Evaluating the quality of radiomics-based studies for endometrial cancer using RQS and METRICS tools.

Deep learning Endometrial neoplasms Machine learning Quality indicators Radiomics

Journal

European radiology
ISSN: 1432-1084
Titre abrégé: Eur Radiol
Pays: Germany
ID NLM: 9114774

Informations de publication

Date de publication:
16 Jul 2024
Historique:
received: 08 04 2024
accepted: 19 06 2024
revised: 15 05 2024
medline: 17 7 2024
pubmed: 17 7 2024
entrez: 16 7 2024
Statut: aheadofprint

Résumé

To assess the methodological quality of radiomics-based models in endometrial cancer using the radiomics quality score (RQS) and METhodological radiomICs score (METRICS). We systematically reviewed studies published by October 30th, 2023. Inclusion criteria were original radiomics studies on endometrial cancer using CT, MRI, PET, or ultrasound. Articles underwent a quality assessment by novice and expert radiologists using RQS and METRICS. The inter-rater reliability for RQS and METRICS among radiologists with varying expertise was determined. Subgroup analyses were performed to assess whether scores varied according to study topic, imaging technique, publication year, and journal quartile. Sixty-eight studies were analysed, with a median RQS of 11 (IQR, 9-14) and METRICS score of 67.6% (IQR, 58.8-76.0); two different articles reached maximum RQS of 19 and METRICS of 90.7%, respectively. Most studies utilised MRI (82.3%) and machine learning methods (88.2%). Characterisation and recurrence risk stratification were the most explored outcomes, featured in 35.3% and 19.1% of articles, respectively. High inter-rater reliability was observed for both RQS (ICC: 0.897; 95% CI: 0.821, 0.946) and METRICS (ICC: 0.959; 95% CI: 0.928, 0.979). Methodological limitations such as lack of external validation suggest areas for improvement. At subgroup analyses, no statistically significant difference was noted. Whilst using RQS, the quality of endometrial cancer radiomics research was apparently unsatisfactory, METRICS depicts a good overall quality. Our study highlights the need for strict compliance with quality metrics. Adhering to these quality measures can increase the consistency of radiomics towards clinical application in the pre-operative management of endometrial cancer. Both the RQS and METRICS can function as instrumental tools for identifying different methodological deficiencies in endometrial cancer radiomics research. However, METRICS also reflected a focus on the practical applicability and clarity of documentation. The topic of radiomics currently lacks standardisation, limiting clinical implementation. METRICS scores were generally higher than the RQS, reflecting differences in the development process and methodological content. A positive trend in METRICS score may suggest growing attention to methodological aspects in radiomics research.

Identifiants

pubmed: 39014086
doi: 10.1007/s00330-024-10947-6
pii: 10.1007/s00330-024-10947-6
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s).

Références

Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577
pubmed: 26579733 doi: 10.1148/radiol.2015151169
Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts H (2018) Artificial intelligence in radiology. Nat Rev Cancer 18:500–510
pubmed: 29777175 pmcid: 6268174 doi: 10.1038/s41568-018-0016-5
Russo L, Bottazzi S, Sala E (2023) Artificial intelligence in female pelvic oncology: tailoring applications to clinical needs. Eur Radiol. https://doi.org/10.1007/s00330-023-10455-z
Stanzione A, Cuocolo R, Ugga L et al (2022) Oncologic imaging and radiomics: a walkthrough review of methodological challenges. Cancers 14:4871
Fournier L, Costaridou L, Bidaut L et al (2021) Incorporating radiomics into clinical trials: expert consensus endorsed by the European Society of Radiology on considerations for data-driven compared to biologically driven quantitative biomarkers. Eur Radiol 31:6001–6012
pubmed: 33492473 pmcid: 8270834 doi: 10.1007/s00330-020-07598-8
Huang EP, O’Connor JPB, McShane LM et al (2023) Criteria for the translation of radiomics into clinically useful tests. Nat Rev Clin Oncol 20:69–82
pubmed: 36443594 doi: 10.1038/s41571-022-00707-0
Cannella R, Vernuccio F, Klontzas ME et al (2023) Systematic review with radiomics quality score of cholangiocarcinoma: an EuSoMII radiomics auditing group initiative. Insights Imaging 14:21
pubmed: 36720726 pmcid: 9889586 doi: 10.1186/s13244-023-01365-1
Recht MP, Dewey M, Dreyer K et al (2020) Integrating artificial intelligence into the clinical practice of radiology: challenges and recommendations. Eur Radiol 30:3576–3584
pubmed: 32064565 doi: 10.1007/s00330-020-06672-5
Ponsiglione A, Gambardella M, Stanzione A et al (2023) Radiomics for the identification of extraprostatic extension with prostate MRI: a systematic review and meta-analysis. Eur Radiol. https://doi.org/10.1007/s00330-023-10427-3
Shrestha P, Poudyal B, Yadollahi S et al (2022) A systematic review on the use of artificial intelligence in gynecologic imaging—background, state of the art, and future directions. Gynecol Oncol 166:596–605
pubmed: 35914978 doi: 10.1016/j.ygyno.2022.07.024
van der Velden BHM (2024) Explainable AI: current status and future potential. Eur Radiol 34:1187–1189
pubmed: 37589904 doi: 10.1007/s00330-023-10121-4
Huang ML, Ren J, Jin ZY et al (2023) A systematic review and meta-analysis of CT and MRI radiomics in ovarian cancer: methodological issues and clinical utility. Insights Imaging 14:117
pubmed: 37395888 pmcid: 10317928 doi: 10.1186/s13244-023-01464-z
Klontzas ME, Gatti AA, Tejani AS, Kahn CE Jr (2023) AI reporting guidelines: how to select the best one for your research. Radiol Artif Intell 5:e230055
pubmed: 37293341 pmcid: 10245184 doi: 10.1148/ryai.230055
Kocak B, Baessler B, Bakas S et al (2023) CheckList for evaluation of radiomics research (CLEAR): a step-by-step reporting guideline for authors and reviewers endorsed by ESR and EuSoMII. Insights Imaging 14:75
pubmed: 37142815 pmcid: 10160267 doi: 10.1186/s13244-023-01415-8
Mongan J, Moy L, Kahn CE Jr (2020) Checklist for artificial intelligence in medical imaging (CLAIM): a guide for authors and reviewers. Radiol Artif Intell 2:e200029
pubmed: 33937821 pmcid: 8017414 doi: 10.1148/ryai.2020200029
Zwanenburg A, Vallieres M, Abdalah MA et al (2020) The image biomarker standardisation initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295:328–338
pubmed: 32154773 doi: 10.1148/radiol.2020191145
Collins GS, Reitsma JB, Altman DG, Moons KG (2015) Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. Ann Intern Med 162:55–63
pubmed: 25560714 doi: 10.7326/M14-0697
Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762
pubmed: 28975929 doi: 10.1038/nrclinonc.2017.141
Spadarella G, Stanzione A, Akinci D’Antonoli T et al (2023) Systematic review of the radiomics quality score applications: an EuSoMII radiomics auditing group initiative. Eur Radiol 33:1884–1894
pubmed: 36282312 doi: 10.1007/s00330-022-09187-3
Kocak B, Akinci D’Antonoli T, Mercaldo N et al (2024) METhodological RadiomICs score (METRICS): a quality scoring tool for radiomics research endorsed by EuSoMII. Insights Imaging 15:8
pubmed: 38228979 pmcid: 10792137 doi: 10.1186/s13244-023-01572-w
Cerda-Alberich L, Solana J, Mallol P et al (2023) MAIC-10 brief quality checklist for publications using artificial intelligence and medical images. Insights Imaging 14:11
pubmed: 36645542 pmcid: 9842808 doi: 10.1186/s13244-022-01355-9
Sung H, Ferlay J, Siegel RL et al (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249
pubmed: 33538338 doi: 10.3322/caac.21660
Arciuolo D, Travaglino A, Raffone A et al (2022) TCGA molecular prognostic groups of endometrial carcinoma: current knowledge and future perspectives. Int J Mol Sci 23:11684
Concin N, Matias-Guiu X, Vergote I et al (2021) ESGO/ESTRO/ESP guidelines for the management of patients with endometrial carcinoma. Int J Gynecol Cancer 31:12–39
pubmed: 33397713 doi: 10.1136/ijgc-2020-002230
Berek JS, Matias-Guiu X, Creutzberg C et al (2023) FIGO staging of endometrial cancer: 2023. Int J Gynaecol Obstet 162:383–394
pubmed: 37337978 doi: 10.1002/ijgo.14923
Di Donato V, Kontopantelis E, Cuccu I et al (2023) Magnetic resonance imaging-radiomics in endometrial cancer: a systematic review and meta-analysis. Int J Gynecol Cancer 33:1070–1076
pubmed: 37094971 doi: 10.1136/ijgc-2023-004313
Manganaro L, Nicolino GM, Dolciami M et al (2021) Radiomics in cervical and endometrial cancer. Br J Radiol 94:20201314
pubmed: 34233456 pmcid: 9327743 doi: 10.1259/bjr.20201314
Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71
pubmed: 33782057 pmcid: 8005924 doi: 10.1136/bmj.n71
Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15:155–163
pubmed: 27330520 pmcid: 4913118 doi: 10.1016/j.jcm.2016.02.012
Bereby-Kahane M, Dautry R, Matzner-Lober E et al (2020) Prediction of tumor grade and lymphovascular space invasion in endometrial adenocarcinoma with MR imaging-based radiomic analysis. Diagn Interv Imaging 101:401–411
pubmed: 32037289 doi: 10.1016/j.diii.2020.01.003
Chen J, Wang X, Lv H et al (2023) Development and external validation of a clinical-radiomics nomogram for preoperative prediction of LVSI status in patients with endometrial carcinoma. J Cancer Res Clin Oncol 149:13943–13953
pubmed: 37542548 doi: 10.1007/s00432-023-05044-y
Han Y, Xu H, Ming Y et al (2020) Predicting myometrial invasion in endometrial cancer based on whole-uterine magnetic resonance radiomics. J Cancer Res Ther 16:1648–1655
pubmed: 33565512 doi: 10.4103/jcrt.JCRT_1393_20
Lefebvre TL, Ciga O, Bhatnagar SR et al (2023) Predicting histopathology markers of endometrial carcinoma with a quantitative image analysis approach based on spherical harmonics in multiparametric MRI. Diagn Interv Imaging 104:142–152
pubmed: 36328942 doi: 10.1016/j.diii.2022.10.007
Li X, Dessi M, Marcus D et al (2023) Prediction of deep myometrial infiltration, clinical risk category, histological type, and lymphovascular space invasion in women with endometrial cancer based on clinical and T2-weighted MRI radiomic features. Cancers 15:2209
Lin Z, Gu W, Guo Q et al (2023) Multisequence MRI-based radiomics model for predicting POLE mutation status in patients with endometrial cancer. Br J Radiol 96:20221063
pubmed: 37660398 doi: 10.1259/bjr.20221063
Lin Z, Wang T, Li H et al (2023) Magnetic resonance-based radiomics nomogram for predicting microsatellite instability status in endometrial cancer. Quant Imaging Med Surg 13:108–120
pubmed: 36620141 doi: 10.21037/qims-22-255
Liu D, Yang L, Du D et al (2022) Multi-parameter MR radiomics based model to predict 5-year progression-free survival in endometrial cancer. Front Oncol 12:813069
pubmed: 35433486 pmcid: 9008734 doi: 10.3389/fonc.2022.813069
Liu XF, Yan BC, Li Y, Ma FH, Qiang JW (2023) Radiomics nomogram in aiding preoperatively dilatation and curettage in differentiating type II and type I endometrial cancer. Clin Radiol 78:e29–e36
pubmed: 36192204 doi: 10.1016/j.crad.2022.08.139
Long L, Sun J, Jiang L et al (2021) MRI-based traditional radiomics and computer-vision nomogram for predicting lymphovascular space invasion in endometrial carcinoma. Diagn Interv Imaging 102:455–462
pubmed: 33741266 doi: 10.1016/j.diii.2021.02.008
Luo Y, Mei D, Gong J, Zuo M, Guo X (2020) Multiparametric MRI-based radiomics nomogram for predicting lymphovascular space invasion in endometrial carcinoma. J Magn Reson Imaging 52:1257–1262
pubmed: 32315482 doi: 10.1002/jmri.27142
Rodríguez-Ortega A, Alegre A, Lago V et al (2021) Machine learning-based integration of prognostic magnetic resonance imaging biomarkers for myometrial invasion stratification in endometrial cancer. J Magn Reson Imaging 54:987–995
pubmed: 33793008 doi: 10.1002/jmri.27625
Song XL, Luo HJ, Ren JL et al (2023) Multisequence magnetic resonance imaging-based radiomics models for the prediction of microsatellite instability in endometrial cancer. Radiol Med 128:242–251
pubmed: 36656410 doi: 10.1007/s11547-023-01590-0
Stanzione A, Cuocolo R, Del Grosso R et al (2021) Deep myometrial infiltration of endometrial cancer on MRI: a radiomics-powered machine learning pilot study. Acad Radiol 28:737–744
pubmed: 32229081 doi: 10.1016/j.acra.2020.02.028
Tan Q, Wang Q, Jin S, Zhou F, Zou X (2023) Network evolution model-based prediction of tumor mutation burden from radiomic-clinical features in endometrial cancers. BMC Cancer 23:712
pubmed: 37525139 pmcid: 10388464 doi: 10.1186/s12885-023-11118-4
Wang Y, Bi Q, Deng Y et al (2023) Development and validation of an MRI-based radiomics nomogram for assessing deep myometrial invasion in early stage endometrial adenocarcinoma. Acad Radiol 30:668–679
pubmed: 35778306 doi: 10.1016/j.acra.2022.05.017
Yue X, He X, He S et al (2023) Multiparametric magnetic resonance imaging-based radiomics nomogram for predicting tumor grade in endometrial cancer. Front Oncol 13:1081134
pubmed: 36895487 pmcid: 9989162 doi: 10.3389/fonc.2023.1081134
Veeraraghavan H, Friedman CF, DeLair DF et al (2020) Machine learning-based prediction of microsatellite instability and high tumor mutation burden from contrast-enhanced computed tomography in endometrial cancers. Sci Rep 10:17769
pubmed: 33082371 pmcid: 7575573 doi: 10.1038/s41598-020-72475-9
Wang X, Wu K, Li X, Jin J, Yu Y, Sun H (2021) Additional value of PET/CT-based radiomics to metabolic parameters in diagnosing lynch syndrome and predicting PD1 expression in endometrial carcinoma. Front Oncol 11:595430
pubmed: 34055595 pmcid: 8152935 doi: 10.3389/fonc.2021.595430
Yan B, Jia Y, Li Z et al (2023) Preoperative prediction of lymphovascular space invasion in endometrioid adenocarcinoma: an MRI-based radiomics nomogram with consideration of the peritumoral region. Acta Radiol 64:2636–2645
pubmed: 37312525 doi: 10.1177/02841851231181681
Yan B, Zhao T, Li Z, Ren J, Zhang Y (2023) An MR-based radiomics nomogram including information from the peritumoral region to predict deep myometrial invasion in stage I endometrioid adenocarcinoma: a preliminary study. Br J Radiol 96:20230026
pubmed: 37751166 doi: 10.1259/bjr.20230026
Zhao M, Wen F, Shi J et al (2022) MRI-based radiomics nomogram for the preoperative prediction of deep myometrial invasion of FIGO stage I endometrial carcinoma. Med Phys 49:6505–6516
pubmed: 35758644 doi: 10.1002/mp.15835
Chen X, Wang Y, Shen M et al (2020) Deep learning for the determination of myometrial invasion depth and automatic lesion identification in endometrial cancer MR imaging: a preliminary study in a single institution. Eur Radiol 30:4985–4994
pubmed: 32337640 doi: 10.1007/s00330-020-06870-1
Dong HC, Dong HK, Yu MH, Lin YH, Chang CC (2020) Using deep learning with convolutional neural network approach to identify the invasion depth of endometrial cancer in myometrium using MR images: a pilot study. Int J Environ Res Public Health 17:5993
Celli V, Guerreri M, Pernazza A et al (2022) MRI- and histologic-molecular-based radio-genomics nomogram for preoperative assessment of risk classes in endometrial cancer. Cancers 14:5881
Chen J, Gu H, Fan W et al (2021) MRI-based radiomic model for preoperative risk stratification in stage I endometrial cancer. J Cancer 12:726–734
pubmed: 33403030 pmcid: 7778535 doi: 10.7150/jca.50872
Jiang X, Song J, Zhang A et al (2023) Preoperative assessment of MRI-invisible early-stage endometrial cancer with MRI-based radiomics analysis. J Magn Reson Imaging 58:247–255
pubmed: 36259352 doi: 10.1002/jmri.28492
Lefebvre TL, Ueno Y, Dohan A et al (2022) Development and validation of multiparametric MRI-based radiomics models for preoperative risk stratification of endometrial cancer. Radiology 305:375–386
pubmed: 35819326 doi: 10.1148/radiol.212873
Lin Z, Wang T, Li Q et al (2023) Development and validation of MRI-based radiomics model to predict recurrence risk in patients with endometrial cancer: a multicenter study. Eur Radiol 33:5814–5824
pubmed: 37171486 doi: 10.1007/s00330-023-09685-y
Mainenti PP, Stanzione A, Cuocolo R et al (2022) MRI radiomics: a machine learning approach for the risk stratification of endometrial cancer patients. Eur J Radiol 149:110226
pubmed: 35231806 doi: 10.1016/j.ejrad.2022.110226
Miccò M, Gui B, Russo L et al (2022) Preoperative tumor texture analysis on MRI for high-risk disease prediction in endometrial cancer: a hypothesis-generating study. J Pers Med 12:1854
Coada CA, Santoro M, Zybin V et al (2023) A radiomic-based machine learning model predicts endometrial cancer recurrence using preoperative CT radiomic features: a pilot study. Cancers 15:4534
Moro F, Albanese M, Boldrini L et al (2022) Developing and validating ultrasound-based radiomics models for predicting high-risk endometrial cancer. Ultrasound Obstet Gynecol 60:256–268
pubmed: 34714568 doi: 10.1002/uog.24805
Yan BC, Li Y, Ma FH et al (2020) Preoperative assessment for high-risk endometrial cancer by developing an MRI- and clinical-based radiomics nomogram: a multicenter study. J Magn Reson Imaging 52:1872–1882
pubmed: 32681608 doi: 10.1002/jmri.27289
Yang J, Cao Y, Zhou F, Li C, Lv J, Li P (2023) Combined deep-learning MRI-based radiomic models for preoperative risk classification of endometrial endometrioid adenocarcinoma. Front Oncol 13:1231497
pubmed: 37909025 pmcid: 10613647 doi: 10.3389/fonc.2023.1231497
Zhang K, Zhang Y, Fang X, Dong J, Qian L (2021) MRI-based radiomics and ADC values are related to recurrence of endometrial carcinoma: a preliminary analysis. BMC Cancer 21:1266
pubmed: 34819042 pmcid: 8611883 doi: 10.1186/s12885-021-08988-x
Zhang K, Zhang Y, Fang X et al (2021) Nomograms of combining apparent diffusion coefficient value and radiomics for preoperative risk evaluation in endometrial carcinoma. Front Oncol 11:705456
pubmed: 34386425 pmcid: 8353445 doi: 10.3389/fonc.2021.705456
Bi Q, Wang Y, Deng Y et al (2022) Different multiparametric MRI-based radiomics models for differentiating stage IA endometrial cancer from benign endometrial lesions: a multicenter study. Front Oncol 12:939930
pubmed: 35992858 pmcid: 9389365 doi: 10.3389/fonc.2022.939930
Chen X, Wang X, Gan M et al (2022) MRI-based radiomics model for distinguishing endometrial carcinoma from benign mimics: a multicenter study. Eur J Radiol 146:110072
pubmed: 34861530 doi: 10.1016/j.ejrad.2021.110072
Liu J, Li S, Lin H et al (2023) Development of MRI-based radiomics predictive model for classifying endometrial lesions. Sci Rep 13:1590
Zhang J, Zhang Q, Wang T et al (2022) Multimodal MRI-based radiomics-clinical model for preoperatively differentiating concurrent endometrial carcinoma from atypical endometrial hyperplasia. Front Oncol 12:887546
pubmed: 35692806 pmcid: 9186045 doi: 10.3389/fonc.2022.887546
Zhang Y, Gong C, Zheng L, Li X, Yang X (2021) Deep learning for intelligent recognition and prediction of endometrial cancer. J Healthc Eng 2021:1148309
pubmed: 34484650 pmcid: 8413058
Shen L, Du L, Hu Y et al (2023) MRI-based radiomics model for distinguishing Stage I endometrial carcinoma from endometrial polyp: a multicenter study. Acta Radiol 64:2651–2658
pubmed: 37291882 doi: 10.1177/02841851231175249
Li D, Hu R, Li H et al (2021) Performance of automatic machine learning versus radiologists in the evaluation of endometrium on computed tomography. Abdom Radiol (NY) 46:5316–5324
pubmed: 34286371 doi: 10.1007/s00261-021-03210-9
Mao W, Chen C, Gao H, Xiong L, Lin Y (2022) A deep learning-based automatic staging method for early endometrial cancer on MRI images. Front Physiol 13:974245
pubmed: 36111158 pmcid: 9468895 doi: 10.3389/fphys.2022.974245
Tao J, Wang Y, Liang Y, Zhang A (2022) Evaluation and monitoring of endometrial cancer based on magnetic resonance imaging features of deep learning. Contrast Media Mol Imaging 2022:5198592
pubmed: 35360265 pmcid: 8960014 doi: 10.1155/2022/5198592
Urushibara A, Saida T, Mori K et al (2022) The efficacy of deep learning models in the diagnosis of endometrial cancer using MRI: a comparison with radiologists. BMC Med Imaging 22:80
pubmed: 35501705 pmcid: 9063362 doi: 10.1186/s12880-022-00808-3
Huang ML, Ren J, Jin ZY et al (2024) Application of magnetic resonance imaging radiomics in endometrial cancer: a systematic review and meta-analysis. Radiol Med. https://doi.org/10.1007/s11547-024-01765-3
Granzier RWY, van Nijnatten TJA, Woodruff HC, Smidt ML, Lobbes MBI (2019) Exploring breast cancer response prediction to neoadjuvant systemic therapy using MRI-based radiomics: a systematic review. Eur J Radiol 121:108736
pubmed: 31734639 doi: 10.1016/j.ejrad.2019.108736
Ponsiglione A, Stanzione A, Spadarella G et al (2023) Ovarian imaging radiomics quality score assessment: an EuSoMII radiomics auditing group initiative. Eur Radiol 33:2239–2247
pubmed: 36303093 doi: 10.1007/s00330-022-09180-w
Ursprung S, Beer L, Bruining A et al (2020) Radiomics of computed tomography and magnetic resonance imaging in renal cell carcinoma-a systematic review and meta-analysis. Eur Radiol 30:3558–3566
pubmed: 32060715 pmcid: 7248043 doi: 10.1007/s00330-020-06666-3
Hoivik EA, Hodneland E, Dybvik JA et al (2021) A radiogenomics application for prognostic profiling of endometrial cancer. Commun Biol 4:1363
pubmed: 34873276 pmcid: 8648740 doi: 10.1038/s42003-021-02894-5
Kurata Y, Nishio M, Moribata Y et al (2021) Automatic segmentation of uterine endometrial cancer on multi-sequence MRI using a convolutional neural network. Sci Rep 11:14440
pubmed: 34262088 pmcid: 8280152 doi: 10.1038/s41598-021-93792-7
Hodneland E, Dybvik JA, Wagner-Larsen KS et al (2021) Automated segmentation of endometrial cancer on MR images using deep learning. Sci Rep 11:179
pubmed: 33420205 pmcid: 7794479 doi: 10.1038/s41598-020-80068-9
van Timmeren JE, Cester D, Tanadini-Lang S, Alkadhi H, Baessler B (2020) Radiomics in medical imaging-“how-to” guide and critical reflection. Insights Imaging 11:91
pubmed: 32785796 pmcid: 7423816 doi: 10.1186/s13244-020-00887-2
Miotto R, Wang F, Wang S, Jiang X, Dudley JT (2018) Deep learning for healthcare: review, opportunities and challenges. Brief Bioinform 19:1236–1246
pubmed: 28481991 doi: 10.1093/bib/bbx044
Shur JD, Doran SJ, Kumar S et al (2021) Radiomics in oncology: a practical guide. Radiographics 41:1717–1732
pubmed: 34597235 doi: 10.1148/rg.2021210037
McCague C, Ramlee S, Reinius M et al (2023) Introduction to radiomics for a clinical audience. Clin Radiol 78:83–98
pubmed: 36639175 doi: 10.1016/j.crad.2022.08.149
Jamieson A, Bosse T, McAlpine JN (2021) The emerging role of molecular pathology in directing the systemic treatment of endometrial cancer. Ther Adv Med Oncol 13:17588359211035959
pubmed: 34408794 pmcid: 8366203 doi: 10.1177/17588359211035959
Gaffney D, Matias-Guiu X, Mutch D et al (2024) 2023 FIGO staging system for endometrial cancer: the evolution of the revolution. Gynecol Oncol 184:245–253
pubmed: 38447389 doi: 10.1016/j.ygyno.2024.02.002
Tomaszewski MR, Gillies RJ (2021) The biological meaning of radiomic features. Radiology 299:E256
pubmed: 33900879 doi: 10.1148/radiol.2021219005
Kocak B, Akinci D’Antonoli T, Cuocolo R (2024) Exploring radiomics research quality scoring tools: a comparative analysis of METRICS and RQS. Diagn Interv Radiol. https://doi.org/10.4274/dir.2024.242793
Kocak B, Akinci D’Antonoli T, Ates Kus E et al (2024) Self-reported checklists and quality scoring tools in radiomics: a meta-research. Eur Radiol. https://doi.org/10.1007/s00330-023-10487-5

Auteurs

Luca Russo (L)

Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy.

Silvia Bottazzi (S)

Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy.

Burak Kocak (B)

Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, Turkey.

Konstantinos Zormpas-Petridis (K)

Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.

Benedetta Gui (B)

Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.

Arnaldo Stanzione (A)

Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy.

Massimo Imbriaco (M)

Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy.

Evis Sala (E)

Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy.
Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.

Renato Cuocolo (R)

Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy. rcuocolo@unisa.it.

Andrea Ponsiglione (A)

Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy.

Classifications MeSH