Genomic and immune determinants of resistance to daratumumab-based therapy in relapsed refractory multiple myeloma.


Journal

Blood cancer journal
ISSN: 2044-5385
Titre abrégé: Blood Cancer J
Pays: United States
ID NLM: 101568469

Informations de publication

Date de publication:
19 Jul 2024
Historique:
received: 13 02 2024
accepted: 08 07 2024
revised: 01 07 2024
medline: 20 7 2024
pubmed: 20 7 2024
entrez: 19 7 2024
Statut: epublish

Résumé

Targeted immunotherapy combinations, including the anti-CD38 monoclonal antibody (MoAb) daratumumab, have shown promising results in patients with relapsed/refractory multiple myeloma (RRMM), leading to a considerable increase in progression-free survival. However, a large fraction of patients inevitably relapse. To understand this, we investigated 32 relapsed MM patients treated with daratumumab, lenalidomide, and dexamethasone (Dara-Rd; NCT03848676). We conducted an integrated analysis using whole-genome sequencing (WGS) and flow cytometry in patients with RRMM. WGS before and after treatment pinpointed genomic drivers associated with early progression, including RPL5 loss, APOBEC mutagenesis, and gain of function structural variants involving MYC and chromothripsis. Flow cytometry on 202 blood samples, collected every 3 months until progression for 31 patients, revealed distinct immune changes significantly impacting clinical outcomes. Progressing patients exhibited significant depletion of CD38-positive NK cells, persistence of T-cell exhaustion, and reduced depletion of regulatory T cells over time. These findings underscore the influence of immune composition and daratumumab-induced immune changes in promoting MM resistance. Integrating genomics and flow cytometry unveiled associations between adverse genomic features and immune patterns. Overall, this study sheds light on the intricate interplay between genomic complexity and the immune microenvironment driving resistance to Dara-Rd in patients with RRMM.

Identifiants

pubmed: 39030183
doi: 10.1038/s41408-024-01096-6
pii: 10.1038/s41408-024-01096-6
doi:

Substances chimiques

daratumumab 4Z63YK6E0E
Antibodies, Monoclonal 0
Dexamethasone 7S5I7G3JQL
Lenalidomide F0P408N6V4

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

117

Subventions

Organisme : U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
ID : P30 CA 240139
Organisme : Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
ID : AIRC IG 20541
Organisme : Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
ID : AIRC IG 20541

Informations de copyright

© 2024. The Author(s).

Références

Shah UA, Mailankody S. Emerging immunotherapies in multiple myeloma. BMJ. 2020;370:m3176.
pubmed: 32958461 doi: 10.1136/bmj.m3176
van de Donk N, Usmani SZ. CD38 antibodies in multiple myeloma: mechanisms of action and modes of resistance. Front Immunol. 2018;9:2134.
pubmed: 30294326 pmcid: 6158369 doi: 10.3389/fimmu.2018.02134
Costa LJ, Chhabra S, Medvedova E, Dholaria BR, Schmidt TM, Godby KN, et al. Daratumumab, carfilzomib, lenalidomide, and dexamethasone with minimal residual disease response-adapted therapy in newly diagnosed multiple myeloma. J Clin Oncol. 2021;40:2901–12.
Dimopoulos MA, Terpos E, Boccadoro M, Delimpasi S, Beksac M, Katodritou E, et al. Daratumumab plus pomalidomide and dexamethasone versus pomalidomide and dexamethasone alone in previously treated multiple myeloma (APOLLO): an open-label, randomised, phase 3 trial. Lancet Oncol. 2021;22:801–12.
pubmed: 34087126 doi: 10.1016/S1470-2045(21)00128-5
Facon T, Kumar S, Plesner T, Orlowski RZ, Moreau P, Bahlis N, et al. Daratumumab plus lenalidomide and dexamethasone for untreated myeloma. New Engl J Med. 2019;380:2104–15.
pubmed: 31141632 doi: 10.1056/NEJMoa1817249
Landgren O, Hultcrantz M, Diamond B, Lesokhin AM, Mailankody S, Hassoun H, et al. Safety and effectiveness of weekly carfilzomib, lenalidomide, dexamethasone, and daratumumab combination therapy for patients with newly diagnosed multiple myeloma: the MANHATTAN nonrandomized clinical trial. JAMA Oncol. 2021;7:862–8.
pubmed: 33856405 pmcid: 8050789 doi: 10.1001/jamaoncol.2021.0611
Mateos MV, Dimopoulos MA, Cavo M, Suzuki K, Jakubowiak A, Knop S, et al. Daratumumab plus bortezomib, melphalan, and prednisone for untreated myeloma. New Engl J Med. 2018;378:518–28.
pubmed: 29231133 doi: 10.1056/NEJMoa1714678
Rajkumar SV. Multiple myeloma: 2022 update on diagnosis, risk stratification, and management. Am J Hematol. 2022;97:1086–107.
pubmed: 35560063 pmcid: 9387011 doi: 10.1002/ajh.26590
Voorhees PM, Kaufman JL, Laubach J, Sborov DW, Reeves B, Rodriguez C, et al. Daratumumab, lenalidomide, bortezomib, and dexamethasone for transplant-eligible newly diagnosed multiple myeloma: the GRIFFIN trial. Blood. 2020;136:936–45.
pubmed: 32325490 pmcid: 7441167 doi: 10.1182/blood.2020005288
Krejcik J, Casneuf T, Nijhof IS, Verbist B, Bald J, Plesner T, et al. Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma. Blood. 2016;128:384–94.
pubmed: 27222480 pmcid: 4957162 doi: 10.1182/blood-2015-12-687749
Saltarella I, Desantis V, Melaccio A, Solimando AG, Lamanuzzi A, Ria R, et al. Mechanisms of resistance to anti-CD38 daratumumab in multiple myeloma. Cells. 2020;9:167.
pubmed: 31936617 pmcid: 7017193 doi: 10.3390/cells9010167
van de Donk NW, Janmaat ML, Mutis T, Lammerts van Bueren JJ, Ahmadi T, Sasser AK, et al. Monoclonal antibodies targeting CD38 in hematological malignancies and beyond. Immunol Rev. 2016;270:95–112.
pubmed: 26864107 pmcid: 4755228 doi: 10.1111/imr.12389
Cohen YC, Zada M, Wang SY, Bornstein C, David E, Moshe A, et al. Identification of resistance pathways and therapeutic targets in relapsed multiple myeloma patients through single-cell sequencing. Nat Med. 2021;27:491–503.
pubmed: 33619369 pmcid: 7612793 doi: 10.1038/s41591-021-01232-w
Costa LJ, Chhabra S, Medvedova E, Dholaria BR, Schmidt TM, Godby KN, et al. Minimal residual disease response-adapted therapy in newly diagnosed multiple myeloma (MASTER): final report of the multicentre, single-arm, phase 2 trial. Lancet Haematol. 2023;10:e890–e901.
pubmed: 37776872 doi: 10.1016/S2352-3026(23)00236-3
Viola D, Dona A, Caserta E, Troadec E, Besi F, McDonald T, et al. Daratumumab induces mechanisms of immune activation through CD38+ NK cell targeting. Leukemia. 2021;35:189–200.
pubmed: 32296125 doi: 10.1038/s41375-020-0810-4
Cossarizza A, Chang HD, Radbruch A, Akdis M, Andra I, Annunziato F, et al. Guidelines for the use of flow cytometry and cell sorting in immunological studies. Eur J Immunol. 2017;47:1584–797.
pubmed: 29023707 pmcid: 9165548 doi: 10.1002/eji.201646632
Flores-Montero J, Sanoja-Flores L, Paiva B, Puig N, Garcia-Sanchez O, Bottcher S, et al. Next generation flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma. Leukemia. 2017;31:2094–103.
pubmed: 28104919 pmcid: 5629369 doi: 10.1038/leu.2017.29
Maura F, Rajanna AR, Ziccheddu B, Poos AM, Derkach A, Maclachlan K, et al. Genomic classification and individualized prognosis in multiple myeloma. J Clin Oncol. 2024;42:JCO2301277.
doi: 10.1200/JCO.23.01277
Maura F, Bolli N, Angelopoulos N, Dawson KJ, Leongamornlert D, Martincorena I, et al. Genomic landscape and chronological reconstruction of driver events in multiple myeloma. Nat Commun. 2019;10:3835.
pubmed: 31444325 pmcid: 6707220 doi: 10.1038/s41467-019-11680-1
Walker BA, Mavrommatis K, Wardell CP, Ashby TC, Bauer M, Davies FE, et al. Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. Blood. 2018;132:587–97.
pubmed: 29884741 pmcid: 6097138 doi: 10.1182/blood-2018-03-840132
Portuguese AJ, Fang M, Tuazon SA, Pont M, Qu X, Shasha C, et al. Acquired CD38 gene deletion as a mechanism of tumor antigen escape in multiple myeloma. Blood Adv. 2023;7:7235–8.
pubmed: 37844282 pmcid: 10698540 doi: 10.1182/bloodadvances.2023011295
Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Ng AWT, Wu Y, et al. The repertoire of mutational signatures in human cancer. Nature. 2020;578:94–101.
pubmed: 32025018 pmcid: 7054213 doi: 10.1038/s41586-020-1943-3
Maura F, Degasperi A, Nadeu F, Leongamornlert D, Davies H, Moore L, et al. A practical guide for mutational signature analysis in hematological malignancies. Nat Commun. 2019;10:2969.
pubmed: 31278357 pmcid: 6611883 doi: 10.1038/s41467-019-11037-8
Maura F, Petljak M, Lionetti M, Cifola I, Liang W, Pinatel E, et al. Biological and prognostic impact of APOBEC-induced mutations in the spectrum of plasma cell dyscrasias and multiple myeloma cell lines. Leukemia. 2017;32:1043–7.
Rustad EH, Yellapantula V, Leongamornlert D, Bolli N, Ledergor G, Nadeu F, et al. Timing the initiation of multiple myeloma. Nat Commun. 2020;11:1917.
pubmed: 32317634 pmcid: 7174344 doi: 10.1038/s41467-020-15740-9
Walker BA, Wardell CP, Murison A, Boyle EM, Begum DB, Dahir NM, et al. APOBEC family mutational signatures are associated with poor prognosis translocations in multiple myeloma. Nat Commun. 2015;6:6997.
pubmed: 25904160 doi: 10.1038/ncomms7997
Rustad EH, Nadeu F, Angelopoulos N, Ziccheddu B, Bolli N, Puente XS, et al. mmsig: a fitting approach to accurately identify somatic mutational signatures in hematological malignancies. Commun Biol. 2021;4:424.
pubmed: 33782531 pmcid: 8007623 doi: 10.1038/s42003-021-01938-0
Maura F, Weinhold N, Diamond B, Kazandjian D, Rasche L, Morgan G, et al. The mutagenic impact of melphalan in multiple myeloma. Leukemia. 2021;35:1–6.
doi: 10.1038/s41375-021-01293-3
Samur MK, Aktas Samur A, Fulciniti M, Szalat R, Han T, Shammas M, et al. Genome-wide somatic alterations in multiple myeloma reveal a superior outcome group. J Clin Oncol. 2020;38:3107–18.
pubmed: 32687451 pmcid: 7499613 doi: 10.1200/JCO.20.00461
Weinhold N, Ashby C, Rasche L, Chavan SS, Stein C, Stephens OW, et al. Clonal selection and double-hit events involving tumor suppressor genes underlie relapse in myeloma. Blood. 2016;128:1735–44.
pubmed: 27516441 pmcid: 5043128 doi: 10.1182/blood-2016-06-723007
Landau HJ, Yellapantula V, Diamond BT, Rustad EH, Maclachlan KH, Gundem G, et al. Accelerated single cell seeding in relapsed multiple myeloma. Nat Commun. 2020;11:1–10.
doi: 10.1038/s41467-020-17459-z
Pich O, Muiños F, Lolkema MP, Steeghs N, Gonzalez-Perez A, Lopez-Bigas N. The mutational footprints of cancer therapies. Nat Genet. 2019;51:1732–40.
pubmed: 31740835 pmcid: 6887544 doi: 10.1038/s41588-019-0525-5
Maura F, Boyle EM, Coffey D, Maclachlan K, Gagler D, Diamond B, et al. Genomic and immune signatures predict clinical outcome in newly diagnosed multiple myeloma treated with immunotherapy regimens. Nat Cancer. 2023;4:1660–74.
pubmed: 37945755 doi: 10.1038/s43018-023-00657-1
Jain MD, Ziccheddu B, Coughlin CA, Faramand R, Griswold AJ, Reid KM, et al. Whole-genome sequencing reveals complex genomic features underlying anti-CD19 CAR T-cell treatment failures in lymphoma. Blood. 2022;140:491–503.
pubmed: 35476848 pmcid: 9353150 doi: 10.1182/blood.2021015008
Rustad EH, Yellapantula VD, Glodzik D, Maclachlan KH, Diamond B, Boyle EM, et al. Revealing the impact of structural variants in multiple myeloma. Blood Cancer Discov. 2020;1:258–73.
pubmed: 33392515 pmcid: 7774871 doi: 10.1158/2643-3230.BCD-20-0132
Hofman IJF, van Duin M, De Bruyne E, Fancello L, Mulligan G, Geerdens E, et al. RPL5 on 1p22.1 is recurrently deleted in multiple myeloma and its expression is linked to bortezomib response. Leukemia. 2017;31:1706–14.
pubmed: 27909306 doi: 10.1038/leu.2016.370
Coffey DG, Maura F, Gonzalez-Kozlova E, Diaz-Mejia JJ, Luo P, Zhang Y, et al. Immunophenotypic correlates of sustained MRD negativity in patients with multiple myeloma. Nat Commun. 2023;14:5335.
pubmed: 37660077 pmcid: 10475030 doi: 10.1038/s41467-023-40966-8
Zavidij O, Haradhvala NJ, Mouhieddine TH, Sklavenitis-Pistofidis R, Cai S, Reidy M, et al. Single-cell RNA sequencing reveals compromised immune microenvironment in precursor stages of multiple myeloma. Nat Cancer. 2020;1:493–506.
pubmed: 33409501 pmcid: 7785110 doi: 10.1038/s43018-020-0053-3
Casneuf T, Xu XS, Adams HC 3rd, Axel AE, Chiu C, Khan I, et al. Effects of daratumumab on natural killer cells and impact on clinical outcomes in relapsed or refractory multiple myeloma. Blood Adv. 2017;1:2105–14.
pubmed: 29296857 pmcid: 5728278 doi: 10.1182/bloodadvances.2017006866
Ziccheddu B, Biancon G, Bagnoli F, De Philippis C, Maura F, Rustad EH, et al. Integrative analysis of the genomic and transcriptomic landscape of double-refractory multiple myeloma. Blood Adv. 2020;4:830–44.
pubmed: 32126144 pmcid: 7065476 doi: 10.1182/bloodadvances.2019000779
Poli A, Michel T, Theresine M, Andres E, Hentges F, Zimmer J. CD56bright natural killer (NK) cells: an important NK cell subset. Immunology 2009;126:458–65.
pubmed: 19278419 pmcid: 2673358 doi: 10.1111/j.1365-2567.2008.03027.x
Dhodapkar KM, Cohen AD, Kaushal A, Garfall AL, Manalo RJ, Carr AR, et al. Changes in bone marrow tumor and immune cells correlate with durability of remissions following BCMA CAR T therapy in myeloma. Blood Cancer Discov. 2022;3:490–501.
pubmed: 36026513 pmcid: 9627239 doi: 10.1158/2643-3230.BCD-22-0018
Friedrich MJ, Neri P, Kehl N, Michel J, Steiger S, Kilian M, et al. The pre-existing T cell landscape determines the response to bispecific T cell engagers in multiple myeloma patients. Cancer Cell. 2023;41:711–25.e6.
pubmed: 36898378 doi: 10.1016/j.ccell.2023.02.008

Auteurs

Bachisio Ziccheddu (B)

Myeloma Division, University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, USA.

Claudia Giannotta (C)

Laboratory of Blood Tumor Immunology, Molecular Biotechnology Center "Guido Tarone", Department of Molecular Biotechnology and Health Sciences, Università di Torino, Torino, Italy.

Mattia D'Agostino (M)

Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, University of Torino, Torino, Italy.

Giuseppe Bertuglia (G)

Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, University of Torino, Torino, Italy.

Elona Saraci (E)

Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, University of Torino, Torino, Italy.

Stefania Oliva (S)

Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, University of Torino, Torino, Italy.

Elisa Genuardi (E)

Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, University of Torino, Torino, Italy.

Marios Papadimitriou (M)

Myeloma Division, University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, USA.

Benjamin Diamond (B)

Myeloma Division, University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, USA.

Paolo Corradini (P)

Division of Hematology and Bone Marrow Transplant, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.

David Coffey (D)

Myeloma Division, University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, USA.

Ola Landgren (O)

Myeloma Division, University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, USA.

Niccolò Bolli (N)

Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
Department of Oncology and Onco-Hematology, University of Milan, Milan, Italy.

Benedetto Bruno (B)

Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, University of Torino, Torino, Italy.

Mario Boccadoro (M)

European Myeloma Network, (EMN), Torino, Italy.

Massimo Massaia (M)

Laboratory of Blood Tumor Immunology, Molecular Biotechnology Center "Guido Tarone", Department of Molecular Biotechnology and Health Sciences, Università di Torino, Torino, Italy.
SC Ematologia, AO S. Croce e Carle, Cuneo, Italy.

Francesco Maura (F)

Myeloma Division, University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, USA. fxm557@med.miami.edu.

Alessandra Larocca (A)

Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, University of Torino, Torino, Italy.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH