Comprehensive metabolome characterization of leaves, internodes, and aerial roots of Vanilla planifolia by untargeted LC-MS and GC × GC-MS.

Orchidaceae Vanilla planifolia metabolite profiling phenolics vanillin

Journal

Phytochemical analysis : PCA
ISSN: 1099-1565
Titre abrégé: Phytochem Anal
Pays: England
ID NLM: 9200492

Informations de publication

Date de publication:
21 Jul 2024
Historique:
revised: 07 06 2024
received: 17 04 2024
accepted: 17 06 2024
medline: 22 7 2024
pubmed: 22 7 2024
entrez: 21 7 2024
Statut: aheadofprint

Résumé

Untargeted metabolomics is a powerful tool that provides strategies for gaining a systematic understanding of quantitative changes in the levels of metabolites, especially when combining different metabolomic platforms. Vanilla is one of the world's most popular flavors originating from cured pods of the orchid Vanilla planifolia. However, only a few studies have investigated the metabolome of V. planifolia, and no LC-MS or GC-MS metabolomics studies with respect to leaves have been performed. The aim of the study was to comprehensively characterize the metabolome of different organs (leaves, internodes, and aerial roots) of V. planifolia. Characterization of the metabolome was achieved using two complementary platforms (GC × GC-MS, LC-QToF-MS), and metabolite identification was based on a comparison with in-house databases or curated external spectral libraries. In total, 127 metabolites could be identified with high certainty (confidence level 1 or 2) including sugars, amino acids, fatty acids, organic acids, and amines/amides but also secondary metabolites such as vanillin-related metabolites, flavonoids, and terpenoids. Ninty-eight metabolites showed significantly different intensities between the plant organs. Most strikingly, aglycons of flavonoids and vanillin-related metabolites were elevated in aerial roots, whereas its O-glycoside forms tended to be higher in leaves and/or internodes. This suggests that the more bioactive aglycones may accumulate where preferably needed, e.g. for defense against pathogens. The results derived from the study substantially expand the knowledge regarding the vanilla metabolome forming a valuable basis for more targeted investigations in future studies, e.g. towards an optimization of vanilla plant cultivation.

Identifiants

pubmed: 39034429
doi: 10.1002/pca.3414
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Bundesministerium für Bildung und Forschung
ID : 031B1238D
Organisme : Bundesministerium für Bildung und Forschung
ID : 031B1238E

Informations de copyright

© 2024 The Author(s). Phytochemical Analysis published by John Wiley & Sons Ltd.

Références

Arya SS, Rookes JE, Cahill DM, Lenka SK. Vanillin: a review on the therapeutic prospects of a popular flavouring molecule. Adv Trad Med. 2021;21(3):415‐431. doi:10.1007/s13596‐020‐00531‐w
de Oliveira RT, da Silva Oliveira JP, Macedo AF. Vanilla beyond Vanilla planifolia and vanilla × tahitensis: taxonomy and historical notes, reproductive biology, and metabolites. Plan Theory. 2022;11(23):3311‐3329. doi:10.3390/plants11233311
Khoyratty S, Kodja H, Verpoorte R. Vanilla flavor production methods: a review. Ind Crop Prod. 2018;125:433‐442. doi:10.1016/j.indcrop.2018.09.028
Brunschwig C, Collard FX, Bianchini JP, Raharivelomanana P. Evaluation of chemical variability of cured vanilla beans (Vanilla tahitensis and Vanilla planifolia). Nat Prod Commun. 2009;4(10):1393‐1400. doi:10.1177/1934578X0900401016
Ciriminna R, Fidalgo A, Meneguzzo F, Parrino F, Ilharco LM, Pagliaro M. Vanillin: the case for greener production driven by sustainability megatrend. ChemistryOpen. 2019;8(6):660‐667. doi:10.1002/open.201900083
Tomadoni B, Viacava G, Cassani L, Moreira MR, Ponce A. Novel biopreservatives to enhance the safety and quality of strawberry juice. J Food Sci Technol. 2016;53(1):281‐292. doi:10.1007/s13197‐015‐2068‐9
Shen S, Zhan C, Yang C, Fernie AR, Luo J. Metabolomics‐centered mining of plant metabolic diversity and function: past decade and future perspectives. Mol Plant. 2023;16(1):43‐63. doi:10.1016/j.molp.2022.09.007
Comte B, Monnerie S, Brandolini‐Bunlon M, et al. Multiplatform metabolomics for an integrative exploration of metabolic syndrome in older men. EBioMedicine. 2021;69:103440. doi:10.1016/j.ebiom.2021.103440
González‐Domínguez Á, Durán‐Guerrero E, Fernández‐Recamales Á, et al. An overview on the importance of combining complementary analytical platforms in metabolomic research. Curr Top Med Chem. 2017;17(30):3289‐3295. doi:10.2174/1568026618666171211144918
Busconi M, Lucini L, Soffritti G, et al. Phenolic profiling for traceability of vanilla ×tahitensis. Front Plant Sci. 2017;8:1746‐1758. doi:10.3389/fpls.2017.01746
Palama TL, Fock I, Choi YH, Verpoorte R, Kodja H. Biological variation of Vanilla planifolia leaf metabolome. Phytochemistry. 2010;71(5‐6):567‐573. doi:10.1016/j.phytochem.2009.12.011
Palama TL, Grisoni M, Fock‐Bastide I, et al. Metabolome of Vanilla planifolia (Orchidaceae) and related species under cymbidium mosaic virus (CymMV) infection. Plant Physiol Biochem. 2012;60:25‐34. doi:10.1016/j.plaphy.2012.07.015
Leyva VE, Lopez JM, Zevallos‐Ventura A, et al. In vitro selection of vanilla plants resistant to fusarium oxysporum f. sp. vanillae. Food Chem. 2021;358:129365‐129374. doi:10.1016/j.foodchem.2021.129365
Yang H, Barros‐Rios J, Kourteva G, et al. A re‐evaluation of the final step of vanillin biosynthesis in the orchid Vanilla planifolia. Phytochemistry. 2017;139:33‐46. doi:10.1016/j.phytochem.2017.04.003
Kundu A. Vanillin biosynthetic pathways in plants. Planta. 2017;245(6):1069‐1078. doi:10.1007/s00425‐017‐2684‐x
Egert B, Weinert CH, Kulling SE. A peaklet‐based generic strategy for the untargeted analysis of comprehensive two‐dimensional gas chromatography mass spectrometry data sets. J Chromatogr a. 2015;1405:168‐177. doi:10.1016/j.chroma.2015.05.056
Sumner LW, Amberg A, Barrett D, et al. Proposed minimum reporting standards for chemical analysis: chemical analysis working group (CAWG) metabolomics standards initiative (MSI). Metabolomics. 2007;3(3):211‐221. doi:10.1007/s11306‐007‐0082‐2
Evans AM, O'Donovan C, Playdon M, et al. Dissemination and analysis of the quality assurance (QA) and quality control (QC) practices of LC–MS based untargeted metabolomics practitioners. Metabolomics. 2020;16(10):113. doi:10.1007/s11306‐020‐01728‐5
Kodra D, Pousinis P, Vorkas PA, et al. Is current practice adhering to guidelines proposed for metabolite identification in LC‐MS untargeted metabolomics? A meta‐analysis of the literature. J Proteome Res. 2022;21(3):590‐598. doi:10.1021/acs.jproteome.1c00841
Theodoridis G, Gika H, Raftery D, Goodacre R, Plumb RS, Wilson ID. Ensuring fact‐based metabolite identification in liquid chromatography−mass spectrometry‐based metabolomics. Anal Chem. 2023;95(8):3909‐3916. doi:10.1021/acs.analchem.2c05192
Gallage NJ, Hansen EH, Kannangara R, et al. Vanillin–bioconversion and bioengineering of the most popular plant flavor and its de novo biosynthesis in the vanilla orchid. Nat Commun. 2014;5(1):4037‐4050. doi:10.1038/ncomms5037
Brodelius PE. Phenylpropanoid metabolism inVanilla planifoliaAndr. (V) High performance liquid chromatographic analysis of phenolic glycosides and aglycones in developing fruits. Phytochem Anal. 1994;5(1):27‐31. doi:10.1002/pca.2800050108
Funk C, Brodelius PE. Phenylpropanoid metabolism in suspension cultures of Vanilla planifolia Andr. Plant Physiol. 1990;94(1):95‐101. doi:10.1104/pp.94.1.95
Funk C, Brodelius PE. Phenylpropanoid metabolism in suspension cultures of Vanilla planifolia Andr. Plant Physiol. 1990;94(1):102‐108. doi:10.1104/pp.94.1.102
Pak FE, Gropper S, Dai WD, Havkin‐Frenkel D, Belanger FC. Characterization of a multifunctional methyltransferase from the orchid Vanilla planifolia. Plant Cell Rep. 2004;22(12):959‐966. doi:10.1007/s00299‐004‐0795‐x
Podstolski A, Havkin‐Frenkel D, Malinowski J, Blounta JW, Kourteva G, Dixon RA. A re‐evaluation of the final step of vanillin biosynthesis in the orchid Vanilla planifolia. Phytochemistry. 2002;61(6):611‐620. doi:10.1016/S0031‐9422(02)00285‐6
Díaz‐Bautista M, Francisco‐Ambrosio G, Espinoza‐Pérez J, et al. Morphological and phytochemical data of vanilla species in Mexico. Data Brief. 2018;20:1730‐1738. doi:10.1016/j.dib.2018.08.212
Gutiérrez RMP. Orchids: a review of uses in traditional medicine, its phytochemistry and pharmacology. J Med Plant Res. 2010;4:592‐638.
Del Río JC, Rencoret J, Gutiérrez A, Elder T, Kim H, Ralph J. Lignin monomers from beyond the canonical monolignol biosynthetic pathway: another brick in the wall. ACS Sustainable Chem Eng. 2020;8(13):4997‐5012. doi:10.1021/acssuschemeng.0c01109
Li M, Pu Y, Meng X, Chen F, Dixon RA, Ragauskas AJ. Strikingly high amount of tricin‐lignin observed from vanilla (Vanilla planifolia) aerial roots. Green Chem. 2022;24(1):59‐270. doi:10.1039/D1GC03625D
Mierziak J, Wojtasik W, Kostyn K, Czuj T, Szopa J, Kulma A. Crossbreeding of transgenic flax plants overproducing flavonoids and glucosyltransferase results in progeny with improved antifungal and antioxidative properties. Mol Breed. 2014;34(4):1917‐1932. doi:10.1007/s11032‐014‐0149‐5
Weidenbörner M, Jha HC. Antifungal spectrum of flavone and flavanone tested against 34 different fungi. Mycol Res. 1997;101(6):733‐736. doi:10.1017/S0953756296003322
Mierziak J, Kostyn K, Kulma A. Flavonoids as important molecules of plant interactions with the environment. Molecules. 2014;19(10):16240‐16265. doi:10.3390/molecules191016240
Grisoni M, Nany F. Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme. Genet Resour Crop Evol. 2021;68(5):1691‐1708. doi:10.1007/s10722‐021‐01119‐2
Hartmann MA. Plant sterols and the membrane environment. Trends Plant Sci. 1998;3(5):170‐175. doi:10.1016/S1360‐1385(98)01233‐3
Chen M. The tea plant leaf cuticle: from plant protection to tea quality. Front Plant Sci. 2021;12:751547. doi:10.3389/fpls.2021.751547
Miras‐Moreno B, Sabater‐Jara AB, Pedreno MA, Almagro L. Bioactivity of phytosterols and their production in plant in vitro cultures. J Agric Food Chem. 2016;64(38):7049‐7058. doi:10.1021/acs.jafc.6b02345
Lagarda MJ, García‐Llatas G, Farré RJ. Analysis of phytosterols in foods. Pharm Biomed Anal. 2006;41(5):1486‐1496. doi:10.1016/j.jpba.2006.02.052
Hasnu S, Deka K, Saikia D, Lahkar L, Tanti B. Morpho‐taxonomical and phytochemical analysis of Vanilla borneensis Rolfe—a rare, endemic and threatened orchid of Assam, India. Vegetos. 2022;35(2):381‐391. doi:10.1007/s42535‐021‐00306‐x
Pérez‐Silva A, Nicolás‐García M, Petit T, et al. Quantification of the aromatic potential of ripe fruit of Vanilla planifolia (Orchidaceae) and several of its closely and distantly related species and hybrids. Eur Food Res Technol. 2021;247(6):1489‐1499. doi:10.1007/s00217‐021‐03726‐w
Brunschwig C, Rochard S, Pierrat A, et al. Volatile composition and sensory properties of vanilla ×tahitensis bring new insights for vanilla quality control. J Sci Food Agric. 2016;96(3):848‐858. doi:10.1002/jsfa.7157
Zhang Y, Fernie AR. Metabolite profiling of Arabidopsis mutants of lower glycolysis. Sci Data. 2022;9(1):614. doi:10.1038/s41597‐022‐01673‐z
Parthasarathy A, Cross PJ, Dobson RCJ, Adams LE, Savka MA, Hudson AO. A three‐ring circus: metabolism of the three proteogenic aromatic amino acids and their role in the health of plants and animals. Front Mol Biosci. 2018;5:29‐58. doi:10.3389/fmolb.2018.00029
Mukundan NS, Banerjee S, Kumar S, Satyamoorthy K, Babu VS. C4 equivalent decarboxylation competence in tropical orchids. J Plant Biol. 2023;66(2):163‐180. doi:10.1007/s12374‐023‐09385‐6
Maisch NA, Bereswill S, Heimesaat MM. Antibacterial effects of vanilla ingredients provide novel treatment options for infections with multidrug‐resistant bacteria – a recent literature review. Eur J Microbiol Immunol. 2022;12(3):53‐62. doi:10.1556/1886.2022.00015
Chuberre C, Plancot B, Driouich A, et al. Plant immunity is compartmentalized and specialized in roots. Front Plant Sci. 2018;871:1692‐1704. doi:10.3389/fpls.2018.01692
Baetz U, Martinoia E. Root exudates: the hidden part of plant defense. Trends Plant Sci. 2014;19(2):90‐98. doi:10.1016/j.tplants.2013.11.006
Erb M, Lenk C, Degenhardt J, Turlings TCJ. The underestimated role of roots in defense against leaf attackers. Trends Plant Sci. 2009;14(12):653‐659. doi:10.1016/j.tplants.2009.08.006
Böttcher C, Chapman A, Fellermeier F, Choudhary M, Scheel D, Glawischnig E. The biosynthetic pathway of indole‐3‐carbaldehyde and indole‐3‐carboxylic acid derivatives in Arabidopsis. Plant Physiol. 2014;165(2):841‐853. doi:10.1104/pp.114.235630
Kytidou K, Artola M, Overkleeft HS, Aerts JMFG. Plant glycosides and glycosidases: a treasure‐trove for therapeutics. Front Plant Sci. 2020;11:357‐377. doi:10.3389/fpls.2020.00357
Zhan X, Qian Y, Mao B. Metabolic profiling of terpene diversity and the response of prenylsynthase‐terpene synthase genes during biotic and abiotic stresses in Dendrobium catenatum. Int J Mol Sci. 2022;23(12):6398‐6412. doi:10.3390/ijms23126398
Yeats TH, Rose JKC. The formation and function of plant cuticles. Plant Physiol. 2013;163(1):5‐20. doi:10.1104/pp.113.222737
Wang H, Lu Z, Xu Y, et al. Roles of very long‐chain fatty acids in compound leaf patterning in Medicago truncatula. Plant Physiol. 2023;191(3):1751‐1770. doi:10.1093/plphys/kiad006
Gfeller A, Liechti R, Farmer EE. Arabidopsis jasmonate signaling pathway. Sci Signal. 2010;3(109):cm4. doi:10.1126/scisignal.3109cm4
Moing A. Sugar alcohols as carbohydrate reserves in some higher plants. In: Carbohydrate reserves in plants ‐ synthesis and regulation. Gupta AK, Kaur N. Elsevier; 2000. 337 p. doi:10.1016/S0378‐519X(00)80017‐3
Kadereit JW, Körner C, Nick P. Straßburger ‐ Lehrbuch der Pflanzenwissenschaften. Springer Spectrum Berlin; 2021:1155. doi:10.1007/978‐3‐662‐61943‐8
Loescher WH, McCamant T, Keller JD. Carbohydrate reserves, translocation, and storage in woody plant roots. HortScience. 1990;25(3):274‐281. doi:10.21273/HORTSCI.25.3.274
Lin T, Klinkhamer PGL, Vrieling K. Evolutionary changes in growth, regrowth and carbohydrate storage in an invasive plant. Sci Rep. 2018;8(1):14917. doi:10.1038/s41598‐018‐33218‐z
Zulfiqar F, Akram NA, Ashraf M. Osmoprotection in plants under abiotic stresses: new insights into a classical phenomenon. Planta. 2020;251(1):3‐17. doi:10.1007/s00425‐019‐03293‐1
Christopher JT, Holtum JAM. Patterns of carbon partitioning in leaves of crassulacean acid metabolism species during deacidification. Plant Physiol. 1996;112(1):393‐399. doi:10.1104/pp.112.1.393
Elsayed AI, Rafudeen MS, Golldack D. Physiological aspects of raffinose family oligosaccharides in plants: protection against abiotic stress. Plant Biol. 2014;16(1):1‐8. doi:10.1111/plb.12053
Moormann J, Heinemann B, Hildebrandt TM. News about amino acid metabolism in plant–microbe interactions. Trends Biochem Sci. 2022;47(10):839‐850. doi:10.1016/j.tibs.2022.07.001
Ischebeck T, Zbierzak AM, Kanwischer M, Dörmann P. A salvage pathway for phytol metabolism. J Biol Chem. 2006;281(5):2470‐2477. doi:10.1074/jbc.M509222200
Ohgami S, Ono E, Horikawa M, et al. Volatile glycosylation in tea plants: sequential glycosylations for the biosynthesis of aroma β‐primeverosides are catalyzed by two Camellia sinensis glycosyltransferases. Plant Physiol. 2015;168(2):464‐477. doi:10.1104/pp.15.00403

Auteurs

Falco Beer (F)

Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany.

Christoph H Weinert (CH)

Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany.

Johannes Wellmann (J)

Symrise AG, Holzminden, Germany.

Silke Hillebrand (S)

Symrise AG, Holzminden, Germany.

Jakob Peter Ley (JP)

Symrise AG, Holzminden, Germany.

Sebastian T Soukup (ST)

Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany.

Sabine E Kulling (SE)

Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany.

Classifications MeSH