A hot-Jupiter progenitor on a super-eccentric retrograde orbit.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
17 Jul 2024
17 Jul 2024
Historique:
received:
19
01
2024
accepted:
07
06
2024
medline:
18
7
2024
pubmed:
18
7
2024
entrez:
17
7
2024
Statut:
aheadofprint
Résumé
Giant exoplanets orbiting close to their host stars are unlikely to have formed in their present configurations
Identifiants
pubmed: 39020171
doi: 10.1038/s41586-024-07688-3
pii: 10.1038/s41586-024-07688-3
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s).
Références
Dawson, R. I. & Johnson, J. A. Origins of hot Jupiters. Annu. Rev. Astron. Astrophys. 56, 175–221 (2018).
doi: 10.1146/annurev-astro-081817-051853
Holman, M., Touma, J. & Tremaine, S. Chaotic variations in the eccentricity of the planet orbiting 16 Cygni B. Nature 386, 254–256 (1997).
doi: 10.1038/386254a0
Fabrycky, D. & Tremaine, S. Shrinking binary and planetary orbits by Kozai cycles with tidal friction. Astrophys. J. 669, 1298–1315 (2007).
doi: 10.1086/521702
Naef, D. et al. HD 80606 b, a planet on an extremely elongated orbit. Astron. Astrophys. 375, L27–L30 (2001).
doi: 10.1051/0004-6361:20010853
Wu, Y. & Murray, N. Planet migration and binary companions: the case of HD 80606b. Astrophys. J. 589, 605–614 (2003).
doi: 10.1086/374598
Petrovich, C. Steady-state planet migration by the Kozai-Lidov mechanism in stellar binaries. Astrophys. J. 799, 27 (2015).
doi: 10.1088/0004-637X/799/1/27
Anderson, K. R., Storch, N. I. & Lai, D. Formation and stellar spin-orbit misalignment of hot Jupiters from Lidov–Kozai oscillations in stellar binaries. Mon. Not. R. Astron. Soc. 456, 3671–3701 (2016).
doi: 10.1093/mnras/stv2906
Muñoz, D. J., Lai, D. & Liu, B. The formation efficiency of close-in planets via Lidov–Kozai migration: analytic calculations. Mon. Not. R. Astron. Soc. 460, 1086–1093 (2016).
doi: 10.1093/mnras/stw983
Ricker, G. R. et al. Transiting Exoplanet Survey Satellite (TESS). J. Astron. Telesc. Instrum. Syst. 1, 014003 (2015).
doi: 10.1117/1.JATIS.1.1.014003
Scott, N. J. et al. The NN-explore Exoplanet Stellar Speckle Imager: instrument description and preliminary results. Publ. Astron. Soc. Pac. 130, 054502 (2018).
doi: 10.1088/1538-3873/aab484
Schwab, C. et al. Design of NEID, an extreme precision Doppler spectrograph for WIYN. Proc. SPIE 9908, 99087H (2016).
Mahadevan, S. et al. The Habitable-zone Planet Finder: a stabilized fiber-fed NIR spectrograph for the Hobby-Eberly Telescope. Proc. SPIE 8446, 84461S (2012).
doi: 10.1117/12.926102
Cosentino, R. et al. Harps-N: the new planet hunter at TNG. Proc. SPIE 8446, 84461V (2012).
doi: 10.1117/12.925738
Peluso, D. O. et al. The Unistellar Exoplanet Campaign: citizen science results and inherent education opportunities. Publ. Astron. Soc. Pac. 135, 015001 (2023).
doi: 10.1088/1538-3873/acaa58
Stefánsson, G. et al. Toward space-like photometric precision from the ground with beam-shaping diffusers. Astrophys. J. 848, 9 (2017).
doi: 10.3847/1538-4357/aa88aa
Huehnerhoff, J. et al. Astrophysical Research Consortium Telescope Imaging Camera (ARCTIC) facility optical imager for the Apache Point Observatory 3.5m telescope. Proc. SPIE 9908, 99085H (2016).
Albrecht, S. H., Dawson, R. I. & Winn, J. N. Stellar obliquities in exoplanetary systems. Publ. Astron. Soc. Pac. 134, 082001 (2022).
doi: 10.1088/1538-3873/ac6c09
von Zeipel, H. Sur l’application des séries de M. Lindstedt à l'étude du mouvement des comètes périodiques. Astron. Nachr. 183, 345 (1910).
doi: 10.1002/asna.19091832202
Lidov, M. L. The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies. Planet. Space Sci. 9, 719–759 (1962).
doi: 10.1016/0032-0633(62)90129-0
Kozai, Y. Secular perturbations of asteroids with high inclination and eccentricity. Astron. J 67, 591–598 (1962).
doi: 10.1086/108790
Dong, J. et al. TOI-3362b: a proto hot Jupiter undergoing high-eccentricity tidal migration. Astrophys. J. Lett. 920, L16 (2021).
doi: 10.3847/2041-8213/ac2600
Barbieri, M. et al. HD 17156b: a transiting planet with a 21.2-day period and an eccentric orbit. Astron. Astrophys. 476, L13–L16 (2007).
doi: 10.1051/0004-6361:20078787
Santerne, A. et al. SOPHIE velocimetry of Kepler transit candidates. XII. KOI-1257 b: a highly eccentric three-month period transiting exoplanet. Astron. Astrophys. 571, A37 (2014).
doi: 10.1051/0004-6361/201424158
Dawson, R. I., Murray-Clay, R. A. & Johnson, J. A. The photoeccentric effect and proto-hot Jupiters. III. A paucity of proto-hot Jupiters on super-eccentric orbits. Astrophys. J. 798, 66 (2015).
doi: 10.1088/0004-637X/798/2/66
Jackson, J. M. et al. Statistical analysis of the dearth of super-eccentric Jupiters in the Kepler sample. Astron. J 165, 82 (2023).
doi: 10.3847/1538-3881/acac86
Socrates, A. et al. Super-eccentric migrating Jupiters. Astrophys. J. 750, 106 (2012).
doi: 10.1088/0004-637X/750/2/106
Butler, R. P. et al. Catalog of nearby exoplanets. Astrophys. J. 646, 505–522 (2006).
doi: 10.1086/504701
Ford, E. B. & Rasio, F. A. Origins of eccentric extrasolar planets: testing the planet-planet scattering model. Astrophys. J. 686, 621–636 (2008).
doi: 10.1086/590926
Wright, J. T. et al. Ten new and updated multiplanet systems and a survey of exoplanetary systems. Astrophys. J. 693, 1084–1099 (2009).
doi: 10.1088/0004-637X/693/2/1084
Frelikh, R. et al. Signatures of a planet–planet impacts phase in exoplanetary systems hosting giant planets. Astrophys. J. Lett. 884, L47 (2019).
doi: 10.3847/2041-8213/ab4a7b
Papaloizou, J. C. B., Nelson, R. P. & Masset, F. Orbital eccentricity growth through disc-companion tidal interaction. Astron. Astrophys. 366, 263–275 (2001).
doi: 10.1051/0004-6361:20000011
Goldreich, P. & Sari, R. Eccentricity evolution for planets in gaseous disks. Astrophys. J. 585, 1024–1037 (2003).
doi: 10.1086/346202
Romanova, M. M. et al. Eccentricity growth of massive planets inside cavities of protoplanetary discs. Mon. Not. R. Astron. Soc. 523, 2832–2849 (2023).
doi: 10.1093/mnras/stad987
Vick, M., Lai, D. & Anderson, K. R. Chaotic tides in migrating gas giants: forming hot and transient warm Jupiters via Lidov–Kozai migration. Mon. Not. R. Astron. Soc. 484, 5645–5668 (2019).
Wu, Y. Diffusive tidal evolution for migrating hot Jupiters. Astron. J 155, 118 (2018).
doi: 10.3847/1538-3881/aaa970
Rozner, M. et al. Inflated eccentric migration of evolving gas giants I – accelerated formation and destruction of hot and warm Jupiters. Astrophys. J. 931, 10 (2022).
doi: 10.3847/1538-4357/ac6808
Langton, J. & Laughlin, G. Hydrodynamic simulations of unevenly irradiated Jovian planets. Astrophys. J. 674, 1106–1116 (2008).
doi: 10.1086/523957
Mayorga, L. C. et al. Variable irradiation on 1D cloudless eccentric exoplanet atmospheres. Astrophys. J. 915, 41 (2021).
doi: 10.3847/1538-4357/abff50
Laughlin, G. et al. Rapid heating of the atmosphere of an extrasolar planet. Nature 457, 562–564 (2009).
pubmed: 19177124
doi: 10.1038/nature07649
Lewis, N. K. et al. Orbital phase variations of the eccentric giant planet HAT-P-2b. Astrophys. J. 766, 95 (2013).
doi: 10.1088/0004-637X/766/2/95
de Wit, J. et al. Direct measure of radiative and dynamical properties of an exoplanet atmosphere. Astrophys. J. Lett. 820, L33 (2016).
doi: 10.3847/2041-8205/820/2/L33
Huang, C. X. et al. Photometry of 10 million stars from the first two years of TESS full frame images: part I. Res. Notes Am. Astron. Soc. 4, 204 (2020).
Huang, C. X. et al. Photometry of 10 million stars from the first two years of TESS full frame images: part II. Res. Notes Am. Astron. Soc. 4, 206 (2020).
Gupta, A. F. et al. A high-eccentricity warm Jupiter orbiting TOI-4127. Astron. J 165, 234 (2023).
doi: 10.3847/1538-3881/accb9b
Harris, M. et al. Separated twins or just siblings? A multiplanet system around an M dwarf including a cool sub-Neptune. Astrophys. J. Lett. 959, L1 (2023).
doi: 10.3847/2041-8213/ad037d
Mann, C. R. et al. Giant Outer Transiting Exoplanet Mass (GOT ‘EM) Survey. III. Recovery and confirmation of a temperate, mildly eccentric, single-transit Jupiter orbiting TOI-2010. Astron. J 166, 239 (2023).
doi: 10.3847/1538-3881/ad00bc
Mireles, I. et al. TOI-4600 b and c: two long-period giant planets orbiting an early K dwarf. Astrophys. J. Lett. 954, L15 (2023).
doi: 10.3847/2041-8213/aceb69
Smith, J. C. et al. Kepler Presearch Data Conditioning II - a Bayesian approach to systematic error correction. Publ. Astron. Soc. Pac. 124, 1000 (2012).
doi: 10.1086/667697
Stumpe, M. C. et al. Kepler Presearch Data Conditioning I—architecture and algorithms for error correction in Kepler light curves. Publ. Astron. Soc. Pac. 124, 985 (2012).
doi: 10.1086/667698
Stumpe, M. C. et al. Multiscale systematic error correction via wavelet-based bandsplitting in Kepler data. Publ. Astron. Soc. Pac. 126, 100 (2014).
doi: 10.1086/674989
Jenkins, J. M. et al. The TESS science processing operations center. Proc. SPIE 9913, 99133E (2016).
doi: 10.1117/12.2233418
Caldwell, D. A. et al. TESS science processing operations center FFI target list products. Res. Notes Am. Astron. Soc. 4, 201 (2020).
Howell, S. B. et al. Speckle camera observations for the NASA Kepler Mission Follow-up Program. Astron. J 142, 19 (2011).
doi: 10.1088/0004-6256/142/1/19
Marchis, F. et al. Unistellar eVscopes: smart, portable, and easy-to-use telescopes for exploration, interactive learning, and citizen astronomy. Acta Astronaut. 166, 23–28 (2020).
doi: 10.1016/j.actaastro.2019.09.028
Dalba, P. A. & Muirhead, P. S. No timing variations observed in third transit of snow-line exoplanet Kepler-421b. Astrophys. J. Lett. 826, L7 (2016).
doi: 10.3847/2041-8205/826/1/L7
Dalba, P. A. et al. Kepler transit depths contaminated by a phantom star. Astron. J 153, 59 (2017).
doi: 10.1088/1361-6528/aa5278
Stefánsson, G. et al. Extreme precision photometry from the ground with beam-shaping diffusers for K2, TESS, and beyond. Proc. SPIE 10702, 1070250 (2018).
Collins, K. A. et al. AstroImageJ: image processing and photometric extraction for ultra-precise astronomical light curves. Astron. J 153, 77 (2017).
doi: 10.3847/1538-3881/153/2/77
Stefánsson, G. et al. Diffuser-assisted photometric follow-up observations of the Neptune-sized planets K2-28b and K2-100b. Astron. J 156, 266 (2018).
doi: 10.3847/1538-3881/aae6ca
Baranne, A. et al. ELODIE: a spectrograph for accurate radial velocity measurements. Astron. Astrophys. Suppl. Ser. 119, 373–390 (1996).
doi: 10.1051/aas:1996251
Zechmeister, M. et al. Spectrum radial velocity analyser (SERVAL). High-precision radial velocities and two alternative spectral indicators. Astron. Astrophys. 609, A12 (2018).
doi: 10.1051/0004-6361/201731483
Anglada-Escudé, G. & Butler, R. P. The HARPS-TERRA project. I. Description of the algorithms, performance, and new measurements on a few remarkable stars observed by HARPS. Astrophys. J. Suppl. Ser. 200, 15 (2012).
doi: 10.1088/0067-0049/200/2/15
Stefánsson, G. et al. The warm Neptune GJ 3470b has a polar orbit. Astrophys. J. Lett. 931, L15 (2022).
doi: 10.3847/2041-8213/ac6e3c
Ramsey, L. W. et al. Early performance and present status of the Hobby-Eberly Telescope. Proc. SPIE 3352, 34–42 (1998).
doi: 10.1117/12.319287
Hill, G. J. et al. The HETDEX instrumentation: Hobby–Eberly telescope wide-field upgrade and VIRUS. Astron. J 162, 298 (2021).
doi: 10.3847/1538-3881/ac2c02
Ninan, J. P. et al. The Habitable-Zone Planet Finder: improved flux image generation algorithms for H2RG up-the-ramp data. Proc. SPIE 10709, 107092U (2018).
Kanodia, S. & Wright, J. Python leap second management and implementation of precise barycentric correction (barycorrpy). Res. Notes Am. Astron. Soc. 2, 4 (2018).
Metcalf, A. J. et al. Stellar spectroscopy in the near-infrared with a laser frequency comb. Optica 6, 233–239 (2019).
doi: 10.1364/OPTICA.6.000233
Stefánsson, G. et al. A Neptune-mass exoplanet in close orbit around a very low-mass star challenges formation models. Science 382, 1031–1035 (2023).
pubmed: 38033084
doi: 10.1126/science.abo0233
Hunter, A. A. et al. Yabi: an online research environment for grid, high performance and cloud computing. Source Code Biol. Med. 7, 1 (2012).
pubmed: 22333270
pmcid: 3298538
doi: 10.1186/1751-0473-7-1
Blanco-Cuaresma, S. et al. Determining stellar atmospheric parameters and chemical abundances of FGK stars with iSpec. Astron. Astrophys. 569, A111 (2014).
doi: 10.1051/0004-6361/201423945
Blanco-Cuaresma, S. Modern stellar spectroscopy caveats. Mon. Not. R. Astron. Soc. 486, 2075–2101 (2019).
doi: 10.1093/mnras/stz549
Gray, R. O. & Corbally, C. J. The calibration of MK spectral classes using spectral synthesis. 1: the effective temperature calibration of dwarf stars. Astron. J 107, 742–746 (1994).
doi: 10.1086/116893
Gustafsson, B. et al. A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties. Astron. Astrophys. 486, 951–970 (2008).
doi: 10.1051/0004-6361:200809724
Grevesse, N., Asplund, M. & Sauval, A. J. The solar chemical composition. Space Sci. Rev. 130, 105–114 (2007).
doi: 10.1007/s11214-007-9173-7
Heiter, U. et al. Atomic data for the Gaia-ESO Survey. Astron. Astrophys. 645, A106 (2021).
doi: 10.1051/0004-6361/201936291
Blanco-Cuaresma, S. et al. The Gaia FGK benchmark stars. High resolution spectral library. Astron. Astrophys. 566, A98 (2014).
doi: 10.1051/0004-6361/201323153
Masseron, T., Merle, T., & Hawkins, K., BACCHUS: Brussels Automatic Code for Characterizing High accUracy Spectra. Astrophysics Source Code Library, record ascl:1605.004 (2016).
Alvarez, R. & Plez, B. Near-infrared narrow-band photometry of M-giant and Mira stars: models meet observations. Astron. Astrophys. 330, 1109–1119 (1998).
Plez, B., Turbospectrum: code for spectral synthesis. Astrophysics Source Code Library, record ascl:1205.004 (2012).
Stassun, K. G. & Torres, G. Eclipsing binary stars as benchmarks for trigonometric parallaxes in the Gaia era. Astron. J 152, 180 (2016).
doi: 10.3847/0004-6256/152/6/180
Stassun, K. G., Collins, K. A. & Gaudi, B. S. Accurate empirical radii and masses of planets and their host stars with Gaia parallaxes. Astron. J 153, 136 (2017).
doi: 10.3847/1538-3881/aa5df3
Stassun, K. G. et al. Empirical accurate masses and radii of single stars with TESS and Gaia. Astron. J 155, 22 (2018).
doi: 10.3847/1538-3881/aa998a
Cutri, R. M. et al. VizieR Online Data Catalog: 2MASS All-Sky Catalog of Point Sources (Cutri+ 2003). VizieR Online Data Catalog, 2246, II/246 (2003).
Wright, E. L. et al. The Wide-field Infrared Survey Explorer (WISE): mission description and initial on-orbit performance. Astron. J 140, 1868–1881 (2010).
doi: 10.1088/0004-6256/140/6/1868
Gaia Collaboration, et al. Gaia Data Release 3. A golden sample of astrophysical parameters. Astron. Astrophys. 674, A39 (2023).
doi: 10.1051/0004-6361/202243800
Henden, A. A. et al. APASS Data Release 10. American Astronomical Society Meeting Abstracts #232, 223.06 (2018).
Martin, D. C. et al. The Galaxy Evolution Explorer: a space ultraviolet survey mission. Astrophys. J. 619, L1–L6 (2005).
doi: 10.1086/426387
Husser, T.-O. et al. A new extensive library of PHOENIX stellar atmospheres and synthetic spectra. Astron. Astrophys. 553, A6 (2013).
doi: 10.1051/0004-6361/201219058
Schlegel, D. J., Finkbeiner, D. P. & Davis, M. Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 500, 525–553 (1998).
doi: 10.1086/305772
Torres, G., Andersen, J. & Giménez, A. Accurate masses and radii of normal stars: modern results and applications. Astron. Astrophys. Rev. 18, 67–126 (2010).
doi: 10.1007/s00159-009-0025-1
Demarque, P. et al. Y
doi: 10.1086/424966
Hedges, C. et al. Systematics-insensitive periodogram for finding periods in TESS observations of long-period rotators. Res. Notes Am. Astron. Soc. 4, 220 (2020).
Pollacco, D. L. et al. The WASP project and the SuperWASP cameras. Publ. Astron. Soc. Pac. 118, 1407–1418 (2006).
doi: 10.1086/508556
El-Badry, K., Rix, H.-W. & Heintz, T. M. A million binaries from Gaia eDR3: sample selection and validation of Gaia parallax uncertainties. Mon. Not. R. Astron. Soc. 506, 2269–2295 (2021).
doi: 10.1093/mnras/stab323
Mann, A. W. et al. How to constrain your M dwarf. II. The mass–luminosity–metallicity relation from 0.075 to 0.70 solar masses. Astrophys. J. 871, 63 (2019).
doi: 10.3847/1538-4357/aaf3bc
Giovinazzi, M. R. & Blake, C. H. A mass–magnitude relation for low-mass stars based on dynamical measurements of thousands of binary star systems. Astron. J 164, 164 (2022).
doi: 10.3847/1538-3881/ac8cf7
Foreman-Mackey, D. et al. exoplanet: gradient-based probabilistic inference for exoplanet data & other astronomical time series. J. Open Source Softw. 6, 3285 (2021).
doi: 10.21105/joss.03285
Luger, R. et al. starry: analytic occultation light curves. Astron. J 157, 64 (2019).
doi: 10.3847/1538-3881/aae8e5
Agol, E., Luger, R. & Foreman-Mackey, D. Analytic planetary transit light curves and derivatives for stars with polynomial limb darkening. Astron. J 159, 123 (2020).
doi: 10.3847/1538-3881/ab4fee
Mandel, K. & Agol, E. Analytic light curves for planetary transit searches. Astrophys. J. 580, L171–L175 (2002).
doi: 10.1086/345520
Salvatier, J., Wiecki, T. V., & Fonnesbeck, C. PyMC3: Python probabilistic programming framework. Astrophysics Source Code Library, record ascl:1610.016 (2016).
Dong, J. et al. Warm Jupiters in TESS full-frame images: a catalog and observed eccentricity distribution for year 1. Astrophys. J. Suppl. Ser. 255, 6 (2021).
doi: 10.3847/1538-4365/abf73c
Kipping, D. M. Efficient, uninformative sampling of limb darkening coefficients for two-parameter laws. Mon. Not. R. Astron. Soc. 435, 2152–2160 (2013).
doi: 10.1093/mnras/stt1435
Burt, J. A. et al. TOI-824 b: a new planet on the lower edge of the hot Neptune desert. Astron. J 160, 153 (2020).
doi: 10.3847/1538-3881/abac0c
Lin, A. S. J. et al. The unusual M-dwarf Warm Jupiter TOI-1899 b: refinement of orbital and planetary parameters. Astron. J 166, 90 (2023).
doi: 10.3847/1538-3881/ace1ef
Hirano, T. et al. Improved Modeling of the Rossiter-McLaughlin Effect for Transiting Exoplanets. Astrophys. J. 742, 69 (2011).
doi: 10.1088/0004-637X/742/2/69
Naoz, S. et al. Hot Jupiters from secular planet–planet interactions. Nature 473, 187–189 (2011).
pubmed: 21562558
doi: 10.1038/nature10076
Li, G. et al. Eccentricity growth and orbit flip in near-coplanar hierarchical three-body systems. Astrophys. J. 785, 116 (2014).
doi: 10.1088/0004-637X/785/2/116
Ho, S. & Turner, E. L. The posterior distribution of sin(i) values for exoplanets with M
doi: 10.1088/0004-637X/739/1/26
Morton, T. D. & Johnson, J. A. Discerning exoplanet migration models using spin–orbit measurements. Astrophys. J. 729, 138 (2011).
doi: 10.1088/0004-637X/729/2/138
Naoz, S. The eccentric Kozai-Lidov effect and its applications. Annu. Rev. Astron. Astrophys. 54, 441–489 (2016).
doi: 10.1146/annurev-astro-081915-023315
Liu, B., Muñoz, D. J. & Lai, D. Suppression of extreme orbital evolution in triple systems with short-range forces. Mon. Not. R. Astron. Soc. 447, 747–764 (2015).
doi: 10.1093/mnras/stu2396
Leconte, J. et al. Is tidal heating sufficient to explain bloated exoplanets? Consistent calculations accounting for finite initial eccentricity. Astron. Astrophys. 516, A64 (2010).
doi: 10.1051/0004-6361/201014337
Holman, M. J. & Wiegert, P. A. Long-term stability of planets in binary systems. Astron. J 117, 621–628 (1999).
doi: 10.1086/300695
Pierens, A. & Nelson, R. P. On the formation and migration of giant planets in circumbinary discs. Astron. Astrophys. 483, 633–642 (2008).
doi: 10.1051/0004-6361:200809453
Wiecki, T. et al. pymc-devs/pymc: v5.0.1. Zenodo https://doi.org/10.5281/zenodo.4603970 (2022).
Dong, J. & Foreman-Mackey, D. A hierarchical Bayesian framework for inferring the stellar obliquity distribution. Astron. J 166, 112 (2023).
doi: 10.3847/1538-3881/ace105
Stassun, K. G. et al. The TESS input catalog and candidate target list. Astron. J 156, 102 (2018).
doi: 10.3847/1538-3881/aad050