Glycine-replaced epinecidin-1 variant bestows better stability and stronger antimicrobial activity against a range of nosocomial pathogenic bacteria.

antimicrobial peptide epinecidin‐1 multidrug resistance thioredoxin fusion

Journal

Biotechnology and applied biochemistry
ISSN: 1470-8744
Titre abrégé: Biotechnol Appl Biochem
Pays: United States
ID NLM: 8609465

Informations de publication

Date de publication:
21 Jul 2024
Historique:
received: 31 12 2023
accepted: 29 06 2024
medline: 22 7 2024
pubmed: 22 7 2024
entrez: 22 7 2024
Statut: aheadofprint

Résumé

Epinecidin-1 (epi-1), an antimicrobial peptide first identified in marine grouper fish, has multifunctional bioactivities. The present study aims to improve its therapeutic potential via structural modifications that could enhance its antimicrobial activity and stability. To achieve it, we replaced glycine and the first histidine in the parent epi-1 with lysine, which resulted in a peptide with a repeating KXXK motif and improved physiochemical properties related to antimicrobial activity. This modified peptide, referred to as glycine-to-lysine replaced-epi-1, also gained stability and a twofold increase in helical propensity. To produce the active peptide, overlap extension PCR was employed to generate the gene of GK-epi-1 via site-directed mutagenesis, which was then cloned into the pET-32a vector and expressed as a recombinant fusion protein in Escherichia coli C43 (DE3) strain. The recombinant protein was purified and digested with enterokinase to release the active peptide fragment, which was then evaluated for antimicrobial activity and stability. The lysine substitution led to an enhancement in broad-spectrum antimicrobial activity against a wide range of nosocomial pathogenic bacteria.

Identifiants

pubmed: 39034467
doi: 10.1002/bab.2637
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : The Department of Biotechnology, India
ID : BT/PR2071/BBE/117/241/2016
Organisme : Indian Council of Medical Research
ID : ICMR-NET-61754/2010
Organisme : RUSA 2.0 Biological Sciences
ID : 311/RUSA (2.0)/2018
Organisme : Bharathidasan University, Tiruchirappalli and Tamil Nadu State Council for Higher Education (TANSCHE)
ID : 01706/P6/2021

Informations de copyright

© 2024 International Union of Biochemistry and Molecular Biology, Inc.

Références

Kumari S, Kumar M, Khandelwal NK, Kumari P, Varma M, Vishwakarma P, et al. ABC transportome inventory of human pathogenic yeast Candida glabrata: phylogenetic and expression analysis. PLoS ONE. 2018;13(8):e0202993.
El‐Nawawy A, Ashraf GA, Antonios MAM, Meheissen MA, El‐Alfy MMR. Incidence of multidrug‐resistant organism among children admitted to pediatric intensive care unit in a developing country. Microb Drug Resist. 2018;24(8):1198–1206.
Duraisamy S, Sathyan A, Balakrishnan S, Subramani P, Prahalathan C, Kumarasamy A. Bactericidal and non‐cytotoxic activity of bacteriocin produced by Lacticaseibacillus paracasei F9‐02 and evaluation of its tolerance to various physico‐chemical conditions. Environ Microbiol. 2022;25(12):2882–2896.
Yount NY, Yeaman MR. Emerging themes and therapeutic prospects for anti‐infective peptides. Annu Rev Pharmacol Toxicol. 2012;52:337–360.
Duraisamy S, Balakrishnan S, Ranjith S, Husain F, Sathyan A, Peter AS, et al. Bacteriocin—a potential antimicrobial peptide towards disrupting and preventing biofilm formation in the clinical and environmental locales. Environ Sci Pollut Res. 2020;27:44922–44936.
Fjell CD, Hiss JA, Hancock REW, Schneider G. Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov. 2012;11(1):37–51.
Sullivan R, Santarpia P, Lavender S, Gittins E, Liu Z, Anderson MH, et al. Clinical efficacy of a specifically targeted antimicrobial peptide mouth rinse: targeted elimination of Streptococcus mutans and prevention of demineralization. Caries Res. 2011;45(5):415–428.
da Cunha NB, Cobacho NB, Viana JFC, Lima LA, Sampaio KBO, Dohms SSM, et al. The next generation of antimicrobial peptides (AMPs) as molecular therapeutic tools for the treatment of diseases with social and economic impacts. Drug Discov Today. 2017;22(2):234–248.
Huerta‐Cantillo J, Navarro‐García F. Properties and design of antimicrobial peptides as potential tools against pathogens and malignant cells. Investigación en Discapacidad. 2016;5(2):96–115.
Nuding S, Frasch T, Schaller M, Stange EF, Zabel LT. Synergistic effects of antimicrobial peptides and antibiotics against Clostridium difficile. Antimicrob Agents Chemother. 2014;58(10):5719–5725.
Thankappan B, Sivakumar J, Asokan S, Ramasamy M, Pillai MM, Selvakumar R, et al. Dual antimicrobial and anticancer activity of a novel synthetic α‐helical antimicrobial peptide. Eur J Pharm Sci. 2021;161:105784.
Sierra JM, Fusté E, Rabanal F, Vinuesa T, Viñas M. An overview of antimicrobial peptides and the latest advances in their development. Expert Opin Biol Ther. 2017;17(6):663–676.
Jeyarajan S, Sathyan A, Peter AS, Ranjith S, Duraisamy S, Natarajaseenivasan SM, et al. Bioproduction and characterization of epinecidin‐1 and its variants against multi drug resistant bacteria through in silico and in vitro studies. Int J Pept Res Ther. 2023;29(4):66.
Ranjith S, Sathyan A, Duraisamy S, Peter AS, Marwal A, Jain K, et al. Exploring a computational method for evaluating the epinecidin‐1 and its variants binding efficacy with breast cancer receptor (HER‐2). Int J Pept Res Ther. 2022;28(4):118.
Thankappan B, Ramesh D, Ramkumar S, Natarajaseenivasan K, Anbarasu K. Characterization of Bacillus spp. from the gastrointestinal tract of Labeo rohita—towards to identify novel probiotics against fish pathogens. Appl Biochem Biotechnol. 2015;175(1):340–353. https://doi.org/10.1007/s12010‐014‐1270‐y
Jeyarajan S, Xavier J, Rao NM, Gopal V. Plasmid DNA delivery into MDA‐MB‐453 cells mediated by recombinant Her‐NLS fusion protein. Int J Nanomed. 2010;5:725–733.
Eley A, Ibrahim M, Kurdi SE, Conlon JM. Activities of the frog skin peptide, ascaphin‐8 and its lysine‐substituted analogs against clinical isolates of extended‐spectrum β‐lactamase (ESBL) producing bacteria. Peptides. 2008;29(1):25–30. https://doi.org/10.1016/j.peptides.2007.10.026
Conlon JM, Mechkarska M, Prajeep M, Arafat K, Zaric M, Lukic ML, et al. Transformation of the naturally occurring frog skin peptide, alyteserin‐2a into a potent, non‐toxic anti‐cancer agent. Amino Acids. 2013;44(2):715–723. https://doi.org/10.1007/s00726‐012‐1395‐7
Almaaytah A, Tarazi S, Abu‐Alhaijaa A, Altall Y, Alshar'i N, Bodoor K, et al. Enhanced antimicrobial activity of AamAP1‐lysine, a novel synthetic peptide analog derived from the scorpion venom peptide AamAP1. Pharmaceuticals. 2014;7(5):502–516. https://doi.org/10.3390/ph7050502
Park CB, Yi K‐S, Matsuzaki K, Kim MS, Kim SC. Structure–activity analysis of buforin II, a histone H2A‐derived antimicrobial peptide: the proline hinge is responsible for the cell‐penetrating ability of buforin II. Proc Natl Acad Sci. 2000;97(15):8245–8250. https://doi.org/10.1073/pnas.150518097
Jang WS, Kim CH, Kim KN, Park SY, Lee JH, Son SM, et al. Biological activities of synthetic analogs of halocidin, an antimicrobial peptide from the tunicate Halocynthia aurantium. Antimicrob Agents Chemother. 2003;47(8):2481–2486. https://doi.org/10.1128/AAC.47.8.2481‐2486.2003
Helmerhorst EJ, Hof WV'T, Veerman ECI, Simoons‐Smit I, Amerongen AVN. Synthetic histatin analogues with broad‐spectrum antimicrobial activity. Biochem J. 1997;326(1):39–45. https://doi.org/10.1042/bj3260039
Conlon JM, Abraham B, Galadari S, Knoop FC, Sonnevend A, Pál T. Antimicrobial and cytolytic properties of the frog skin peptide, kassinatuerin‐1 and its l‐ and d‐lysine‐substituted derivatives. Peptides. 2005;26(11):2104–2110. https://doi.org/10.1016/j.peptides.2005.04.003
Ge Y, MacDonald DL, Holroyd KJ, Thornsberry C, Wexler H, Zasloff M. In vitro antibacterial properties of pexiganan, an analog of magainin. Antimicrob Agents Chemother. 1999;43(4):782–788. https://doi.org/10.1128/AAC.43.4.782
Pál T, Sonnevend Á, Galadari S, Conlon JM. Design of potent, non‐toxic antimicrobial agents based upon the structure of the frog skin peptide, pseudin‐2. Regul Pept. 2005;129(1–3):85–91. https://doi.org/10.1016/j.regpep.2005.01.015
Jiang Z, Vasil A, Vasil M, Hodges R. “specificity determinants” improve therapeutic indices of two antimicrobial peptides piscidin 1 and dermaseptin s4 against the gram‐negative pathogens Acinetobacter baumannii and Pseudomonas aeruginosa. Pharmaceuticals. 2014;7(4):366–391. https://doi.org/10.3390/ph7040366
Dings R, Haseman J, Mayo K. Probing structure–activity relationships in bactericidal peptide βpep‐25. Biochem J. 2008;414:143–150. https://doi.org/10.1042/BJ20080506
Schmidt NW, Wong GCL. Antimicrobial peptides and induced membrane curvature: geometry, coordination chemistry, and molecular engineering. Curr Opin Solid State Mater Sci. 2013;17(4):151–163. https://doi.org/10.1016/j.cossms.2013.09.004
Gupta SK, Shukla P. Advanced technologies for improved expression of recombinant proteins in bacteria: perspectives and applications. Crit Rev Biotechnol. 2016;36(6):1089–1098.
Olaitan AO, Morand S, Rolain J‐M. Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front Microbiol. 2014;5:116005.
Mahlapuu M, Håkansson J, Ringstad L, Björn C. Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol. 2016;6:194.
Jeyarajan S, Kumarasamy A, Cheon J, Premceski A, Seidel E, Kimler VA, et al. TEM analysis of αA66‐80 peptide‐induced protein aggregates and amyloid fibrils in human and guinea pig αA‐crystallins. Invest Ophthalmol Vis Sci. 2018;59(9):3043.
Kumarasamy A, Jeyarajan S, Kimler VA, Premceski A, Cheon J, Mishra V, et al. In vitro studies on the interaction of guinea pig αA crystallin and αA crystallin (66‐80) peptide using fluorescence polarization and transmission electron microscopy. Invest Ophthalmol Vis Sci. 2017;58(8):5301.
Kang HK, Lee HH, Seo CH, Park Y. Antimicrobial and immunomodulatory properties and applications of marine‐derived proteins and peptides. Mar Drugs. 2019;17(6):350.
Ingham AB, Moore RJ. Recombinant production of antimicrobial peptides in heterologous microbial systems. Biotechnol Appl Biochem. 2007;47(1):1–9.
Anbarasu K, Sivakumar J. Multidimensional significance of crystallin protein‐protein interactions and their implications in various human diseases. Biochimica et Biophysica Acta. 2016;1860(1):222–233. https://doi.org/10.1016/j.bbagen.2015.09.005
Govindarajan S, Sivakumar J, Garimidi P, Rangaraj N, Kumar JM, Rao NM, et al. Targeting human epidermal growth factor receptor 2 by a cell‐penetrating peptide–affibody bioconjugate. Biomaterials. 2012;33(8):2570–2582.
Li Y. Self‐cleaving fusion tags for recombinant protein production. Biotechnol Lett. 2011;33:869–881.
Li Y. Carrier proteins for fusion expression of antimicrobial peptides in Escherichia coli. Biotechnol Appl Biochem. 2009;54(1):1–9.
Li Y. Production of human antimicrobial peptide LL‐37 in Escherichia coli using a thioredoxin–SUMO dual fusion system. Protein Expression Purif. 2013;87(2):72–78.
Meiyalaghan S, Latimer JM, Kralicek AV, Shaw ML, Lewis JG, Conner AJ, et al. Expression and purification of the antimicrobial peptide GSL1 in bacteria for raising antibodies. BMC Res Notes. 2014;7:1–7.
Chia T‐J, Wu Y‐C, Chen J‐Y, Chi S‐C. Antimicrobial peptides (AMP) with antiviral activity against fish nodavirus. Fish Shellfish Immunol. 2010;28(3):434–439.
Lin S‐B, Fan T‐W, Wu J‐L, Hui C‐F, Chen J‐Y. Immune response and inhibition of bacterial growth by electrotransfer of plasmid DNA containing the antimicrobial peptide, epinecidin‐1, into zebrafish muscle. Fish Shellfish Immunol. 2009;26(3):451–458.
Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982;157(1):105–132.
Roy A, Kucukural A, Zhang Y. I‐TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc. 2010;5(4):725–738.
Lovell SC, Davis IW, Arendall III WB, De Bakker PIW, Word JM, Prisant MG, et al. Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins Struct Funct Bioinf. 2003;50(3):437–450.
Willard L, Ranjan A, Zhang H, Monzavi H, Boyko RF, Sykes BD, et al. VADAR: a web server for quantitative evaluation of protein structure quality. Nucleic Acids Res. 2003;31(13):3316–3319.
Selvam RM, Nithya R, Devi PN, Shree RSB, Nila MV, Demonte NL, et al. Exoproteome of Aspergillus flavus corneal isolates and saprophytes: identification of proteoforms of an oversecreted alkaline protease. J Proteomics. 2015;115:23–35.
Bauer AW, Kirby WMM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966;45(4_ts):493–496.
Högel P, Götz A, Kuhne F, Ebert M, Stelzer W, Rand KD, et al. Glycine perturbs local and global conformational flexibility of a transmembrane helix. Biochemistry. 2018;57(8):1326–1337.
Brožek R, Kabelka I, Vácha R. Effect of helical kink on peptide translocation across phospholipid membranes. J Phys Chem B. 2020;124(28):5940–5947.
Pace CN, Scholtz JM. A helix propensity scale based on experimental studies of peptides and proteins. Biophys J. 1998;75(1):422–427.
Betts MJ, Russell RB. Amino acid properties and consequences of substitutions. In: Bioinformatics for geneticists. Hoboken: John Wiley & Sons Ltd; 2003. p. 289–316.
Vogt B, Ducarme P, Schinzel S, Brasseur R, Bechinger B. The topology of lysine‐containing amphipathic peptides in bilayers by circular dichroism, solid‐state NMR, and molecular modeling. Biophys J. 2000;79(5):2644–2656.
Jones MK, Anantharamaiah GM, Segrest JP. Computer programs to identify and classify amphipathic alpha helical domains. J Lipid Res. 1992;33(2):287–296.
Jin L, Bai X, Luan N, Yao H, Zhang Z, Liu W, et al. A designed tryptophan‐and lysine/arginine‐rich antimicrobial peptide with therapeutic potential for clinical antibiotic‐resistant Candida albicans vaginitis. J Med Chem. 2016;59(5):1791–1799.
Jeyarajan S, Peter AS, Sathyan A, Ranjith S, Kandasamy I, Duraisamy S, et al. Expression and purification of epinecidin‐1 variant (Ac‐Var‐1) by acid cleavage. Appl Microbiol Biotechnol. 2024;108(1):1–15.
Rončević T, Vukičević D, Ilić N, Krce L, Gajski G, Tonkić M, et al. Antibacterial activity affected by the conformational flexibility in glycine–lysine based α‐helical antimicrobial peptides. J Med Chem. 2018;61(7):2924–2936.
Jenssen H, Hamill P, Hancock REW Peptide antimicrobial agents. Clin Microbiol Rev. 2006;19(3):491–511.
Zelezetsky I, Tossi A. Alpha‐helical antimicrobial peptides—using a sequence template to guide structure–activity relationship studies. Biochim Biophys Acta Biomemb. 2006;1758(9):1436–1449.
Beevers AJ, Dixon AM. Helical membrane peptides to modulate cell function. Chem Soc Rev. 2010;39(6):2146–2157.
Chen L, Li X, Gao L, Fang W. Theoretical insight into the relationship between the structures of antimicrobial peptides and their actions on bacterial membranes. J Phys Chem B. 2015;119(3):850–860.
Narh JK, Casillas‐Vega NG, Zarate X. LL‐37_Renalexin hybrid peptide exhibits antimicrobial activity at lower MICs than its counterpart single peptides. Appl Microbiol Biotechnol. 2024;108(1):126.
Pavelka A, Vacek L, Norek A, Kobzová Š, Janda L. Recombinant production of human antimicrobial peptide LL‐37 and its secondary structure. Biologia (Bratisl). 2024;79(1):263–273.
Bharadwaj A, Rastogi A, Pandey S, Gupta S, Sohal JS. Multidrug‐resistant bacteria: their mechanism of action and prophylaxis. Biomed Res Int. 2022;2022:5419874.
Josephs‐Spaulding J, Singh OV. Medical device sterilization and reprocessing in the era of Multidrug‐Resistant (MDR) bacteria: issues and regulatory concepts. Front Med Technol. 2021;2:587352.
Joachim A, Manyahi J, Issa H, Lwoga J, Msafiri F, Majigo M. Predominance of multidrug‐resistant gram‐negative bacteria on contaminated surfaces at a tertiary hospital in tanzania: a call to strengthening environmental infection prevention and control measures. Curr Microbiol. 2023;80(5):148.
Casciaro B, Dutta D, Loffredo MR, Marcheggiani S, McDermott AM, Willcox MDP, et al. Esculentin‐1a derived peptides kill Pseudomonas aeruginosa biofilm on soft contact lenses and retain antibacterial activity upon immobilization to the lens surface. Pept Sci. 2018;110(5):e23074.
Alteriis Ed, Maselli V, Falanga A, Galdiero S, Lella FMD, Gesuele R, et al. Efficiency of gold nanoparticles coated with the antimicrobial peptide indolicidin against biofilm formation and development of Candida spp. clinical isolates. Infect Drug Resist. 2018;11:915–925.
Mishra B, Wang G. Titanium surfaces immobilized with the major antimicrobial fragment FK‐16 of human cathelicidin LL‐37 are potent against multiple antibiotic‐resistant bacteria. Biofouling. 2017;33(7):544–555.
Thankappan B, Jeyarajan S, Hiroaki S, Anbarasu K, Natarajaseenivasan K, Fujii N. Antimicrobial and antibiofilm activity of designed and synthesized antimicrobial peptide, KABT‐AMP. Appl Biochem Biotechnol. 2013;170(5):1184–1193. https://doi.org/10.1007/s12010‐013‐0258‐3
Horcajada JP, Montero M, Oliver A, Sorlí L, Luque S, Gómez‐Zorrilla S, et al. Epidemiology and treatment of multidrug‐resistant and extensively drug‐resistant Pseudomonas aeruginosa infections. Clin Microbiol Rev. 2019;32(4):10–1128.
Neog N, Phukan U, Puzari M, Sharma M, Chetia P. Klebsiella oxytoca and emerging nosocomial infections. Curr Microbiol. 2021;78(4):1115–1123.
Foster TJ. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol Rev. 2017;41(3):430–449.
Cazer CL, Westblade LF, Simon MS, Magleby R, Castanheira M, Booth JG, et al. Analysis of multidrug resistance in Staphylococcus aureus with a machine learning‐generated antibiogram. Antimicrob Agents Chemother. 2021;65(4):10–1128.
Kunz Coyne AJ, El Ghali A, Holger D, Rebold N, Rybak MJ. Therapeutic strategies for emerging multidrug‐resistant Pseudomonas aeruginosa. Infect Dis Ther. 2022;11(2):661–682.
Wang H, Chen X, Yan Z, Tu F, He T, Gopinath SCB, et al. Human neutrophil peptide 1 promotes immune sterilization in vivo by reducing the virulence of multidrug‐resistant Klebsiella pneumoniae and increasing the ability of macrophages. Biotechnol Appl Biochem. 2022;69(5):2091–2101.
Yu L, Zhu M, Liu E, Yang T, Chen X, Wang X. Studies of the mechanism of an antibacterial peptide (cecropinA–magainin) on methicillin‐resistant Staphylococcus aureus membranes. Biotechnol Appl Biochem. 2016;63(6):805–811.
Kurczab R, Śliwa P, Rataj K, Kafel R, Bojarski AJ. Salt bridge in ligand–protein complexes—systematic theoretical and statistical investigations. J Chem Inf Model. 2018;58(11):2224–2238.
Wang L, Zhang Y, Li R, Xiang D. L‐lysine moderates thermal aggregation of coconut proteins induced by thermal treatment. Sci Rep. 2023;13(1):13310.
Kumar P, Kizhakkedathu J, Straus S. Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules. 2018;8(1):4. https://doi.org/10.3390/biom8010004
Tuerkova A, Kabelka I, Králová T, Sukeník L, Pokorná Š, Hof M, et al. Effect of helical kink in antimicrobial peptides on membrane pore formation. eLife. 2020;9:e47946. https://doi.org/10.7554/eLife.47946

Auteurs

Sivakumar Jeyarajan (S)

Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA.
Transgeinc Animal Model Core, Biomedical Research Core Facilities, University of Michigan, Ann Arbor, Michigan, USA.

Ansu Susan Peter (AS)

Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.

Sukumar Ranjith (S)

Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.

Aswathy Sathyan (A)

Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.

Senbagam Duraisamy (S)

Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.

Indira Kandasamy (I)

Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.

Prahalathan Chidambaram (P)

Department of Biochemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.

Anbarasu Kumarasamy (A)

Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.

Classifications MeSH