effects of benznidazole in Chagas disease: NIH SaMi-Trop cohort study. PLoS Negl. Trop. Dis. 12, e0006814 (2018).
pubmed: 30383777
pmcid: 6211620
doi: 10.1371/journal.pntd.0006814
Crespillo-Andújar, C. et al. Use of benznidazole to treat chronic Chagas disease: an updated systematic review with a meta-analysis. PLoS Negl. Trop. Dis. 16, e0010386 (2022).
pubmed: 35576215
pmcid: 9135346
doi: 10.1371/journal.pntd.0010386
Morillo, C. A. et al. Randomized trial of benznidazole for chronic Chagas’ cardiomyopathy. N. Engl. J. Med. 373, 1295–1306 (2015).
pubmed: 26323937
doi: 10.1056/NEJMoa1507574
Bosch-Nicolau, P. et al. Efficacy of three benznidazole dosing strategies for adults living with chronic Chagas disease (MULTIBENZ): an international, randomised, double-blind, phase 2b trial. Lancet Infect. Dis. 24, 386–394 (2024).
pubmed: 38218195
doi: 10.1016/S1473-3099(23)00629-1
Torrico, F. et al. New regimens of benznidazole monotherapy and in combination with fosravuconazole for treatment of Chagas disease (BENDITA): a phase 2, double-blind, randomised trial. Lancet Infect. Dis. 21, 1129–1140 (2021).
pubmed: 33836161
doi: 10.1016/S1473-3099(20)30844-6
Botoni, F. A. et al. Treatment of Chagas cardiomyopathy. Biomed. Res. Int. 2013, 849504 (2013).
pubmed: 24350293
pmcid: 3857751
doi: 10.1155/2013/849504
Issa, V. S. et al. β-Blocker therapy and mortality of patients with Chagas cardiomyopathy: a subanalysis of the REMADHE prospective trial. Circ. Heart Fail. 3, 82–88 (2010).
pubmed: 19933408
doi: 10.1161/CIRCHEARTFAILURE.109.882035
Botoni, F. A. et al. A randomized trial of carvedilol after renin-angiotensin system inhibition in chronic Chagas cardiomyopathy. Am. Heart J. 153, 544.e1–8 (2007).
pubmed: 17383291
doi: 10.1016/j.ahj.2006.12.017
Dávila, D. F., Angel, F., Arata de Bellabarba, G. & Donis, J. H. Effects of metoprolol in chagasic patients with severe congestive heart failure. Int. J. Cardiol. 85, 255–260 (2002).
pubmed: 12208592
doi: 10.1016/S0167-5273(02)00181-X
Bestetti, R. B. et al. Effects of B-blockers on outcome of patients with Chagas’ cardiomyopathy with chronic heart failure. Int. J. Cardiol. 151, 205–208 (2011).
pubmed: 20591516
doi: 10.1016/j.ijcard.2010.05.033
US National Library of Medicine. ClinicalTrials.gov. https://clinicaltrials.gov/study/NCT04023227 (2023).
Barbosa, M. P. T., Carmo, A. A. L., do, Rocha, M. O., da, C. & Ribeiro, A. L. P. Ventricular arrhythmias in Chagas disease. Rev. Soc. Bras. Med. Trop. 48, 4–10 (2015).
pubmed: 25714933
doi: 10.1590/0037-8682-0003-2014
Tanowitz, H. B. et al. Developments in the management of Chagas cardiomyopathy. Expert Rev. Cardiovasc. Ther. 13, 1393–1409 (2015).
pubmed: 26496376
pmcid: 4810774
doi: 10.1586/14779072.2015.1103648
Peixoto, G. et al. Predictors of death in chronic Chagas cardiomyopathy patients with pacemaker. Int. J. Cardiol. 250, 260–265 (2018).
pubmed: 29079412
doi: 10.1016/j.ijcard.2017.10.031
Zeppenfeld, K. et al. 2022 ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur. Heart J. 43, 3997–4126 (2022).
pubmed: 36017572
doi: 10.1093/eurheartj/ehac262
Gali, W. L. et al. Implantable cardioverter-defibrillators for treatment of sustained ventricular arrhythmias in patients with Chagas’ heart disease: comparison with a control group treated with amiodarone alone. Europace 16, 674–680 (2014).
pubmed: 24481778
doi: 10.1093/europace/eut422
Carmo, A. A. L. et al. Implantable cardioverter-defibrillator in Chagas heart disease: a systematic review and meta-analysis of observational studies. Int. J. Cardiol. 267, 88–93 (2018).
pubmed: 29871807
doi: 10.1016/j.ijcard.2018.05.091
Rassi, F. M. et al. Systematic review and meta-analysis of clinical outcome after implantable cardioverter-defibrillator therapy in patients with Chagas heart disease. JACC Clin. Electrophysiol. 5, 1213–1223 (2019).
pubmed: 31648747
doi: 10.1016/j.jacep.2019.07.003
Nadruz, W. Jr et al. Temporal trends in the contribution of Chagas cardiomyopathy to mortality among patients with heart failure. Heart 104, 1522–1528 (2018).
pubmed: 29523589
doi: 10.1136/heartjnl-2017-312869
Martinelli, M. et al. Chronic use of amiodarone against implantable cardioverter-defibrillator therapy for primary prevention of death in patients with Chagas cardiomyopathy study: rationale and design of a randomized clinical trial. Am. Heart J. 166, 976–982.e4 (2013).
pubmed: 24268211
doi: 10.1016/j.ahj.2013.08.027
Stein, C. et al. Amiodarone for arrhythmia in patients with Chagas disease: a systematic review and individual patient data meta-analysis. PLoS Negl. Trop. Dis. 12, e0006742 (2018).
pubmed: 30125291
pmcid: 6130878
doi: 10.1371/journal.pntd.0006742
França, A. T. et al. Evaluation of patients with implantable cardioverter‐defibrillator in a Latin American tertiary center. J. Cardiovasc. Electrophysiol. 35, 675–684 (2024).
pubmed: 38323491
doi: 10.1111/jce.16201
Wilnes, B. et al. Enhancing ventricular tachycardia ablation outcomes: the impact of functional mapping in Chagas cardiomyopathy. Preprint at https://www.medrxiv.org/content/10.1101/2024.02.08.24302420v1 (2024).
Pisani, C. F. et al. Efficacy and safety of combined endocardial/epicardial catheter ablation for ventricular tachycardia in Chagas disease: a randomized controlled study. Heart Rhythm 17, 1510–1518 (2020).
pubmed: 32087356
doi: 10.1016/j.hrthm.2020.02.009
Carmo, A. A. L., Zenobio, S., Santos, B. C., Rocha, M. O. C. & Ribeiro, A. L. P. Feasibility and safety of laparoscopic‐guided epicardial access for ventricular tachycardia ablation. J. Am. Heart Assoc. 9, e016654 (2020).
pubmed: 32715839
pmcid: 7792264
doi: 10.1161/JAHA.120.016654
Lima, M. M. O. et al. A randomized trial of the effects of exercise training in Chagas cardiomyopathy. Eur. J. Heart Fail. 12, 866–873 (2010).
pubmed: 20675669
doi: 10.1093/eurjhf/hfq123
Vieira, M. C. et al. Effect of an exercise-based cardiac rehabilitation program on quality of life of patients with chronic Chagas cardiomyopathy: results from the PEACH randomized clinical trial. Sci. Rep. 14, 8208 (2024).
pubmed: 38589582
pmcid: 11001987
doi: 10.1038/s41598-024-58776-3
Clark, E. H. et al. Hyperendemic Chagas disease and the unmet need for pacemakers in the Bolivian Chaco. PLoS Negl. Trop. Dis. 8, e2801 (2014).
pubmed: 24901942
pmcid: 4046936
doi: 10.1371/journal.pntd.0002801
Blum, J. A., Zellweger, M. J., Burri, C. & Hatz, C. Cardiac involvement in African and American trypanosomiasis. Lancet Infect. Dis. 8, 631–641 (2008).
pubmed: 18922485
doi: 10.1016/S1473-3099(08)70230-5
Blum, J. A., Neumayr, A. L. & Hatz, C. F. Human African trypanosomiasis in endemic populations and travellers. Eur. J. Clin. Microbiol. Infect. Dis. 31, 905–913 (2012).
pubmed: 21901632
doi: 10.1007/s10096-011-1403-y
Blum, J., Schmid, C. & Burri, C. Clinical aspects of 2541 patients with second stage human African trypanosomiasis. Acta Trop. 97, 55–64 (2006).
pubmed: 16157286
doi: 10.1016/j.actatropica.2005.08.001
McDonald, A. & Stone, N. R. H. in The Travel and Tropical Medicine Manual 5th edn, 382–390 (eds Sanford, C. A. et al.) Ch. 27 (Elsevier, 2016).
Kuepfer, I. et al. Clinical presentation of T.b. rhodesiense sleeping sickness in second stage patients from Tanzania and Uganda. PLoS Negl. Trop. Dis. 5, e968 (2011).
pubmed: 21407802
pmcid: 3046969
doi: 10.1371/journal.pntd.0000968
Blum, J. A. et al. Cardiac alterations in human African trypanosomiasis (T.b. gambiense) with respect to the disease stage and antiparasitic treatment. PLoS Negl. Trop. Dis. 3, e383 (2009).
pubmed: 19221604
pmcid: 2640099
doi: 10.1371/journal.pntd.0000383
Blum, J. A. et al. Sleeping hearts: the role of the heart in sleeping sickness (human African trypanosomiasis). Trop. Med. Int. Health 12, 1422–1432 (2007).
pubmed: 18076548
doi: 10.1111/j.1365-3156.2007.01948.x
Koten, J. W. & De Raadt, P. Myocarditis in Trypanosoma rhodesiense infections. Trans. R. Soc. Trop. Med. Hyg. 63, 485–489 (1969).
pubmed: 4980627
doi: 10.1016/0035-9203(69)90036-4
Collomb, H. & Bartoli, D. The heart in human African trypanosomiasis caused by Trypanosoma gambiense. Bull. Soc. Pathol. Exot. Filiales 60, 142–156 (1967).
pubmed: 5632553
Bertrand, E. et al. Current aspects of the cardiac symptoms in African human trypanosomiasis due to Trypanosoma gambiense (apropos of 194 cases). Acta Cardiol. 29, 363–381 (1974).
pubmed: 4548789
Blum, A. et al. Sleeping hearts: 12 years after a follow up study on cardiac findings due to sleeping sickness. One Health 11, 100182 (2020).
pubmed: 33392376
pmcid: 7772621
doi: 10.1016/j.onehlt.2020.100182
Mudji, J. et al. Gambiense human African trypanosomiasis sequelae after treatment: a follow-up study 12 years after treatment. Trop. Med. Infect. Dis. 5, 10 (2020).
pubmed: 31940846
pmcid: 7157708
doi: 10.3390/tropicalmed5010010
Frean, J., Sieling, W., Pahad, H., Shoul, E. & Blumberg, L. Clinical management of East African trypanosomiasis in South Africa: lessons learned. Int. J. Infect. Dis. 75, 101–108 (2018).
pubmed: 30153486
doi: 10.1016/j.ijid.2018.08.012
MacLean, L. et al. Severity of human African trypanosomiasis in East Africa is associated with geographic location, parasite genotype, and host inflammatory cytokine response profile. Infect. Immun. 72, 7040–7044 (2004).
pubmed: 15557627
pmcid: 529158
doi: 10.1128/IAI.72.12.7040-7044.2004
Betu Kumeso, V. K. et al. Efficacy and safety of acoziborole in patients with human African trypanosomiasis caused by Trypanosoma brucei gambiense: a multicentre, open-label, single-arm, phase 2/3 trial. Lancet Infect. Dis. 23, 463–470 (2023).
pubmed: 36460027
pmcid: 10033454
doi: 10.1016/S1473-3099(22)00660-0
Brito, B. O., de, F. & Ribeiro, A. L. P. Electrocardiogram in Chagas disease. Rev. Soc. Bras. Med. Trop. 51, 570–577 (2018).
pubmed: 30304260
doi: 10.1590/0037-8682-0184-2018
Rojas, L. Z. et al. Electrocardiographic abnormalities in Chagas disease in the general population: a systematic review and meta-analysis. PLoS Negl. Trop. Dis. 12, e0006567 (2018).
pubmed: 29897909
pmcid: 5999094
doi: 10.1371/journal.pntd.0006567
Ribeiro, A. H. et al. Automatic diagnosis of the 12-lead ECG using a deep neural network. Nat. Commun. 11, 1760 (2020).
pubmed: 32273514
pmcid: 7145824
doi: 10.1038/s41467-020-15432-4
Attia, Z. I. et al. Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram. Nat. Med. 25, 70–74 (2019).
pubmed: 30617318
doi: 10.1038/s41591-018-0240-2
Raghunath, S. et al. Prediction of mortality from 12-lead electrocardiogram voltage data using a deep neural network. Nat. Med. 26, 886–891 (2020).
pubmed: 32393799
doi: 10.1038/s41591-020-0870-z
Tropical Medicine Research Centers Network. Sao Paulo-Minas Gerais Center for Chagas Disease Treatment (SaMi-Trop) https://tmrc-network.org/research-centers/brazil (TMRC, 2022).
Brant, L. C. C. et al. Association between electrocardiographic age and cardiovascular events in community settings: the Framingham Heart Study. Circ. Cardiovasc. Qual. Outcomes 16, e009821 (2023).
pubmed: 37381910
pmcid: 10524985
doi: 10.1161/CIRCOUTCOMES.122.009821