Precision imaging of cardiac function and scar size in acute and chronic porcine myocardial infarction using ultrahigh-field MRI.


Journal

Communications medicine
ISSN: 2730-664X
Titre abrégé: Commun Med (Lond)
Pays: England
ID NLM: 9918250414506676

Informations de publication

Date de publication:
18 Jul 2024
Historique:
received: 25 11 2022
accepted: 24 06 2024
medline: 19 7 2024
pubmed: 19 7 2024
entrez: 18 7 2024
Statut: epublish

Résumé

7 T cardiac magnetic resonance imaging (MRI) studies may enable higher precision in clinical metrics like cardiac function, ventricular mass, and more. Higher precision may allow early detection of functional impairment and early evaluation of treatment responses in clinical practice and pre-clinical studies. Seven female German Landrace pigs were scanned prior to and at three time points (3-4 days, 7-10 days, and ~60 days) post myocardial infarction using a whole body 7 T system and three radiofrequency (RF) coils developed and built in-house to accompany animal growth. The combination of dedicated RF hardware and 7 T MRI enables a longitudinal study in a pig model of acute and chronic infarction, providing consistent blood tissue contrast and high signal-to-noise ratio (SNR) in measurements of cardiac function, as well as low coefficients of variation (CoV) for ejection fraction (CoV Best results are achieved via manual segmentation. We define state-of-the-art procedures for large animal studies at 7 T. In magnetic resonance imaging (MRI), scanners use magnets to generate detailed images of structures in the body, such as the heart. Stronger magnets can produce stronger magnetic fields, which can be leveraged for better image quality and developing new methods for disease diagnosis. In clinical practice, such systems using strong magnets are not yet used for imaging of the heart and some safety aspects remain challenging. We apply such an imaging approach in pigs, in which heart structure and function are similar to humans. We focus on the most important clinical imaging aspects following a heart attack, namely heart function and scar detection. We demonstrate that the high magnetic strength system enabled consistent image quality and accuracy. These findings may help to guide future developments in MRI of the heart, for example in patients who have had a heart attack.

Sections du résumé

BACKGROUND BACKGROUND
7 T cardiac magnetic resonance imaging (MRI) studies may enable higher precision in clinical metrics like cardiac function, ventricular mass, and more. Higher precision may allow early detection of functional impairment and early evaluation of treatment responses in clinical practice and pre-clinical studies.
METHODS METHODS
Seven female German Landrace pigs were scanned prior to and at three time points (3-4 days, 7-10 days, and ~60 days) post myocardial infarction using a whole body 7 T system and three radiofrequency (RF) coils developed and built in-house to accompany animal growth.
RESULTS RESULTS
The combination of dedicated RF hardware and 7 T MRI enables a longitudinal study in a pig model of acute and chronic infarction, providing consistent blood tissue contrast and high signal-to-noise ratio (SNR) in measurements of cardiac function, as well as low coefficients of variation (CoV) for ejection fraction (CoV
CONCLUSIONS CONCLUSIONS
Best results are achieved via manual segmentation. We define state-of-the-art procedures for large animal studies at 7 T.
In magnetic resonance imaging (MRI), scanners use magnets to generate detailed images of structures in the body, such as the heart. Stronger magnets can produce stronger magnetic fields, which can be leveraged for better image quality and developing new methods for disease diagnosis. In clinical practice, such systems using strong magnets are not yet used for imaging of the heart and some safety aspects remain challenging. We apply such an imaging approach in pigs, in which heart structure and function are similar to humans. We focus on the most important clinical imaging aspects following a heart attack, namely heart function and scar detection. We demonstrate that the high magnetic strength system enabled consistent image quality and accuracy. These findings may help to guide future developments in MRI of the heart, for example in patients who have had a heart attack.

Autres résumés

Type: plain-language-summary (eng)
In magnetic resonance imaging (MRI), scanners use magnets to generate detailed images of structures in the body, such as the heart. Stronger magnets can produce stronger magnetic fields, which can be leveraged for better image quality and developing new methods for disease diagnosis. In clinical practice, such systems using strong magnets are not yet used for imaging of the heart and some safety aspects remain challenging. We apply such an imaging approach in pigs, in which heart structure and function are similar to humans. We focus on the most important clinical imaging aspects following a heart attack, namely heart function and scar detection. We demonstrate that the high magnetic strength system enabled consistent image quality and accuracy. These findings may help to guide future developments in MRI of the heart, for example in patients who have had a heart attack.

Identifiants

pubmed: 39026075
doi: 10.1038/s43856-024-00559-y
pii: 10.1038/s43856-024-00559-y
doi:

Types de publication

Journal Article

Langues

eng

Pagination

146

Informations de copyright

© 2024. The Author(s).

Références

Hundley, W. G. et al. ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance. Circulation 121, 2462–2508 (2010).
pubmed: 20479157 doi: 10.1161/CIR.0b013e3181d44a8f
Ibanez, B. et al. Cardiac MRI endpoints in myocardial infarction experimental and clinical trials: JACC scientific expert panel. J. Am. Coll. Cardiol. 74, 238–256 (2019).
pubmed: 31296297 pmcid: 7363031 doi: 10.1016/j.jacc.2019.05.024
Bulluck, H., Dharmakumar, R., Arai, A. E., Berry, C. & Hausenloy, D. J. Cardiovascular magnetic resonance in acute ST-segment–elevation myocardial infarction. Circulation 137, 1949–1964 (2018).
pubmed: 29712696 pmcid: 5933067 doi: 10.1161/CIRCULATIONAHA.117.030693
Stäb, D. et al. Cardiac magnetic resonance imaging at 7 Tesla. JoVE 143, e55853 (2019).
Reiter, T. et al. On the way to routine cardiac MRI at 7 Tesla - a pilot study on consecutive 84 examinations. PloS ONE 16, e0252797 (2021).
pubmed: 34297720 pmcid: 8301632 doi: 10.1371/journal.pone.0252797
Ibrahim, E. H. et al. Cardiac functional magnetic resonance imaging at 7T: Image quality optimization and ultra-high field capabilities. World J. Radiol. 12, 231–246 (2020).
pubmed: 33240463 pmcid: 7653183 doi: 10.4329/wjr.v12.i10.231
Prothmann, M. et al. High spatial resolution cardiovascular magnetic resonance at 7.0 Tesla in patients with hypertrophic cardiomyopathy – first experiences: lesson learned from 7.0 Tesla. PloS one 11, e0148066 (2016).
pubmed: 26863618 pmcid: 4749213 doi: 10.1371/journal.pone.0148066
von Knobelsdorff-Brenkenhoff, F. et al. Cardiac chamber quantification using magnetic resonance imaging at 7 Tesla—a pilot study. Eur. Radiol. 20, 2844–2852 (2010).
doi: 10.1007/s00330-010-1888-2
Niendorf, T. et al. High field cardiac magnetic resonance imaging. Circ. Cardiovasc. Imaging 10, e005460 (2017).
pubmed: 28611118 doi: 10.1161/CIRCIMAGING.116.005460
Santos, A. et al. Cardiovascular imaging: what have we learned from animal models? Front. Pharm. 6, 227–227 (2015).
doi: 10.3389/fphar.2015.00227
Silva, K. A. S. & Emter, C. A. Large animal models of heart failure: a translational bridge to clinical success. JACC Basic Transl. Sci. 5, 840–856 (2020).
pubmed: 32875172 pmcid: 7452204 doi: 10.1016/j.jacbts.2020.04.011
Lelovas, P. P., Kostomitsopoulos, N. G. & Xanthos, T. T. A comparative anatomic and physiologic overview of the porcine heart. J. Am. Assoc. Lab. Anim. Sci. JAALAS 53, 432–438 (2014).
pubmed: 25255064
Abegunewardene, N. et al. Local transient myocardial liposomal gene transfer of inducible nitric oxide synthase does not aggravate myocardial function and fibrosis and leads to moderate neovascularization in chronic myocardial ischemia in pigs. Microcirculation 17, 69–78 (2010).
pubmed: 20141602 doi: 10.1111/j.1549-8719.2010.00002.x
Vosseler, M. et al. Area at risk and viability after myocardial ischemia and reperfusion can be determined by contrast-enhanced cardiac magnetic resonance imaging. Eur. Surg. Res. 43, 13–23 (2009).
pubmed: 19365131 doi: 10.1159/000211716
Vos, H. J. et al. Cardiac shear wave velocity detection in the porcine heart. Ultrasound Med. Biol. 43, 753–764 (2017).
pubmed: 28065540 doi: 10.1016/j.ultrasmedbio.2016.11.015
Bar-Cohen, Y. et al. Minimally Invasive Implantation of a Micropacemaker Into the Pericardial Space. Circ. Arrhythm. Electrophysiol. 11, e006307 (2018).
pubmed: 29945929 pmcid: 6050018 doi: 10.1161/CIRCEP.118.006307
Huang, K. et al. An off-the-shelf artificial cardiac patch improves cardiac repair after myocardial infarction in rats and pigs. Sci. Transl. Med. 12, eaat9683 (2020).
pubmed: 32269164 pmcid: 7293901 doi: 10.1126/scitranslmed.aat9683
Brenner, G. B. et al. Post-myocardial infarction heart failure in closed-chest coronary occlusion/reperfusion model in Göttingen minipigs and landrace pigs. J. Vis. Exp. https://doi.org/10.3791/61901 (2021).
doi: 10.3791/61901 pubmed: 33938885
Crisóstomo, V. et al. Development of a closed chest model of chronic myocardial infarction in Swine: magnetic resonance imaging and pathological evaluation. ISRN Cardiol. 2013, 781762–781762 (2013).
pubmed: 24282645 pmcid: 3825272 doi: 10.1155/2013/781762
Pahlm, U. S. et al. Regional wall function before and after acute myocardial infarction; an experimental study in pigs. BMC Cardiovasc. Disord. 14, 118–118 (2014).
pubmed: 25218585 pmcid: 4169797 doi: 10.1186/1471-2261-14-118
Payne, A. R. et al. Bright-blood T(2)-weighted MRI has high diagnostic accuracy for myocardial hemorrhage in myocardial infarction: a preclinical validation study in swine. Circ. Cardiovasc. Imaging 4, 738–745 (2011).
pubmed: 21930836 pmcid: 4158314 doi: 10.1161/CIRCIMAGING.111.965095
Raake, P. W. J. et al. Comprehensive cardiac phenotyping in large animals: comparison of pressure-volume analysis and cardiac magnetic resonance imaging in pig post-myocardial infarction systolic heart failure. Int. J. Cardiovasc. Imaging 35, 1691–1699 (2019).
pubmed: 31056718 doi: 10.1007/s10554-019-01610-z
Schuleri, K. H. et al. The adult Göttingen minipig as a model for chronic heart failure after myocardial infarction: focus on cardiovascular imaging and regenerative therapies. Comp. Med 58, 568–579 (2008).
pubmed: 19149414 pmcid: 2710749
Whitaker, J. et al. Cardiac MR Characterization of left ventricular remodeling in a swine model of infarct followed by reperfusion. Journal of magnetic resonance imaging: JMRI, https://doi.org/10.1002/jmri.26005 (2018).
Liu, X. et al. Native T(1) mapping for characterization of acute and chronic myocardial infarction in swine: comparison with contrast-enhanced MRI. J. Magn. Reson. Imaging.: JMRI 47, 1406–1414 (2018).
pubmed: 29044903 doi: 10.1002/jmri.25871
Wang, J. et al. Collateral circulation formation determines the characteristic profiles of contrast-enhanced MRI in the infarcted myocardium of pigs. Acta Pharmacol. Sin. 36, 463–472 (2015).
pubmed: 25832427 pmcid: 4387303 doi: 10.1038/aps.2014.158
Zhuang, B. et al. Detection of myocardial fibrosis and left ventricular dysfunction with cardiac MRI in a hypertensive swine model. Radiol. Cardiothorac. Imaging 2, e190214 (2020).
pubmed: 32914091 pmcid: 7457934 doi: 10.1148/ryct.2020190214
Hock, M. et al. B0 shimming of the human heart at 7T. Magn. Reson. Med. 85, 182–196 (2021).
pubmed: 32700791 doi: 10.1002/mrm.28423
Schreiber, L. M. et al. Ultrahigh Field Cardiac MRI in Large Animals and Humans for Translational Cardiovascular Research. Front. Cardiovasc. Med. 10, https://doi.org/10.3389/fcvm.2023.1068390 (2023).
Elabyad, I. A. et al. A novel mono-surface antisymmetric 8Tx/16Rx coil array for parallel transmit cardiac MRI in pigs at 7T. Sci. Rep. 10, 3117 (2020).
pubmed: 32080274 pmcid: 7033245 doi: 10.1038/s41598-020-59949-6
Bille, M. K. Chronisches Myokardinfarkt-Modell am Schwein: Untersuchungen zur Infarktgrößenentwicklung und zur Herzfunktion (Stiftung Tierärztliche Hochschule Hannover, 2023).
Python Software Foundation. Python Language Reference, version 2.7. Available at http://www.python.org .
Constantinides, C. D., Atalar, E. & McVeigh, E. R. Signal-to-noise measurements in magnitude images from NMR phased arrays. Magn. Reson. Med. 38, 852–857 (1997).
pubmed: 9358462 pmcid: 2570034 doi: 10.1002/mrm.1910380524
Chung, S., Kim, D., Breton, E. & Axel, L. Rapid B1+ mapping using a preconditioning RF pulse with TurboFLASH readout. Magn. Reson. Med. 64, 439–446 (2010).
pubmed: 20665788 pmcid: 2929762 doi: 10.1002/mrm.22423
Selvakumar, D. et al. Comparative assessment of motion averaged free-breathing or breath-held cardiac magnetic resonance imaging protocols in a porcine myocardial infarction model. Sci. Rep. 12, 3727 (2022).
pubmed: 35260600 pmcid: 8904807 doi: 10.1038/s41598-022-07566-w
Breuer, F. A. et al. General formulation for quantitative G-factor calculation in GRAPPA reconstructions. Magn. Reson. Med. 62, 739–746 (2009).
pubmed: 19585608 doi: 10.1002/mrm.22066
Leiner, T. et al. Machine learning in cardiovascular magnetic resonance: basic concepts and applications. J. Cardiovasc. Magn. Reson. 21, 61 (2019).
pubmed: 31590664 pmcid: 6778980 doi: 10.1186/s12968-019-0575-y
Ankenbrand, M. J. et al. Deep learning-based cardiac cine segmentation: Transfer learning application to 7T ultrahigh-field MRI. Magn. Reson. Med. 86, 2179–2191 (2021).
pubmed: 34002412 doi: 10.1002/mrm.28822
Maceira, A. M., Prasad, S. K., Khan, M. & Pennell, D. J. Normalized left ventricular systolic and diastolic function by steady state free precession cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 8, https://doi.org/10.1080/10976640600572889 (2006).
Lopez, D. et al. Multiparametric CMR imaging of infarct remodeling in a percutaneous reperfused Yucatan mini-pig model. NMR in biomedicine 30, 10.1002/nbm.3693, https://doi.org/10.1002/nbm.3693 (2017).
Schuleri, K. H. et al. The adult Göttingen minipig as a model for chronic heart failure after myocardial infarction: focus on cardiovascular imaging and regenerative therapies. Comp. Med. 58, 568–579 (2008).
pubmed: 19149414 pmcid: 2710749
Ghugre, N. R., Pop, M., Barry, J., Connelly, K. A. & Wright, G. A. Quantitative magnetic resonance imaging can distinguish remodeling mechanisms after acute myocardial infarction based on the severity of ischemic insult. Magn. Reson. Med. 70, 1095–1105 (2013).
pubmed: 23165643 doi: 10.1002/mrm.24531
Harjola, V.-P. et al. Organ dysfunction, injury and failure in acute heart failure: from pathophysiology to diagnosis and management. A review on behalf of the Acute Heart Failure Committee of the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur. J. Heart Fail. 19, 821–836 (2017).
pubmed: 28560717 doi: 10.1002/ejhf.872
Zamorano, J. L. et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines:  The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur. Heart J. 37, 2768–2801 (2016).
pubmed: 27567406 doi: 10.1093/eurheartj/ehw211
Baumgartner, H. et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 38, 2739–2791 (2017).
pubmed: 28886619 doi: 10.1093/eurheartj/ehx391
Ponikowski, P. et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 37, 2129–2200 (2016).
pubmed: 27206819 doi: 10.1093/eurheartj/ehw128
Yancy, C. W. et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation 136, e137–e161 (2017).
pubmed: 28455343 doi: 10.1161/CIR.0000000000000509
Luijnenburg, S. E. et al. Intra-observer and interobserver variability of biventricular function, volumes and mass in patients with congenital heart disease measured by CMR imaging. Int .J. Cardiovasc. Imaging 26, 57–64 (2010).
pubmed: 19757150 doi: 10.1007/s10554-009-9501-y
Karamitsos, T. D., Hudsmith, L. E., Selvanayagam, J. B., Neubauer, S. & Francis, J. M. Operator induced variability in left ventricular measurements with cardiovascular magnetic resonance is improved after training. J. Cardiovasc. Magn. Reson. 9, 777–783 (2007).
pubmed: 17891615 doi: 10.1080/10976640701545073
Clay, S. et al. The reproducibility of left ventricular volume and mass measurements: a comparison between dual-inversion-recovery black-blood sequence and SSFP. Eur. Radiol. 16, 32–37 (2006).
pubmed: 16132934 doi: 10.1007/s00330-005-2853-3
Hudsmith, L. E., Petersen, S. E., Francis, J. M., Robson, M. D. & Neubauer, S. Normal human left and right ventricular and left atrial dimensions using steady state free precession magnetic resonance imaging. J. Cardiovasc. Magn. Reson. 7, 775–782 (2005).
pubmed: 16353438 doi: 10.1080/10976640500295516
Plein, S. et al. Steady-state free precession magnetic resonance imaging of the heart: comparison with segmented k-space gradient-echo imaging. J. Magn. Reson. Imaging 14, 230–236 (2001).
pubmed: 11536399 doi: 10.1002/jmri.1178
Mooij, C. F., de Wit, C. J., Graham, D. A., Powell, A. J. & Geva, T. Reproducibility of MRI measurements of right ventricular size and function in patients with normal and dilated ventricles. J. Magn. Reson. Imaging 28, 67–73 (2008).
pubmed: 18581357 pmcid: 2533688 doi: 10.1002/jmri.21407
Winter, M. M. et al. Evaluating the systemic right ventricle by CMR: the importance of consistent and reproducible delineation of the cavity. J. Cardiovasc. Magn. Reson. 10, 40 (2008).
pubmed: 18713464 pmcid: 2533306 doi: 10.1186/1532-429X-10-40
Bonnemains, L., Raimondi, F. & Odille, F. Specifics of cardiac magnetic resonance imaging in children. Arch. Cardiovasc. Dis. 109, 143–149 (2016).
pubmed: 26778085 doi: 10.1016/j.acvd.2015.11.004
Moon, J. C. C., Lorenz, C. H., Francis, J. M., Smith, G. C. & Pennell, D. J. Breath-hold FLASH and FISP cardiovascular MR imaging: left ventricular volume differences and reproducibility. Radiology 223, 789–797 (2002).
pubmed: 12034951 doi: 10.1148/radiol.2233011181
Thiele, H. et al. Functional cardiac MR imaging with steady-state free precession (SSFP) significantly improves endocardial border delineation without contrast agents. J. Magn. Reson. Imaging 14, 362–367 (2001).
pubmed: 11599059 doi: 10.1002/jmri.1195
Lenkey, Z. et al. Age-independent myocardial infarct quantification by signal intensity percent infarct mapping in swine. J. Magn. Reson. Imaging 43, 911–920 (2016).
pubmed: 26354594 doi: 10.1002/jmri.25046
Nguyen, C. et al. In vivo contrast free chronic myocardial infarction characterization using diffusion-weighted cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 16, https://doi.org/10.1186/s12968-014-0068-y (2014).
Rodriguez-Granillo, G. A., Deviggiano, A., Capunay, C., Zan, M. C. & Carrascosa, P. Reproducibility of gadolinium enhancement patterns and wall thickness in hypertrophic cardiomyopathy. Arq. Bras. Cardiol. 107, 48–54 (2016).
pubmed: 27305110 pmcid: 4976956
Rajchl, M. et al. Comparison of semi-automated scar quantification techniques using high-resolution, 3-dimensional late-gadolinium-enhancement magnetic resonance imaging. Int. J. Cardiovasc. Imaging 31, 349–357 (2015).
pubmed: 25307896 doi: 10.1007/s10554-014-0553-2
Bondarenko, O. et al. Standardizing the definition of hyperenhancement in the quantitative assessment of infarct size and myocardial viability using delayed contrast-enhanced CMR. J. Cardiovasc. Magn. Reson. 7, 481–485 (2005).
pubmed: 15881532 doi: 10.1081/JCMR-200053623
Stoeck, C. T. et al. Cardiovascular magnetic resonance imaging of functional and microstructural changes of the heart in a longitudinal pig model of acute to chronic myocardial infarction. J. Cardiovasc. Magn. Reson. 23, 103 (2021).
pubmed: 34538266 pmcid: 8451129 doi: 10.1186/s12968-021-00794-5
Moon, B. F. et al. Iron imaging in myocardial infarction reperfusion injury. Nat. Commun. 11, 3273 (2020).
pubmed: 32601301 pmcid: 7324567 doi: 10.1038/s41467-020-16923-0
Lohr, D., Schlötelburg, W., Terekhov, M. & Schreiber, L. M. In Proc. 31st Annual Meeting of ISMRM. #4983. (2023).
Zhang, M. et al. Ultra-fast label-free serum metabolic diagnosis of coronary heart disease via a deep stabilizer. Adv. Sci. 8, 2101333 (2021).
doi: 10.1002/advs.202101333
Li, M., Wu, H., Yuan, Y., Hu, B. & Gu, N. Recent fabrications and applications of cardiac patch in myocardial infarction treatment. VIEW 3, 20200153 (2022).
doi: 10.1002/VIW.20200153
Zhang, Z., Zhou, F.-L., Davies, G.-L. & Williams, G. R. Theranostics for MRI-guided therapy: recent developments. VIEW 3, 20200134 (2022).
doi: 10.1002/VIW.20200134
Gast, L. V., Platt, T., Nagel, A. M. & Gerhalter, T. Recent technical developments and clinical research applications of sodium (23Na) MRI. Prog. Nucl. Magn. Reson. Spectrosc. 138-139, 1–51 (2023).
pubmed: 38065665 doi: 10.1016/j.pnmrs.2023.04.002
Clarke, W. T. et al. Three-dimensional, 2.5-minute, 7T phosphorus magnetic resonance spectroscopic imaging of the human heart using concentric rings. NMR Biomed. 36, e4813 (2023).
pubmed: 35995750 doi: 10.1002/nbm.4813
Heeswijk, R. B. V. et al. Cardiovascular molecular imaging with fluorine-19 MRI: the road to the clinic. Circu. Cardiovasc. Imaging 16, e014742 (2023).
Geng, W.-C., Zheng, Z. & Guo, D.-S. Supramolecular design based activatable magnetic resonance imaging. VIEW 2, 20200059 (2021).
doi: 10.1002/VIW.20200059

Auteurs

David Lohr (D)

Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Wuerzburg, Wuerzburg, Germany. e_lohr_d@ukw.de.

Alena Kollmann (A)

Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Wuerzburg, Wuerzburg, Germany.

Maya Bille (M)

Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Wuerzburg, Wuerzburg, Germany.

Maxim Terekhov (M)

Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Wuerzburg, Wuerzburg, Germany.

Ibrahim Elabyad (I)

Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Wuerzburg, Wuerzburg, Germany.

Michael Hock (M)

Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Wuerzburg, Wuerzburg, Germany.

Steffen Baltes (S)

Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Wuerzburg, Wuerzburg, Germany.

Theresa Reiter (T)

Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Wuerzburg, Wuerzburg, Germany.
Department of Internal Medicine I, University Hospital Wuerzburg, Wuerzburg, Germany.

Florian Schnitter (F)

Department of Internal Medicine I, University Hospital Wuerzburg, Wuerzburg, Germany.

Wolfgang Rudolf Bauer (WR)

Department of Internal Medicine I, University Hospital Wuerzburg, Wuerzburg, Germany.

Ulrich Hofmann (U)

Department of Internal Medicine I, University Hospital Wuerzburg, Wuerzburg, Germany.

Laura Maria Schreiber (LM)

Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Wuerzburg, Wuerzburg, Germany. Schreiber_L@ukw.de.

Classifications MeSH