Deletion in RMST lncRNA impairs hypothalamic neuronal development in a human stem cell-based model of Kallmann Syndrome.


Journal

Cell death discovery
ISSN: 2058-7716
Titre abrégé: Cell Death Discov
Pays: United States
ID NLM: 101665035

Informations de publication

Date de publication:
19 Jul 2024
Historique:
received: 29 02 2024
accepted: 18 06 2024
revised: 12 06 2024
medline: 20 7 2024
pubmed: 20 7 2024
entrez: 19 7 2024
Statut: epublish

Résumé

Rhabdomyosarcoma 2-associated transcript (RMST) long non-coding RNA has previously been shown to cause Kallmann syndrome (KS), a rare genetic disorder characterized by congenital hypogonadotropic hypogonadism (CHH) and olfactory dysfunction. In the present study, we generated large deletions of approximately 41.55 kb in the RMST gene in human pluripotent stem cells using CRISPR/Cas9 gene editing. To evaluate the impact of RMST deletion, these cells were differentiated into hypothalamic neurons that include 10-15% neurons that express gonadotrophin-releasing hormone (GnRH). We found that deletion in RMST did not impair the neurogenesis of GnRH neurons, however, the hypothalamic neurons were electro-physiologically hyperactive and had increased calcium influx activity compared to control. Transcriptomic and epigenetic analyses showed that RMST deletion caused altered expression of key genes involved in neuronal development, ion channels, synaptic signaling and cell adhesion. The in vitro generation of these RMST-deleted GnRH neurons provides an excellent cell-based model to dissect the molecular mechanism of RMST function in Kallmann syndrome and its role in hypothalamic neuronal development.

Identifiants

pubmed: 39030180
doi: 10.1038/s41420-024-02074-4
pii: 10.1038/s41420-024-02074-4
doi:

Types de publication

Journal Article

Langues

eng

Pagination

330

Informations de copyright

© 2024. The Author(s).

Références

Swee DS, Quinton R, Maggi R. Recent advances in understanding and managing Kallmann syndrome. Fac Rev. 2021;10:37.
pubmed: 34046641 pmcid: 8130407 doi: 10.12703/r/10-37
Layman LC. Clinical genetic testing for Kallmann syndrome. J Clin En Endocrinol Metab. 2013;98:1860–2.
doi: 10.1210/jc.2013-1624
Boehm U, Bouloux PM, Dattani MT, de Roux N, Dode C, Dunkel L, et al. Expert consensus document: European Consensus Statement on congenital hypogonadotropic hypogonadism-pathogenesis, diagnosis and treatment. Nat Rev Endocrinol. 2015;11:547–64.
pubmed: 26194704 doi: 10.1038/nrendo.2015.112
Seminara SB, Hayes FJ, Crowley WF Jr. Gonadotropin-releasing hormone deficiency in the human (idiopathic hypogonadotropic hypogonadism and Kallmann’s syndrome): pathophysiological and genetic considerations. Endocr Rev. 1998;19:521–39.
pubmed: 9793755
Palmert MR, Dunkel L. Clinical practice. Delayed puberty. N Engl J Med. 2012;366:443–53.
pubmed: 22296078 doi: 10.1056/NEJMcp1109290
Schwanzel-Fukuda M, Pfaff DW. Origin of luteinizing hormone-releasing hormone neurons. Nature. 1989;338:161–4.
pubmed: 2645530 doi: 10.1038/338161a0
Duan C, Allard J. Gonadotropin-releasing hormone neuron development in vertebrates. Gen Comp Endocrinol. 2020;292:113465.
pubmed: 32184073 doi: 10.1016/j.ygcen.2020.113465
Cho HJ, Shan Y, Whittington NC, Wray S. Nasal placode development, GnRH neuronal migration and Kallmann syndrome. Front Cell Dev Biol. 2019;7:121.
pubmed: 31355196 pmcid: 6637222 doi: 10.3389/fcell.2019.00121
Wray S, Grant P, Gainer H. Evidence that cells expressing luteinizing hormone-releasing hormone mRNA in the mouse are derived from progenitor cells in the olfactory placode. Proc Natl Acad Sci USA. 1989;86:8132–6.
pubmed: 2682637 pmcid: 298229 doi: 10.1073/pnas.86.20.8132
Stamou MI, Georgopoulos NA. Kallmann syndrome: phenotype and genotype of hypogonadotropic hypogonadism. Metabolism. 2018;86:124–34.
pubmed: 29108899 doi: 10.1016/j.metabol.2017.10.012
Cangiano B, Swee DS, Quinton R, Bonomi M. Genetics of congenital hypogonadotropic hypogonadism: peculiarities and phenotype of an oligogenic disease. Hum Genet. 2021;140:77–111.
pubmed: 32200437 doi: 10.1007/s00439-020-02147-1
Franco B, Guioli S, Pragliola A, Incerti B, Bardoni B, Tonlorenzi R, et al. A gene deleted in Kallmann’s syndrome shares homology with neural cell adhesion and axonal path-finding molecules. Nature. 1991;353:529–36.
pubmed: 1922361 doi: 10.1038/353529a0
Dode C, Hardelin JP. Kallmann syndrome. Eur J Hum Genet. 2009;17:139–46.
pubmed: 18985070 doi: 10.1038/ejhg.2008.206
Stamou M, Ng SY, Brand H, Wang H, Plummer L, Best L, et al. A balanced translocation in Kallmann syndrome implicates a long noncoding RNA, RMST, as a GnRH neuronal regulator. J Clin Endocrinol Metab. 2020;105:e231–44.
pubmed: 31628846 doi: 10.1210/clinem/dgz011
Tsagakis I, Douka K, Birds I, Aspden JL. Long non-coding RNAs in development and disease: conservation to mechanisms. J Pathol. 2020;250:480–95.
pubmed: 32100288 pmcid: 8638664 doi: 10.1002/path.5405
Hosseini E, Bagheri-Hosseinabadi Z, De Toma I, Jafarisani M, Sadeghi I. The importance of long non-coding RNAs in neuropsychiatric disorders. Mol Asp Med. 2019;70:127–40.
doi: 10.1016/j.mam.2019.07.004
Elkouris M, Kouroupi G, Vourvoukelis A, Papagiannakis N, Kaltezioti V, Matsas R, et al. Long non-coding RNAs associated with neurodegeneration-linked genes are reduced in Parkinson’s disease patients. Front Cell Neurosci. 2019;13:58.
pubmed: 30853899 pmcid: 6396023 doi: 10.3389/fncel.2019.00058
Briggs JA, Wolvetang EJ, Mattick JS, Rinn JL, Barry G. Mechanisms of long non-coding rnas in mammalian nervous system development, plasticity, disease, and evolution. Neuron. 2015;88:861–77.
pubmed: 26637795 doi: 10.1016/j.neuron.2015.09.045
Ng SY, Johnson R, Stanton LW. Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors. EMBO J. 2012;31:522–33.
pubmed: 22193719 doi: 10.1038/emboj.2011.459
Uhde CW, Vives J, Jaeger I, Li M. Rmst is a novel marker for the mouse ventral mesencephalic floor plate and the anterior dorsal midline cells. PLoS ONE. 2010;5:e8641.
pubmed: 20062813 pmcid: 2799666 doi: 10.1371/journal.pone.0008641
Cheng H, Sun M, Wang ZL, Wu Q, Yao J, Ren G, et al. LncRNA RMST-mediated miR-107 transcription promotes OGD-induced neuronal apoptosis via interacting with hnRNPK. Neurochem Int. 2020;133:104644.
pubmed: 31852624 doi: 10.1016/j.neuint.2019.104644
Ng SY, Bogu GK, Soh BS, Stanton LW. The long noncoding RNA RMST interacts with SOX2 to regulate neurogenesis. Mol Cell. 2013;51:349–59.
pubmed: 23932716 doi: 10.1016/j.molcel.2013.07.017
Lund C, Pulli K, Yellapragada V, Giacobini P, Lundin K, Vuoristo S, et al. Development of gonadotropin-releasing hormone-secreting neurons from human pluripotent stem cells. Stem Cell Rep. 2016;7:149–57.
doi: 10.1016/j.stemcr.2016.06.007
Keen KL, Petersen AJ, Figueroa AG, Fordyce BI, Shin J, Yadav R, et al. Physiological characterization and transcriptomic properties of GnRH neurons derived from human stem cells. Endocrinology. 2021;162:1–26.
doi: 10.1210/endocr/bqab120
Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 2009;27:275–80.
pubmed: 19252484 pmcid: 2756723 doi: 10.1038/nbt.1529
Mercer TR, Mattick JS. Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol. 2013;20:300–7.
pubmed: 23463315 doi: 10.1038/nsmb.2480
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.
pubmed: 18035408 doi: 10.1016/j.cell.2007.11.019
Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.
pubmed: 9804556 doi: 10.1126/science.282.5391.1145
Andersen RE, Lim DA. Forging our understanding of lncRNAs in the brain. Cell Tissue Res. 2018;371:55–71.
pubmed: 29079882 doi: 10.1007/s00441-017-2711-z
Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014;15:7–21.
pubmed: 24296535 doi: 10.1038/nrg3606
Kung JT, Colognori D, Lee JT. Long noncoding RNAs: past, present, and future. Genetics. 2013;193:651–69.
pubmed: 23463798 pmcid: 3583990 doi: 10.1534/genetics.112.146704
Andersen B, Rosenfeld MG. POU domain factors in the neuroendocrine system: lessons from developmental biology provide insights into human disease. Endocr Rev. 2001;22:2–35.
pubmed: 11159814
Wierman ME, Xiong X, Kepa JK, Spaulding AJ, Jacobsen BM, Fang Z, et al. Repression of gonadotropin-releasing hormone promoter activity by the POU homeodomain transcription factor SCIP/Oct-6/Tst-1: a regulatory mechanism of phenotype expression? Mol Cell Biol. 1997;17:1652–65.
pubmed: 9032292 pmcid: 231890 doi: 10.1128/MCB.17.3.1652
Wolfe A, Kim HH, Tobet S, Stafford DE, Radovick S. Identification of a discrete promoter region of the human GnRH gene that is sufficient for directing neuron-specific expression: a role for POU homeodomain transcription factors. Mol Endocrinol. 2002;16:435–49.
pubmed: 11875100 doi: 10.1210/mend.16.3.0780
Cho HJ, Gurbuz F, Stamou M, Kotan LD, Farmer SM, Can S, et al. POU6F2 mutation in humans with pubertal failure alters GnRH transcript expression. Front Endocrinol. 2023;14:1203542.
doi: 10.3389/fendo.2023.1203542
Ueno H, Suemitsu S, Okamoto M, Matsumoto Y, Ishihara T. Parvalbumin neurons and perineuronal nets in the mouse prefrontal cortex. Neuroscience. 2017;343:115–27.
pubmed: 27923740 doi: 10.1016/j.neuroscience.2016.11.035
Schonemeier B, Kolodziej A, Schulz S, Jacobs S, Hoellt V, Stumm R. Regional and cellular localization of the CXCl12/SDF-1 chemokine receptor CXCR7 in the developing and adult rat brain. J Comp Neurol. 2008;510:207–20.
pubmed: 18615560 doi: 10.1002/cne.21780
Sanchez-Alcaniz JA, Haege S, Mueller W, Pla R, Mackay F, Schulz S, et al. Cxcr7 controls neuronal migration by regulating chemokine responsiveness. Neuron. 2011;69:77–90.
pubmed: 21220100 doi: 10.1016/j.neuron.2010.12.006
Wang Y, Li G, Stanco A, Long JE, Crawford D, Potter GB, et al. CXCR4 and CXCR7 have distinct functions in regulating interneuron migration. Neuron. 2011;69:61–76.
pubmed: 21220099 pmcid: 3025760 doi: 10.1016/j.neuron.2010.12.005
Kumar P, Kumar D, Jha SK, Jha NK, Ambasta RK. Ion channels in neurological disorders. Adv Protein Chem Struct Biol. 2016;103:97–136.
pubmed: 26920688 doi: 10.1016/bs.apcsb.2015.10.006
Gross C, Tiwari D. Regulation of Ion channels by microRNAs and the implication for epilepsy. Curr Neurol Neurosci Rep. 2018;18:60.
pubmed: 30046905 pmcid: 6092942 doi: 10.1007/s11910-018-0870-2
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.
pubmed: 23104886 doi: 10.1093/bioinformatics/bts635
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30.
pubmed: 24227677 doi: 10.1093/bioinformatics/btt656
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8
Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020;36:2628–9.
pubmed: 31882993 doi: 10.1093/bioinformatics/btz931
Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics. 2011;27:1571–2.
pubmed: 21493656 pmcid: 3102221 doi: 10.1093/bioinformatics/btr167
Korthauer K, Chakraborty S, Benjamini Y, Irizarry RA. Detection and accurate false discovery rate control of differentially methylated regions from whole genome bisulfite sequencing. Biostatistics. 2019;20:367–83.
pubmed: 29481604 doi: 10.1093/biostatistics/kxy007
McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, et al. GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol. 2010;28:495–501.
pubmed: 20436461 pmcid: 4840234 doi: 10.1038/nbt.1630
Shin KC, Ali G, Ali Moussa HY, Gupta V, de la Fuente A, Kim HG, et al. Deletion of TRPC6, an autism risk gene, induces hyperexcitability in cortical neurons derived from human pluripotent stem cells. Mol Neurobiol. 2023;60:7297–308.
pubmed: 37552395 pmcid: 10657791 doi: 10.1007/s12035-023-03527-0

Auteurs

Gowher Ali (G)

Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad, Bin Khalifa University, Qatar Foundation, Doha, Qatar.

Kyung Chul Shin (KC)

Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad, Bin Khalifa University, Qatar Foundation, Doha, Qatar.

Nisar Ahmed (N)

College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.

Wesal Habbab (W)

Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad, Bin Khalifa University, Qatar Foundation, Doha, Qatar.

Ghaneya Alkhadairi (G)

Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad, Bin Khalifa University, Qatar Foundation, Doha, Qatar.

Aleem Razzaq (A)

College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.

Yosra Bejaoui (Y)

College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.

Nady El Hajj (N)

College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.

Borbala Mifsud (B)

College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
William Harvey Research Institute, Queen Mary University London, London, UK.

Yongsoo Park (Y)

Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad, Bin Khalifa University, Qatar Foundation, Doha, Qatar.
College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.

Lawrence W Stanton (LW)

Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad, Bin Khalifa University, Qatar Foundation, Doha, Qatar. LStanton@hbku.edu.qa.
College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar. LStanton@hbku.edu.qa.

Classifications MeSH