Expanding N-glycopeptide identifications by modeling fragmentation, elution, and glycome connectivity.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
22 Jul 2024
Historique:
received: 26 01 2021
accepted: 08 07 2024
medline: 23 7 2024
pubmed: 23 7 2024
entrez: 22 7 2024
Statut: epublish

Résumé

Accurate glycopeptide identification in mass spectrometry-based glycoproteomics is a challenging problem at scale. Recent innovation has been made in increasing the scope and accuracy of glycopeptide identifications, with more precise uncertainty estimates for each part of the structure. We present a dynamically adapting relative retention time model for detecting and correcting ambiguous glycan assignments that are difficult to detect from fragmentation alone, a layered approach to glycopeptide fragmentation modeling that improves N-glycopeptide identification in samples without compromising identification quality, and a site-specific method to increase the depth of the glycoproteome confidently identifiable even further. We demonstrate our techniques on a set of previously published datasets, showing the performance gains at each stage of optimization. These techniques are provided in the open-source glycomics and glycoproteomics platform GlycReSoft available at https://github.com/mobiusklein/glycresoft .

Identifiants

pubmed: 39039063
doi: 10.1038/s41467-024-50338-5
pii: 10.1038/s41467-024-50338-5
doi:

Substances chimiques

Glycopeptides 0
Polysaccharides 0
Glycoproteins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

6168

Informations de copyright

© 2024. The Author(s).

Références

Varki, A. Biological roles of glycans. Glycobiology 27, 3–49 (2017).
pubmed: 27558841 doi: 10.1093/glycob/cww086
Cummings, R. D. The repertoire of glycan determinants in the human glycome. Mol. BioSyst. 5, 1087–104 (2009).
pubmed: 19756298 doi: 10.1039/b907931a
Čaval, T., Heck, A. J. R. & Reiding, K. R. Meta-heterogeneity : evaluating and describing the diversity in glycosylation between sites on the same glycoprotein. Mol. Cell. Proteomics 100, https://doi.org/10.1074/mcp.R120.002093 (2020).
Riley, N. M., Hebert, A. S., Westphall, M. S. & Coon, J. J. Capturing site-specific heterogeneity with large-scale N-glycoproteome analysis. Nat. Commun. 10, 1–13 (2019).
doi: 10.1038/s41467-019-09222-w
Hinneburg, H. et al. The art of destruction: Optimizing collision energies in quadrupole-time of flight (Q-TOF) instruments for glycopeptide-based glycoproteomics. J. Am. Soc. Mass Spectrom. 27, 507–519 (2016).
pubmed: 26729457 pmcid: 4756043 doi: 10.1007/s13361-015-1308-6
Aboufazeli, F. & Dodds, E. D. Precursor ion survival energies of protonated N-glycopeptides and their weak dependencies on high mannose N-glycan composition in collision-induced dissociation. Analyst 143, 4459–4468 (2018).
Zeng, W. F., Cao, W. Q., Liu, M. Q., He, S. M. & Yang, P. Y. Precise, fast and comprehensive analysis of intact glycopeptides and modified glycans with pGlyco3. Nat. Methods 18, 1515–1523 (2021).
pubmed: 34824474 pmcid: 8648562 doi: 10.1038/s41592-021-01306-0
Riley, N. M., Malaker, S. A., Driessen, M. D. & Bertozzi, C. R. Optimal dissociation methods differ for N - and O -glycopeptides. J. Proteome Res. 19, 3286–3301 (2020).
pubmed: 32500713 pmcid: 7425838 doi: 10.1021/acs.jproteome.0c00218
Cao, W. et al. Recent advances in software tools for more generic and precise intact glycopeptide analysis. Mol. Cell. Proteomics 20, http://www.mcponline.org/lookup/doi/10.1074/mcp.R120.002090 (2020).
Liu, M.-Q. et al. pGlyco 2.0 enables precision N-glycoproteomics with comprehensive quality control and one-step mass spectrometry for intact glycopeptide identification. Nat. Commun. 8, 438 (2017).
pubmed: 28874712 pmcid: 5585273 doi: 10.1038/s41467-017-00535-2
Hu, H., Khatri, K., Klein, J., Leymarie, N. & Zaia, J. A review of methods for interpretation of glycopeptide tandem mass spectral data. Glycoconj. J. 33, 285–296 (2016).
Mayampurath, A. et al. Computational framework for identification of intact glycopeptides in complex samples. Anal. Chem. 86, 453–463 (2014).
pubmed: 24279413 doi: 10.1021/ac402338u
Ranzinger, R., Herget, S., von der Lieth, C.-W. C.-W. & Frank, M. GlycomeDB–a unified database for carbohydrate structures. Nucleic Acids Res. 39, D373–6 (2011).
pubmed: 21045056 doi: 10.1093/nar/gkq1014
Klein, J. & Zaia, J. Relative retention time estimation improves N-glycopeptide identifications by LC-MS/MS. J. Proteome Res. 19, 2113–2121 (2020).
pubmed: 32223173 pmcid: 7473422 doi: 10.1021/acs.jproteome.0c00051
Fang, Z. et al. Glyco-Decipher enables glycan database-independent peptide matching and in-depth characterization of site-specific N-glycosylation. Nat. Commun. 13, 1900 (2022).
pubmed: 35393418 pmcid: 8990002 doi: 10.1038/s41467-022-29530-y
Polasky, D. A., Geiszler, D. J., Yu, F. & Nesvizhskii, A. I. Multi-attribute glycan identification and FDR control for glycoproteomics. Mol. Cell. Proteomics 21, 100205 (2022).
Halim, A. et al. Assignment of saccharide identities through analysis of oxonium ion fragmentation profiles in LC-MS/MS of glycopeptides. J. Proteome Res. 13, 6024–6032 (2014).
pubmed: 25358049 doi: 10.1021/pr500898r
Toghi Eshghi, S. et al. Classification of tandem mass spectra for identification of N- and O-linked glycopeptides. Sci. Rep. 6, 37189 (2016).
pubmed: 27869200 pmcid: 5116676 doi: 10.1038/srep37189
Zhang, Z. & Shah, B. Prediction of collision-induced dissociation spectra of common N -glycopeptides for glycoform. Anal. Chem. 82, 10194–10202 (2010).
Ma, B. et al. PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun. Mass Spectrom. 17, 2337–2342 (2003).
pubmed: 14558135 doi: 10.1002/rcm.1196
Jeong, K., Kim, S. & Pevzner, P. A. UniNovo: A universal tool for de novo peptide sequencing. Bioinformatics 29, 1953–1962 (2013).
pubmed: 23766417 pmcid: 3722526 doi: 10.1093/bioinformatics/btt338
Bern, M., Kil, Y. J. & Becker, C. Byonic: advanced peptide and protein identification software. Curr. Protoc. Bioinform. 40, 13.20.1–13.20.14 (2012).
doi: 10.1002/0471250953.bi1320s40
Zhou, X. X. et al. PDeep: Predicting MS/MS spectra of peptides with deep Learning. Anal. Chem. 89, 12690–12697 (2017).
pubmed: 29125736 doi: 10.1021/acs.analchem.7b02566
Gabriels, R., Martens, L. & Degroeve, S. Updated MS
Gessulat, S. et al. Prosit: Proteome-wide predicition of peptide tandem mass spectra by deep learning. Nat. Methods 16, 509–518 (2019).
Klein, J., Carvalho, L. & Zaia, J. Application of network smoothing to glycan LC-MS profiling. Bioinformatics 34, 3511–3518 (2018).
pubmed: 29790907 pmcid: 6669418 doi: 10.1093/bioinformatics/bty397
Binz, P.-A. et al. Proteomics standards initiative extended FASTA format. J. Proteome Res. 18, 2686–2692 (2019).
pubmed: 31081335 pmcid: 6642660 doi: 10.1021/acs.jproteome.9b00064
Vizcaíno, J. A. et al. The mzIdentML data standard version 1.2, supporting advances in proteome informatics. Mol. Cell. Proteomics 16, 1275–1285 (2017).
Klein, J. & Zaia, J. glypy: An open source glycoinformatics library. J. Proteome Res. 18, 3532–3537 (2019).
pubmed: 31310539 pmcid: 7158751 doi: 10.1021/acs.jproteome.9b00367
The UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res. 43, D204–212 (2014).
pmcid: 4384041 doi: 10.1093/nar/gku989
Bollineni, R. C., Koehler, C. J., Gislefoss, R. E., Anonsen, J. H. & Thiede, B. Large-scale intact glycopeptide identification by Mascot database search. Sci. Rep. 8, 2117 (2018).
pubmed: 29391424 pmcid: 5795011 doi: 10.1038/s41598-018-20331-2
Qin, H. et al. Highly efficient analysis of glycoprotein sialylation in human serum by simultaneous quantification of glycosites and site-specific glycoforms. J. Proteome Res. 18, 3439–3446 (2019).
pubmed: 31380653 doi: 10.1021/acs.jproteome.9b00332
Melmer, M., Stangler, T., Premstaller, A. & Lindner, W. Comparison of hydrophilic-interaction, reversed-phase and porous graphitic carbon chromatography for glycan analysis. J. Chromatogr. A 1218, 118–123 (2011).
pubmed: 21122866 doi: 10.1016/j.chroma.2010.10.122
Khatri, K. et al. Microfluidic capillary electrophoresis-mass spectrometry for analysis of monosaccharides, oligosaccharides, and glycopeptides. Anal.mChem. 89, 6645–6655 (2017).
doi: 10.1021/acs.analchem.7b00875
Ang, E., Neustaeter, H., Spicer, V., Perreault, H. & Krokhin, O. Retention time prediction for glycopeptides in reversed-phase chromatography for glycoproteomic applications. Anal. Chem. 91, 13360–13366 (2019).
pubmed: 31566965 doi: 10.1021/acs.analchem.9b02584
Bouwmeester, R., Gabriels, R., Hulstaert, N., Martens, L. & Degroeve, S. DeepLC can predict retention times for peptides that carry as-yet unseen modifications. Nat. Methods 18, 1363–1369 (2021).
Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2012).
Yang, Y. et al. GproDIA enables data-independent acquisition glycoproteomics with comprehensive statistical control. Nat. Commun. 12, 6073 (2021).
pubmed: 34663801 pmcid: 8523693 doi: 10.1038/s41467-021-26246-3
Zubarev, R. A., Zubarev, A. R. & Savitski, M. M. Electron capture/transfer versus collisionally activated/induced dissociations: solo or duet?. J. Am. Soc. Mass. Spectrom. 19, 753–761 (2008).
pubmed: 18499036 doi: 10.1016/j.jasms.2008.03.007
Kahsay, R. et al. GlyGen data model and processing workflow. Bioinformatics 36, 3941–3943 (2020).
Robin, T., Mariethoz, J. & Lisacek, F. Examining and fine-tuning the selection of glycan compositions with glyconnect compozitor. Mol. Cell. Proteomics 19, 1602–1618 (2020).
pubmed: 32636234 pmcid: 8014996 doi: 10.1074/mcp.RA120.002041
Yamada, I. et al. The glyCosmos portal : a unified and comprehensive web resource for the glycosciences. Nat. Methods 17, 649–650 (2020).
pubmed: 32572234 doi: 10.1038/s41592-020-0879-8
Galili, U., Clark, M. R., Shohet, S. B., Buehler, J. & Macher, B. A. Evolutionary relationship between the natural anti-Gal antibody and the Galα1—-3Gal epitope in primates. Proc. Natl. Acad. Sci. USA 84, 1369–1373 (1987).
pubmed: 2434954 pmcid: 304431 doi: 10.1073/pnas.84.5.1369
Zeng, W.-F. et al. pGlyco: a pipeline for the identification of intact N-glycopeptides by using HCD- and CID-MS/MS and MS3. Sci. Rep. 6, 25102 (2016).
pubmed: 27139140 pmcid: 4853738 doi: 10.1038/srep25102
Vizcaíno, J. A. et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 44, D447–D456 (2016).
pubmed: 26527722 doi: 10.1093/nar/gkv1145
Chambers, M. C. et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 30, 918–920 (2012).
pubmed: 23051804 pmcid: 3471674 doi: 10.1038/nbt.2377
Lee, L. Y. et al. Toward automated N-glycopeptide identification in glycoproteomics. J. Proteome Res. 15, 3904–3915 (2016).
pubmed: 27519006 doi: 10.1021/acs.jproteome.6b00438
Käll, L., Canterbury, J. D., Weston, J., Noble, W. S. & MacCoss, M. J. Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat. Methods 4, 923–5 (2007).
pubmed: 17952086 doi: 10.1038/nmeth1113
Fondrie, W. E. & Noble, W. S. mokapot: Fast and flexible semisupervised learning for peptide detection. J. Proteome Res. 20, 1966–1971 (2021).
pubmed: 33596079 pmcid: 8022319 doi: 10.1021/acs.jproteome.0c01010
Shteynberg, D. D. et al. PTMProphet: Fast and accurate mass modi fi cation localization for the trans-proteomic pipeline. J. Proteome Res. 18, 4262–4272 (2019).
pubmed: 31290668 pmcid: 6898736 doi: 10.1021/acs.jproteome.9b00205
Frank, A. & Pevzner, P. PepNovo: De novo peptide sequencing via probabilistic network modeling. Anal. Chem. 77, 964–973 (2005).
pubmed: 15858974 doi: 10.1021/ac048788h
Frank, A. M. Predicting intensity ranks of peptide fragment ions. J. Proteome Res. 8, 2226–40 (2009).
pubmed: 19256476 pmcid: 2738854 doi: 10.1021/pr800677f
Wysocki, V. H., Tsaprailis, G., Smith, L. L. & Breci, L. A. Mobile and localized protons: A framework for understanding peptide dissociation. J. Mass Spectrom. 35, 1399–1406 (2000).
pubmed: 11180630 doi: 10.1002/1096-9888(200012)35:12<1399::AID-JMS86>3.0.CO;2-R
Kolli, V., Roth, H. A., De La Cruz, G., Fernando, G. S. & Dodds, E. D. The role of proton mobility in determining the energy-resolved vibrational activation/dissociation channels of N-glycopeptide ions. Anal. Chimica Acta 896, 85–92 (2015).
doi: 10.1016/j.aca.2015.09.013
Palzs, B. & Suhal, S. Fragmentation pathways of protonated peptides. Mass Spectrom. Rev. 24, 508–548 (2005).
doi: 10.1002/mas.20024
Benedetti, E. et al. Network inference from glycoproteomics data reveals new reactions in the IgG glycosylation pathway. Nat. Commun. 8, 1–15 (2017).
doi: 10.1038/s41467-017-01525-0
Behnel, S. et al. Cython: The best of both worlds. Comput. Sci. Eng. 13, 31 –39 (2011).
doi: 10.1109/MCSE.2010.118
Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).
pubmed: 32939066 pmcid: 7759461 doi: 10.1038/s41586-020-2649-2
Virtanen, P. et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).
pubmed: 32015543 pmcid: 7056644 doi: 10.1038/s41592-019-0686-2
Hunter, J. D. Matplotlib: A 2d graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).
doi: 10.1109/MCSE.2007.55

Auteurs

Joshua Klein (J)

Program for Bioinformatics, Boston University, Boston, MA, US. joshua.adam.klein@gmail.com.

Luis Carvalho (L)

Program for Bioinformatics, Boston University, Boston, MA, US.
Department of Math and Statistics, Boston University, Boston, MA, US.

Joseph Zaia (J)

Program for Bioinformatics, Boston University, Boston, MA, US. jzaia@bu.edu.
Department of Biochemistry and Cell Biology, Boston University, Boston, MA, US. jzaia@bu.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH