The oral-gut microbiome axis in health and disease.
Journal
Nature reviews. Microbiology
ISSN: 1740-1534
Titre abrégé: Nat Rev Microbiol
Pays: England
ID NLM: 101190261
Informations de publication
Date de publication:
22 Jul 2024
22 Jul 2024
Historique:
accepted:
25
06
2024
medline:
23
7
2024
pubmed:
23
7
2024
entrez:
22
7
2024
Statut:
aheadofprint
Résumé
The human body hosts trillions of microorganisms throughout many diverse habitats with different physico-chemical characteristics. Among them, the oral cavity and the gut harbour some of the most dense and diverse microbial communities. Although these two sites are physiologically distinct, they are directly connected and can influence each other in several ways. For example, oral microorganisms can reach and colonize the gastrointestinal tract, particularly in the context of gut dysbiosis. However, the mechanisms of colonization and the role that the oral microbiome plays in causing or exacerbating diseases in other organs have not yet been fully elucidated. Here, we describe recent advances in our understanding of how the oral and intestinal microbiota interplay in relation to their impact on human health and disease.
Identifiants
pubmed: 39039286
doi: 10.1038/s41579-024-01075-5
pii: 10.1038/s41579-024-01075-5
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. Springer Nature Limited.
Références
Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).
pubmed: 29634682
pmcid: 7043356
doi: 10.1038/nm.4517
Honda, K. & Littman, D. R. The microbiota in adaptive immune homeostasis and disease. Nature 535, 75–84 (2016).
pubmed: 27383982
doi: 10.1038/nature18848
Gilbert, J. A. et al. Microbiome-wide association studies link dynamic microbial consortia to disease. Nature 535, 94–103 (2016).
pubmed: 27383984
doi: 10.1038/nature18850
Duvallet, C., Gibbons, S. M., Gurry, T., Irizarry, R. A. & Alm, E. J. Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nat. Commun. 8, 1784 (2017).
pubmed: 29209090
pmcid: 5716994
doi: 10.1038/s41467-017-01973-8
Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).
pubmed: 17183312
doi: 10.1038/nature05414
Zhang, X. et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat. Med. 21, 895–905 (2015).
pubmed: 26214836
doi: 10.1038/nm.3914
Paun, A., Yau, C. & Danska, J. S. The influence of the microbiome on type 1 diabetes. J. Immunol. 198, 590–595 (2017).
pubmed: 28069754
doi: 10.4049/jimmunol.1601519
Frank, D. N. et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl Acad. Sci. USA 104, 13780–13785 (2007).
pubmed: 17699621
pmcid: 1959459
doi: 10.1073/pnas.0706625104
Kilian, M. The oral microbiome—friend or foe? Eur. J. Oral. Sci. 126, 5–12 (2018).
pubmed: 30178561
doi: 10.1111/eos.12527
Baker, J. L. & Edlund, A. Exploiting the oral microbiome to prevent tooth decay: has evolution already provided the best tools? Front. Microbiol. 9, 3323 (2018).
pubmed: 30687294
doi: 10.3389/fmicb.2018.03323
Sedghi, L., DiMassa, V., Harrington, A., Lynch, S. V. & Kapila, Y. L. The oral microbiome: role of key organisms and complex networks in oral health and disease. Periodontol 2000 87, 107–131 (2021).
pubmed: 34463991
pmcid: 8457218
doi: 10.1111/prd.12393
Pathak, J. L., Yan, Y., Zhang, Q., Wang, L. & Ge, L. The role of oral microbiome in respiratory health and diseases. Respir. Med. 185, 106475 (2021).
pubmed: 34049183
doi: 10.1016/j.rmed.2021.106475
Irfan, M., Delgado, R. Z. R. & Frias-Lopez, J. The oral microbiome and cancer. Front. Immunol. 11, 591088 (2020).
pubmed: 33193429
pmcid: 7645040
doi: 10.3389/fimmu.2020.591088
Hajishengallis, G. Periodontitis: from microbial immune subversion to systemic inflammation. Nat. Rev. Immunol. 15, 30–44 (2015).
pubmed: 25534621
pmcid: 4276050
doi: 10.1038/nri3785
Hajishengallis, G. & Chavakis, T. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. Nat. Rev. Immunol. 21, 426–440 (2021). This review highlights the potential causal links between periodontitis and other chronic inflammation-driven disorders, emphasising their multifaceted mechanistic causality.
pubmed: 33510490
pmcid: 7841384
doi: 10.1038/s41577-020-00488-6
Zheng, D., Liwinski, T. & Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 30, 492–506 (2020).
pubmed: 32433595
pmcid: 7264227
doi: 10.1038/s41422-020-0332-7
Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71 (2021).
pubmed: 32887946
doi: 10.1038/s41579-020-0433-9
Hou, K. et al. Microbiota in health and diseases. Signal. Transduct. Target. Ther. 7, 135 (2022).
pubmed: 35461318
pmcid: 9034083
doi: 10.1038/s41392-022-00974-4
Fedoruk, M. J. & Hong, S. in Encyclopedia of Toxicology 3rd edn (ed. Wexler, P.) 702–705 (Academic, 2014).
Takiishi, T., Fenero, C. I. M. & Câmara, N. O. S. Intestinal barrier and gut microbiota: shaping our immune responses throughout life. Tissue Barriers 5, e1373208 (2017).
pubmed: 28956703
pmcid: 5788425
doi: 10.1080/21688370.2017.1373208
König, J. et al. Human intestinal barrier function in health and disease. Clin. Transl. Gastroenterol. 7, e196 (2016).
pubmed: 27763627
pmcid: 5288588
doi: 10.1038/ctg.2016.54
Willis, J. R. & Gabaldón, T. The human oral microbiome in health and disease: from sequences to ecosystems. Microorganisms 8, 308 (2020).
pubmed: 32102216
pmcid: 7074908
doi: 10.3390/microorganisms8020308
Baker, J. L., Mark Welch, J. L., Kauffman, K. M., McLean, J. S. & He, X. The oral microbiome: diversity, biogeography and human health. Nat. Rev. Microbiol. 22, 89–104 (2023). This review examines the biogeography of several oral niches at the species level, presenting not only bacteria but also microeukaryotes, archaea and viruses.
pubmed: 37700024
pmcid: 11084736
doi: 10.1038/s41579-023-00963-6
Diaz, P. I. & Dongari-Bagtzoglou, A. Critically appraising the significance of the oral mycobiome. J. Dent. Res. 100, 133–140 (2021).
pubmed: 32924741
doi: 10.1177/0022034520956975
Caselli, E. et al. Defining the oral microbiome by whole-genome sequencing and resistome analysis: the complexity of the healthy picture. BMC Microbiol. 20, 120 (2020).
pubmed: 32423437
pmcid: 7236360
doi: 10.1186/s12866-020-01801-y
Lloyd-Price, J., Abu-Ali, G. & Huttenhower, C. The healthy human microbiome. Genome Med. 8, 51 (2016).
pubmed: 27122046
pmcid: 4848870
doi: 10.1186/s13073-016-0307-y
Donaldson, G. P., Lee, S. M. & Mazmanian, S. K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14, 20–32 (2016).
pubmed: 26499895
doi: 10.1038/nrmicro3552
Hillman, E. T., Lu, H., Yao, T. & Nakatsu, C. H. Microbial ecology along the gastrointestinal tract. Microbes Env. 32, 300–313 (2017).
doi: 10.1264/jsme2.ME17017
Assimakopoulos, S. F., Triantos, C., Maroulis, I. & Gogos, C. The role of the gut barrier function in health and disease. Gastroenterol. Res. Pract. 11, 261–263 (2018).
doi: 10.14740/gr1053w
Ding, T. & Schloss, P. D. Dynamics and associations of microbial community types across the human body. Nature 509, 357–360 (2014).
pubmed: 24739969
pmcid: 4139711
doi: 10.1038/nature13178
Schmidt, T. S. et al. Extensive transmission of microbes along the gastrointestinal tract. eLife 8, e42693 (2019). This study presents a metagenomic approach describing that the transmission to, and subsequent colonization of, the large intestine by oral microorganisms is common even among healthy individuals.
pubmed: 30747106
pmcid: 6424576
doi: 10.7554/eLife.42693
Kunath, B. J. et al. Alterations of oral microbiota and impact on the gut microbiome in type 1 diabetes mellitus revealed by integrated multi-omic analyses. Microbiome 10, 243 (2022). This paper confirms the transmission of oral microorganisms to the gut and shows strain-level activities using metatranscriptomics and metaproteomics.
pubmed: 36578059
pmcid: 9795701
doi: 10.1186/s40168-022-01435-4
Kamada, N., Chen, G. Y., Inohara, N. & Núñez, G. Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol. 14, 685–690 (2013).
pubmed: 23778796
pmcid: 4083503
doi: 10.1038/ni.2608
Nakajima, M. et al. Oral administration of P. gingivalis induces dysbiosis of gut microbiota and impaired barrier function leading to dissemination of enterobacteria to the liver. PLoS ONE 10, e0134234 (2015).
pubmed: 26218067
pmcid: 4517782
doi: 10.1371/journal.pone.0134234
Vaishnava, S., Behrendt, C. L., Ismail, A. S., Eckmann, L. & Hooper, L. V. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host–microbial interface. Proc. Natl Acad. Sci. USA 105, 20858–20863 (2008).
pubmed: 19075245
pmcid: 2603261
doi: 10.1073/pnas.0808723105
Atarashi, K. et al. Ectopic colonization of oral bacteria in the intestine drives T
pubmed: 29051379
pmcid: 5682622
doi: 10.1126/science.aan4526
Bao, J. et al. Periodontitis may induce gut microbiota dysbiosis via salivary microbiota. Int. J. Oral. Sci. 14, 32 (2022).
pubmed: 35732628
pmcid: 9217941
doi: 10.1038/s41368-022-00183-3
Tsukasaki, M. et al. Host defense against oral microbiota by bone-damaging T cells. Nat. Commun. 9, 701 (2018).
pubmed: 29453398
pmcid: 5816021
doi: 10.1038/s41467-018-03147-6
Abed, J. et al. Colon cancer-associated Fusobacterium nucleatum may originate from the oral cavity and reach colon tumors via the circulatory system. Front. Cell. Infect. Microbiol. 10, 400 (2020).
pubmed: 32850497
pmcid: 7426652
doi: 10.3389/fcimb.2020.00400
Imhann, F. et al. Proton pump inhibitors affect the gut microbiome. Gut 65, 740–748 (2016).
pubmed: 26657899
doi: 10.1136/gutjnl-2015-310376
Guo, W. et al. Depletion of gut microbiota impairs gut barrier function and antiviral immune defense in the liver. Front. Immunol. 12, 636803 (2021).
pubmed: 33841420
pmcid: 8027085
doi: 10.3389/fimmu.2021.636803
Hunt, R. H. et al. The stomach in health and disease. Gut 64, 1650–1668 (2015).
pubmed: 26342014
doi: 10.1136/gutjnl-2014-307595
Sato, K. et al. Aggravation of collagen-induced arthritis by orally administered Porphyromonas gingivalis through modulation of the gut microbiota and gut immune system. Sci. Rep. 7, 6955 (2017).
pubmed: 28761156
pmcid: 5537233
doi: 10.1038/s41598-017-07196-7
Martínez-García, M. & Hernández-Lemus, E. Periodontal inflammation and systemic diseases: an overview. Front. Physiol. 12, 709438 (2021).
pubmed: 34776994
pmcid: 8578868
doi: 10.3389/fphys.2021.709438
Ramadan, D. E., Hariyani, N., Indrawati, R., Ridwan, R. D. & Diyatri, I. Cytokines and chemokines in periodontitis. Eur. J. Dent. 14, 483–495 (2020).
pubmed: 32575137
pmcid: 7440949
doi: 10.1055/s-0040-1712718
Könönen, E. & Gursoy, U. K. Oral prevotella species and their connection to events of clinical relevance in gastrointestinal and respiratory tracts. Front. Microbiol. 12, 798763 (2021).
pubmed: 35069501
doi: 10.3389/fmicb.2021.798763
Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).
pubmed: 25387460
pmcid: 4228153
doi: 10.1186/s12915-014-0087-z
Heintz-Buschart, A. et al. Small RNA profiling of low biomass samples: identification and removal of contaminants. BMC Biol. 16, 52 (2018).
pubmed: 29759067
pmcid: 5952572
doi: 10.1186/s12915-018-0522-7
Van Rossum, T., Ferretti, P., Maistrenko, O. M. & Bork, P. Diversity within species: interpreting strains in microbiomes. Nat. Rev. Microbiol. 18, 491–506 (2020). This paper discusses high-resolution strain and subspecies analyses in metagenomic data and how within-species variation can be studied and stratified directly within microbial communities.
pubmed: 32499497
pmcid: 7610499
doi: 10.1038/s41579-020-0368-1
Sedghi, L. M., Bacino, M. & Kapila, Y. L. Periodontal disease: the good, the bad, and the unknown. Front. Cell. Infect. Microbiol. 11, 766944 (2021).
pubmed: 34950607
pmcid: 8688827
doi: 10.3389/fcimb.2021.766944
Curtis, M. A., Diaz, P. I. & Van Dyke, T. E. The role of the microbiota in periodontal disease. Periodontol 2000 83, 14–25 (2020).
pubmed: 32385883
doi: 10.1111/prd.12296
Kinane, D. F., Stathopoulou, P. G. & Papapanou, P. N. Periodontal diseases. Nat. Rev. Dis. Prim. 3, 17038 (2017).
pubmed: 28805207
doi: 10.1038/nrdp.2017.38
Tuominen, H. & Rautava, J. Oral Microbiota and cancer development. Pathobiology 88, 116–126 (2021).
pubmed: 33176328
doi: 10.1159/000510979
Strauss, J. et al. Invasive potential of gut mucosa-derived Fusobacterium nucleatum positively correlates with IBD status of the host. Inflamm. Bowel Dis. 17, 1971–1978 (2011).
pubmed: 21830275
doi: 10.1002/ibd.21606
Carrillo-de-Albornoz, A., Figuero, E., Herrera, D. & Bascones-Martínez, A. Gingival changes during pregnancy: II. Influence of hormonal variations on the subgingival biofilm. J. Clin. Periodontol. 37, 230–240 (2010).
pubmed: 20088983
doi: 10.1111/j.1600-051X.2009.01514.x
Abusleme, L. et al. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. ISME J. 7, 1016–1025 (2013).
pubmed: 23303375
pmcid: 3635234
doi: 10.1038/ismej.2012.174
Kitamoto, S., Nagao-Kitamoto, H., Hein, R., Schmidt, T. M. & Kamada, N. The bacterial connection between the oral cavity and the gut diseases. J. Dent. Res. 99, 1021–1029 (2020).
pubmed: 32464078
pmcid: 7375741
doi: 10.1177/0022034520924633
Franzosa, E. A. et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol. 4, 293–305 (2019). This study integrates metagenomic analyses with in-depth metabolomic measurements and highlights possible mechanistic relationships that are perturbed in IBD.
pubmed: 30531976
doi: 10.1038/s41564-018-0306-4
Schirmer, M. et al. Dynamics of metatranscription in the inflammatory bowel disease gut microbiome. Nat. Microbiol. 3, 337–346 (2018). This study integrates metagenomic analysis with metatranscriptomic measurements, identifying keystone species in terms of activities and providing finer insight into the role of the microbiome in IBD.
pubmed: 29311644
pmcid: 6131705
doi: 10.1038/s41564-017-0089-z
Vandeputte, D. et al. Quantitative microbiome profiling links gut community variation to microbial load. Nature 551, 507–511 (2017). This paper presents a method that can provide information about the extent or directionality of changes in taxa abundance or metabolic potential by bypassing compositionality effects in the reconstruction of gut microbiota interaction networks.
pubmed: 29143816
doi: 10.1038/nature24460
Ohkusa, T. et al. Fusobacterium varium localized in the colonic mucosa of patients with ulcerative colitis stimulates species-specific antibody. J. Gastroenterol. Hepatol. 17, 849–853 (2002).
pubmed: 12164960
doi: 10.1046/j.1440-1746.2002.02834.x
Gevers, D. et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 15, 382–392 (2014).
pubmed: 24629344
pmcid: 4059512
doi: 10.1016/j.chom.2014.02.005
Kirk, K. F., Nielsen, H. L., Thorlacius-Ussing, O. & Nielsen, H. Optimized cultivation of Campylobacter concisus from gut mucosal biopsies in inflammatory bowel disease. Gut Pathog. 8, 27 (2016).
pubmed: 27252786
pmcid: 4888738
doi: 10.1186/s13099-016-0111-7
Huh, J.-W. & Roh, T.-Y. Opportunistic detection of Fusobacterium nucleatum as a marker for the early gut microbial dysbiosis. BMC Microbiol. 20, 208 (2020).
pubmed: 32660414
pmcid: 7359021
doi: 10.1186/s12866-020-01887-4
Lee, Y.-C. et al. The periodontopathic pathogen, Porphyromonas gingivalis, involves a gut inflammatory response and exacerbates inflammatory bowel disease. Pathogens 11, 84 (2022).
pubmed: 35056032
pmcid: 8779656
doi: 10.3390/pathogens11010084
Said, H. S. et al. Dysbiosis of salivary microbiota in inflammatory bowel disease and its association with oral immunological biomarkers. DNA Res. 21, 15–25 (2014).
pubmed: 24013298
doi: 10.1093/dnares/dst037
Xun, Z., Zhang, Q., Xu, T., Chen, N. & Chen, F. Dysbiosis and ecotypes of the salivary microbiome associated with inflammatory bowel diseases and the assistance in diagnosis of diseases using oral bacterial profiles. Front. Microbiol. 9, 1136 (2018).
pubmed: 29899737
pmcid: 5988890
doi: 10.3389/fmicb.2018.01136
Kelsen, J. et al. Alterations of the subgingival microbiota in pediatric Crohn’s disease studied longitudinally in discovery and validation cohorts. Inflamm. Bowel Dis. 21, 2797–2805 (2015).
pubmed: 26288001
doi: 10.1097/MIB.0000000000000557
Elzayat, H. et al. Deciphering salivary microbiome signature in Crohn’s disease patients with different factors contributing to dysbiosis. Sci. Rep. 13, 19198 (2023).
pubmed: 37932491
pmcid: 10628307
doi: 10.1038/s41598-023-46714-8
Abdelbary, M. M. H. et al. The oral–gut axis: salivary and fecal microbiome dysbiosis in patients with inflammatory bowel disease. Front. Cell. Infect. Microbiol. 12, 1010853 (2022).
pubmed: 36275026
pmcid: 9585322
doi: 10.3389/fcimb.2022.1010853
Zhang, T. et al. Dynamics of the salivary microbiome during different phases of Crohn’s disease. Front. Cell. Infect. Microbiol. 10, 544704 (2020).
pubmed: 33123492
pmcid: 7574453
doi: 10.3389/fcimb.2020.544704
Madsen, G. R. et al. The impact of periodontitis on inflammatory bowel disease activity. Inflamm. Bowel Dis. 29, 396–404 (2023).
pubmed: 35552410
doi: 10.1093/ibd/izac090
Koutsochristou, V. et al. Dental caries and periodontal disease in children and adolescents with inflammatory bowel disease: a case–control study. Inflamm. Bowel Dis. 21, 1839–1846 (2015).
pubmed: 25985243
doi: 10.1097/MIB.0000000000000452
She, Y.-Y. et al. Periodontitis and inflammatory bowel disease: a meta-analysis. BMC Oral. Health 20, 67 (2020).
pubmed: 32164696
pmcid: 7069057
doi: 10.1186/s12903-020-1053-5
Baima, G. et al. Periodontitis prevalence and severity in inflammatory bowel disease: a case–control study. J. Periodontol. 94, 313–322 (2023).
pubmed: 36111636
doi: 10.1002/JPER.22-0322
Papageorgiou, S. N. et al. Inflammatory bowel disease and oral health: systematic review and a meta-analysis. J. Clin. Periodontol. 44, 382–393 (2017).
pubmed: 28117909
doi: 10.1111/jcpe.12698
Zhou, P., Li, X., Huang, I.-H. & Qi, F. Veillonella catalase protects the growth of Fusobacterium nucleatum in microaerophilic and Streptococcus gordonii-resident environments. Appl. Environ. Microbiol. 83, e01079–e01117 (2017).
pubmed: 28778894
pmcid: 5601340
doi: 10.1128/AEM.01079-17
Lenartova, M. et al. The oral microbiome in periodontal health. Front. Cell. Infect. Microbiol. 11, 629723 (2021).
pubmed: 33828997
pmcid: 8019927
doi: 10.3389/fcimb.2021.629723
Carrion, J. et al. Microbial carriage state of peripheral blood dendritic cells (DCs) in chronic periodontitis influences DC differentiation, atherogenic potential. J. Immunol. 189, 3178–3187 (2012).
pubmed: 22891282
doi: 10.4049/jimmunol.1201053
Xue, Y. et al. Indoleamine 2,3-dioxygenase expression regulates the survival and proliferation of Fusobacterium nucleatum in THP-1-derived macrophages. Cell Death Dis. 9, 355 (2018).
pubmed: 29500439
pmcid: 5834448
doi: 10.1038/s41419-018-0389-0
Chen, Y. et al. Fusobacterium nucleatum facilitates ulcerative colitis through activating IL-17F signaling to NF-κB via the upregulation of CARD3 expression. J. Pathol. 250, 170–182 (2020).
pubmed: 31610014
doi: 10.1002/path.5358
Tang, W. et al. Impairment of intestinal barrier function induced by early weaning via autophagy and apoptosis associated with gut microbiome and metabolites. Front. Immunol. 12, 804870 (2021).
pubmed: 34975919
pmcid: 8714829
doi: 10.3389/fimmu.2021.804870
Feng, Y.-K. et al. Oral P. gingivalis impairs gut permeability and mediates immune responses associated with neurodegeneration in LRRK2 R1441G mice. J. Neuroinflammation 17, 347 (2020).
pubmed: 33213462
pmcid: 7677837
doi: 10.1186/s12974-020-02027-5
van der Post, S. et al. Site-specific O-glycosylation on the MUC2 mucin protein inhibits cleavage by the Porphyromonas gingivalis secreted cysteine protease (RgpB). J. Biol. Chem. 288, 14636–14646 (2013).
pubmed: 23546879
pmcid: 3656315
doi: 10.1074/jbc.M113.459479
Kitamoto, S. et al. The intermucosal connection between the mouth and gut in commensal pathobiont-driven colitis. Cell 182, 447–462.e14 (2020). This study shows that oral bacteria-specific T
pubmed: 32758418
pmcid: 7414097
doi: 10.1016/j.cell.2020.05.048
El Tekle, G. & Garrett, W. S. Bacteria in cancer initiation, promotion and progression. Nat. Rev. Cancer 23, 600–618 (2023).
pubmed: 37400581
doi: 10.1038/s41568-023-00594-2
Ternes, D. et al. Microbiome in colorectal cancer: how to get from meta-omics to mechanism? Trends Microbiol. 28, 401–423 (2020). This review presents new experimental approaches for gaining ecosystem-level mechanistic understanding of the gut microbiome’s role in cancer pathogenesis.
pubmed: 32298617
doi: 10.1016/j.tim.2020.01.001
Simpson, R. C., Shanahan, E. R., Scolyer, R. A. & Long, G. V. Towards modulating the gut microbiota to enhance the efficacy of immune-checkpoint inhibitors. Nat. Rev. Clin. Oncol. 20, 697–715 (2023). This review discusses the mechanisms by which the microbiota modulates antitumour immunity.
pubmed: 37488231
doi: 10.1038/s41571-023-00803-9
Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).
pubmed: 29097493
doi: 10.1126/science.aan4236
Matson, V. et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359, 104–108 (2018).
pubmed: 29302014
pmcid: 6707353
doi: 10.1126/science.aao3290
Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).
pubmed: 29097494
doi: 10.1126/science.aan3706
Flemer, B. et al. The oral microbiota in colorectal cancer is distinctive and predictive. Gut 67, 1454–1463 (2018).
pubmed: 28988196
doi: 10.1136/gutjnl-2017-314814
Li, S. et al. Prognostic impact of oral microbiome on survival of malignancies: a systematic review and meta-analysis. Syst. Rev. 13, 41 (2024).
pubmed: 38273347
pmcid: 10809532
doi: 10.1186/s13643-023-02419-7
Lee, W.-H. et al. Bacterial alterations in salivary microbiota and their association in oral cancer. Sci. Rep. 7, 16540 (2017).
pubmed: 29184122
pmcid: 5705712
doi: 10.1038/s41598-017-16418-x
Pushalkar, S. et al. Microbial diversity in saliva of oral squamous cell carcinoma. FEMS Immunol. Med. Microbiol. 61, 269–277 (2011).
pubmed: 21205002
pmcid: 3078631
doi: 10.1111/j.1574-695X.2010.00773.x
Schmidt, B. L. et al. Changes in abundance of oral microbiota associated with oral cancer. PLoS ONE 9, e98741 (2014).
pubmed: 24887397
pmcid: 4041887
doi: 10.1371/journal.pone.0098741
Torres, P. J. et al. Characterization of the salivary microbiome in patients with pancreatic cancer. PeerJ 3, e1373 (2015).
pubmed: 26587342
pmcid: 4647550
doi: 10.7717/peerj.1373
Peters, B. A. et al. Oral microbiome composition reflects prospective risk for esophageal cancers. Cancer Res. 77, 6777–6787 (2017).
pubmed: 29196415
pmcid: 5726431
doi: 10.1158/0008-5472.CAN-17-1296
Fan, X. et al. Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case–control study. Gut 67, 120–127 (2018).
pubmed: 27742762
doi: 10.1136/gutjnl-2016-312580
Conde-Pérez, K. et al. Parvimonas micra can translocate from the subgingival sulcus of the human oral cavity to colorectal adenocarcinoma. Mol. Oncol. 18, 1143–1173 (2023).
pubmed: 37558206
pmcid: 11076991
doi: 10.1002/1878-0261.13506
Knippel, R. J., Drewes, J. L. & Sears, C. L. The cancer microbiome: recent highlights and knowledge gaps. Cancer Discov. 11, 2378–2395 (2021).
pubmed: 34400408
pmcid: 8487941
doi: 10.1158/2159-8290.CD-21-0324
Chen, M.-F., Lu, M.-S., Hsieh, C.-C. & Chen, W.-C. Porphyromonas gingivalis promotes tumor progression in esophageal squamous cell carcinoma. Cell. Oncol. 44, 373–384 (2021).
doi: 10.1007/s13402-020-00573-x
Wen, L. et al. Porphyromonas gingivalis promotes oral squamous cell carcinoma progression in an immune microenvironment. J. Dent. Res. 99, 666–675 (2020).
pubmed: 32298192
doi: 10.1177/0022034520909312
Michaud, D. S. et al. Plasma antibodies to oral bacteria and risk of pancreatic cancer in a large European prospective cohort study. Gut 62, 1764–1770 (2013).
pubmed: 22990306
doi: 10.1136/gutjnl-2012-303006
Saba, E. et al. Oral bacteria accelerate pancreatic cancer development in mice. Gut 73, 770–786 (2024).
pubmed: 38233197
doi: 10.1136/gutjnl-2023-330941
Sztukowska, M. N. et al. Porphyromonas gingivalis initiates a mesenchymal-like transition through ZEB1 in gingival epithelial cells. Cell. Microbiol. 18, 844–858 (2016).
pubmed: 26639759
pmcid: 5135094
doi: 10.1111/cmi.12554
Haerinck, J., Goossens, S. & Berx, G. The epithelial–mesenchymal plasticity landscape: principles of design and mechanisms of regulation. Nat. Rev. Genet. 24, 590–609 (2023).
pubmed: 37169858
doi: 10.1038/s41576-023-00601-0
Ternes, D. et al. The gut microbial metabolite formate exacerbates colorectal cancer progression. Nat. Metab. 4, 458–475 (2022). This study describes molecular signatures linking CRC phenotypes with Fusobacterium spp. abundance and identifies formate as a gut-derived oncometabolite relevant for CRC progression.
pubmed: 35437333
pmcid: 9046088
doi: 10.1038/s42255-022-00558-0
Komiya, Y. et al. Patients with colorectal cancer have identical strains of Fusobacterium nucleatum in their colorectal cancer and oral cavity. Gut 68, 1335–1337 (2019).
pubmed: 29934439
doi: 10.1136/gutjnl-2018-316661
Nosho, K. et al. Association of Fusobacterium nucleatum with immunity and molecular alterations in colorectal cancer. World J. Gastroenterol. 22, 557–566 (2016).
pubmed: 26811607
pmcid: 4716059
doi: 10.3748/wjg.v22.i2.557
Tahara, T. et al. Fusobacterium in colonic flora and molecular features of colorectal carcinoma. Cancer Res. 74, 1311–1318 (2014).
pubmed: 24385213
pmcid: 4396185
doi: 10.1158/0008-5472.CAN-13-1865
Kim, H. S. et al. Fusobacterium nucleatum induces a tumor microenvironment with diminished adaptive immunity against colorectal cancers. Front. Cell. Infect. Microbiol. 13, 1101291 (2023).
pubmed: 36960042
pmcid: 10028079
doi: 10.3389/fcimb.2023.1101291
Gur, C. et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 42, 344–355 (2015).
pubmed: 25680274
pmcid: 4361732
doi: 10.1016/j.immuni.2015.01.010
Kosuke, M. et al. Fusobacterium nucleatum and T cells in colorectal carcinoma. JAMA Oncol. 1, 653–661 (2015).
doi: 10.1001/jamaoncol.2015.1377
Serna, G. et al. Fusobacterium nucleatum persistence and risk of recurrence after preoperative treatment in locally advanced rectal cancer. Ann. Oncol. 31, 1366–1375 (2020).
pubmed: 32569727
doi: 10.1016/j.annonc.2020.06.003
Rubinstein, M. R. et al. Fusobacterium nucleatum promotes colorectal cancer by inducing Wnt/β-catenin modulator Annexin A1. EMBO Rep. 20, e47638 (2019).
pubmed: 30833345
pmcid: 6446206
doi: 10.15252/embr.201847638
Li, X. et al. Fusobacterium nucleatum promotes the progression of colorectal cancer through Cdk5-activated Wnt/β-catenin signaling. Front. Microbiol. 11, 545251 (2020).
pubmed: 33488528
doi: 10.3389/fmicb.2020.545251
Coppenhagen-Glazer, S. et al. Fap2 of Fusobacterium nucleatum is a galactose-inhibitable adhesin involved in coaggregation, cell adhesion, and preterm birth. Infect. Immun. 83, 1104–1113 (2015).
pubmed: 25561710
pmcid: 4333458
doi: 10.1128/IAI.02838-14
Yu, T. et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 170, 548–563.e16 (2017).
pubmed: 28753429
pmcid: 5767127
doi: 10.1016/j.cell.2017.07.008
Liu, Y. et al. Fusobacterium nucleatum confers chemoresistance by modulating autophagy in oesophageal squamous cell carcinoma. Br. J. Cancer 124, 963–974 (2021).
pubmed: 33299132
doi: 10.1038/s41416-020-01198-5
Jiang, S.-S. et al. Fusobacterium nucleatum-derived succinic acid induces tumor resistance to immunotherapy in colorectal cancer. Cell Host Microbe 31, 781–797.e9 (2023).
pubmed: 37130518
doi: 10.1016/j.chom.2023.04.010
Zepeda-Rivera, M. et al. A distinct Fusobacterium nucleatum clade dominates the colorectal cancer niche. Nature 628, 424–432 (2024).
pubmed: 38509359
pmcid: 11006615
doi: 10.1038/s41586-024-07182-w
Higashi, D. L. et al. Who is in the driver’s seat? Parvimonas micra: an understudied pathobiont at the crossroads of dysbiotic disease and cancer. Environ. Microbiol. Rep. 15, 254–264 (2023).
pubmed: 36999244
pmcid: 10316381
doi: 10.1111/1758-2229.13153
Bergsten, E. et al. Parvimonas micra, an oral pathobiont associated with colorectal cancer, epigenetically reprograms human colonocytes. Gut Microbes 15, 2265138 (2023).
pubmed: 37842920
pmcid: 10580862
doi: 10.1080/19490976.2023.2265138
Zhao, L. et al. Parvimonas micra promotes colorectal tumorigenesis and is associated with prognosis of colorectal cancer patients. Oncogene 41, 4200–4210 (2022).
pubmed: 35882981
pmcid: 9439953
doi: 10.1038/s41388-022-02395-7
Xu, J. et al. Alteration of the abundance of Parvimonas micra in the gut along the adenoma–carcinoma sequence. Oncol. Lett. 20, 106 (2020).
pubmed: 32831925
pmcid: 7439112
doi: 10.3892/ol.2020.11967
Genco, R. J. et al. The subgingival microbiome relationship to periodontal disease in older women. J. Dent. Res. 98, 975–984 (2019).
pubmed: 31329044
pmcid: 6651762
doi: 10.1177/0022034519860449
Marchesan, J. et al. TLR4, NOD1 and NOD2 mediate immune recognition of putative newly identified periodontal pathogens. Mol. Oral. Microbiol. 31, 243–258 (2016).
pubmed: 26177212
doi: 10.1111/omi.12116
Sakanaka, A. et al. Fusobacterium nucleatum metabolically integrates commensals and pathogens in oral biofilms. mSystems 7, e0017022 (2022).
pubmed: 35852319
doi: 10.1128/msystems.00170-22
Zheng, D.-W. et al. Phage-guided modulation of the gut microbiota of mouse models of colorectal cancer augments their responses to chemotherapy. Nat. Biomed. Eng. 3, 717–728 (2019).
pubmed: 31332342
doi: 10.1038/s41551-019-0423-2
Zhang, Y. Epidemiology of esophageal cancer. World J. Gastroenterol. 19, 5598–5606 (2013).
pubmed: 24039351
pmcid: 3769895
doi: 10.3748/wjg.v19.i34.5598
Yano, Y., Etemadi, A. & Abnet, C. C. Microbiome and cancers of the esophagus: a review. Microorganisms 9, 1764 (2021).
pubmed: 34442842
pmcid: 8398938
doi: 10.3390/microorganisms9081764
Chen, X. et al. Oral microbiota and risk for esophageal squamous cell carcinoma in a high-risk area of China. PLoS ONE 10, e0143603 (2015).
pubmed: 26641451
pmcid: 4671675
doi: 10.1371/journal.pone.0143603
Zhao, Q. et al. Alterations of oral microbiota in chinese patients with esophageal cancer. Front. Cell. Infect. Microbiol. 10, 541144 (2020).
pubmed: 33194789
pmcid: 7609410
doi: 10.3389/fcimb.2020.541144
Snider, E. J. et al. Barrett’s esophagus is associated with a distinct oral microbiome. Clin. Transl. Gastroenterol. 9, 135 (2018).
pubmed: 29491399
pmcid: 5862155
doi: 10.1038/s41424-018-0005-8
Shao, D. et al. Microbial characterization of esophageal squamous cell carcinoma and gastric cardia adenocarcinoma from a high-risk region of China. Cancer 125, 3993–4002 (2019).
pubmed: 31355925
doi: 10.1002/cncr.32403
Li, D. et al. Characterization of the esophageal microbiota and prediction of the metabolic pathways involved in esophageal cancer. Front. Cell. Infect. Microbiol. 10, 268 (2020).
pubmed: 32676460
pmcid: 7333312
doi: 10.3389/fcimb.2020.00268
Yamamura, K. et al. Human microbiome Fusobacterium nucleatum in esophageal cancer tissue is associated with prognosis. Clin. Cancer Res. 22, 5574–5581 (2016).
pubmed: 27769987
doi: 10.1158/1078-0432.CCR-16-1786
Gao, S. et al. Presence of Porphyromonas gingivalis in esophagus and its association with the clinicopathological characteristics and survival in patients with esophageal cancer. Infect. Agent. Cancer 11, 3 (2016).
pubmed: 26788120
pmcid: 4717526
doi: 10.1186/s13027-016-0049-x
Farrell, J. J. et al. Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut 61, 582–588 (2012).
pubmed: 21994333
doi: 10.1136/gutjnl-2011-300784
Stingu, C.-S., Eschrich, K., Rodloff, A. C., Schaumann, R. & Jentsch, H. Periodontitis is associated with a loss of colonization by Streptococcus sanguinis. J. Med. Microbiol. 57, 495–499 (2008).
pubmed: 18349371
doi: 10.1099/jmm.0.47649-0
Teughels, W. et al. Bacteria interfere with A. actinomycetemcomitans colonization. J. Dent. Res. 86, 611–617 (2007).
pubmed: 17586706
doi: 10.1177/154405910708600706
Andrukhov, O. et al. Serum cytokine levels in periodontitis patients in relation to the bacterial load. J. Periodontol. 82, 885–892 (2011).
pubmed: 21138356
doi: 10.1902/jop.2010.100425
Gemmell, E., Marshall, R. I. & Seymour, G. J. Cytokines and prostaglandins in immune homeostasis and tissue destruction in periodontal disease. Periodontol 2000 14, 112–143 (1997).
pubmed: 9567968
doi: 10.1111/j.1600-0757.1997.tb00194.x
Nauseef, W. M. & Borregaard, N. Neutrophils at work. Nat. Immunol. 15, 602–611 (2014).
pubmed: 24940954
doi: 10.1038/ni.2921
Fine, N. et al. Primed PMNs in healthy mouse and human circulation are first responders during acute inflammation. Blood Adv. 3, 1622–1637 (2019).
pubmed: 31138591
pmcid: 6538871
doi: 10.1182/bloodadvances.2018030585
Fine, N. et al. Periodontal inflammation primes the systemic innate immune response. J. Dent. Res. 100, 318–325 (2021).
pubmed: 33078669
doi: 10.1177/0022034520963710
Fine, N. et al. Distinct oral neutrophil subsets define health and periodontal disease states. J. Dent. Res. 95, 931–938 (2016).
pubmed: 27270666
doi: 10.1177/0022034516645564
Hajishengallis, G., Chavakis, T., Hajishengallis, E. & Lambris, J. D. Neutrophil homeostasis and inflammation: novel paradigms from studying periodontitis. J. Leukoc. Biol. 98, 539–548 (2015).
pubmed: 25548253
doi: 10.1189/jlb.3VMR1014-468R
Rossol, M. et al. LPS-induced cytokine production in human monocytes and macrophages. Crit. Rev. Immunol. 31, 379–446 (2011).
pubmed: 22142165
doi: 10.1615/CritRevImmunol.v31.i5.20
Zijnge, V., Kieselbach, T. & Oscarsson, J. Proteomics of protein secretion by Aggregatibacter actinomycetemcomitans. PLoS ONE 7, e41662 (2012).
pubmed: 22848560
pmcid: 3405016
doi: 10.1371/journal.pone.0041662
Konig, M. F. et al. Aggregatibacter actinomycetemcomitans-induced hypercitrullination links periodontal infection to autoimmunity in rheumatoid arthritis. Sci. Transl. Med. 8, 369ra176 (2016).
pubmed: 27974664
pmcid: 5384717
doi: 10.1126/scitranslmed.aaj1921
Stobernack, T. et al. Extracellular proteome and citrullinome of the oral pathogen Porphyromonas gingivalis. J. Proteome Res. 15, 4532–4543 (2016).
pubmed: 27712078
doi: 10.1021/acs.jproteome.6b00634
Farrugia, C. et al. Mechanisms of vascular damage by systemic dissemination of the oral pathogen Porphyromonas gingivalis. FEBS J. 288, 1479–1495 (2021).
pubmed: 32681704
doi: 10.1111/febs.15486
Gimbrone, M. A. Jr & García-Cardeña, G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ. Res. 118, 620–636 (2016).
pubmed: 26892962
pmcid: 4762052
doi: 10.1161/CIRCRESAHA.115.306301
Bajaj, J. S. et al. Periodontal therapy favorably modulates the oral–gut–hepatic axis in cirrhosis. Am. J. Physiol. Gastrointest. Liver Physiol. 315, G824–G837 (2018).
pubmed: 30118351
pmcid: 6293251
doi: 10.1152/ajpgi.00230.2018
Schenkein, H. A., Papapanou, P. N., Genco, R. & Sanz, M. Mechanisms underlying the association between periodontitis and atherosclerotic disease. Periodontol 2000 83, 90–106 (2020).
pubmed: 32385879
doi: 10.1111/prd.12304
D’Aiuto, F., Orlandi, M. & Gunsolley, J. C. Evidence that periodontal treatment improves biomarkers and CVD outcomes. J. Clin. Periodontol. 40, S85–S105 (2013).
pubmed: 23627337
Sanz, M. et al. Periodontitis and cardiovascular diseases: consensus report. J. Clin. Periodontol. 47, 268–288 (2020).
pubmed: 32011025
pmcid: 7027895
doi: 10.1111/jcpe.13189
Teeuw, W. J., Gerdes, V. E. A. & Loos, B. G. Effect of periodontal treatment on glycemic control of diabetic patients: a systematic review and meta-analysis. Diabetes Care 33, 421–427 (2010).
pubmed: 20103557
pmcid: 2809296
doi: 10.2337/dc09-1378
Teshome, A. & Yitayeh, A. The effect of periodontal therapy on glycemic control and fasting plasma glucose level in type 2 diabetic patients: systematic review and meta-analysis. BMC Oral. Health 17, 31 (2016).
pubmed: 27473177
pmcid: 4967318
doi: 10.1186/s12903-016-0249-1
Tanwar, H. et al. Unraveling the link between periodontitis and inflammatory bowel disease: challenges and outlook. Preprint at arXiv https://doi.org/10.48550/arXiv.2308.10907 (2023).
Zhang, Y. et al. The association between periodontitis and inflammatory bowel disease: a systematic review and meta-analysis. Biomed. Res. Int. 2021, 6692420 (2021).
pubmed: 33778080
pmcid: 7981176
Pietropaoli, D. et al. Occurrence of spontaneous periodontal disease in the SAMP1/YitFc murine model of Crohn disease. J. Periodontol. 85, 1799–1805 (2014).
pubmed: 25019175
pmcid: 4460836
doi: 10.1902/jop.2014.140316
Teles, F., Wang, Y., Hajishengallis, G., Hasturk, H. & Marchesan, J. T. Impact of systemic factors in shaping the periodontal microbiome. Periodontol 2000 85, 126–160 (2021).
pubmed: 33226693
doi: 10.1111/prd.12356
Genco, R. J. & Sanz, M. Clinical and public health implications of periodontal and systemic diseases: an overview. Periodontol 2000 83, 7–13 (2020).
pubmed: 32385880
doi: 10.1111/prd.12344
Xiao, E. et al. Diabetes enhances IL-17 expression and alters the oral microbiome to increase its pathogenicity. Cell Host Microbe 22, 120–128.e4 (2017).
pubmed: 28704648
pmcid: 5701758
doi: 10.1016/j.chom.2017.06.014
D’Aiuto, F. et al. Systemic effects of periodontitis treatment in patients with type 2 diabetes: a 12 month, single-centre, investigator-masked, randomised trial. Lancet Diabetes Endocrinol. 6, 954–965 (2018). This study shows favourable effects of local periodontal treatment on systemic inflammatory markers and glycaemic control in patients with type 2 diabetes mellitus.
pubmed: 30472992
doi: 10.1016/S2213-8587(18)30038-X
Duarte, P. M. et al. Local levels of inflammatory mediators in uncontrolled type 2 diabetic subjects with chronic periodontitis. J. Clin. Periodontol. 41, 11–18 (2014).
pubmed: 24206042
doi: 10.1111/jcpe.12179
Lalla, E., Lamster, I. B., Stern, D. M. & Schmidt, A. M. Receptor for advanced glycation end products, inflammation, and accelerated periodontal disease in diabetes: mechanisms and insights into therapeutic modalities. Ann. Periodontol. 6, 113–118 (2001).
pubmed: 11887453
doi: 10.1902/annals.2001.6.1.113
Sato, K. et al. Obesity-related gut microbiota aggravates alveolar bone destruction in experimental periodontitis through elevation of uric acid. MBio 12, e0077121 (2021).
pubmed: 34061595
doi: 10.1128/mBio.00771-21
Kato, T. et al. Oral administration of Porphyromonas gingivalis alters the gut microbiome and serum metabolome. mSphere 3, https://doi.org/10.1128/msphere.00460-18 (2018).
Blasco-Baque, V. et al. Periodontitis induced by Porphyromonas gingivalis drives periodontal microbiota dysbiosis and insulin resistance via an impaired adaptive immune response. Gut 66, 872–885 (2017).
pubmed: 26838600
doi: 10.1136/gutjnl-2015-309897
Goettel, J. A. et al. Fatal autoimmunity in mice reconstituted with human hematopoietic stem cells encoding defective FOXP3. Blood 125, 3886–3895 (2015).
pubmed: 25833964
pmcid: 4473116
doi: 10.1182/blood-2014-12-618363
Wahl, A. et al. A germ-free humanized mouse model shows the contribution of resident microbiota to human-specific pathogen infection. Nat. Biotechnol. 42, 905–915 (2023).
pubmed: 37563299
pmcid: 11073568
doi: 10.1038/s41587-023-01906-5
Bai, L., Chen, B.-Y., Liu, Y., Zhang, W.-C. & Duan, S.-Z. A mouse periodontitis model with humanized oral bacterial community. Front. Cell. Infect. Microbiol. 12, 842845 (2022).
pubmed: 35273925
pmcid: 8902145
doi: 10.3389/fcimb.2022.842845
Li, B. et al. Oral bacteria colonize and compete with gut microbiota in gnotobiotic mice. Int. J. Oral. Sci. 11, 10 (2019).
pubmed: 30833566
pmcid: 6399334
doi: 10.1038/s41368-018-0043-9
de Nies, L. et al. Altered infective competence of the human gut microbiome in COVID-19. Microbiome 11, 46 (2023).
pubmed: 36894986
pmcid: 9995755
doi: 10.1186/s40168-023-01472-7
Segata, N. et al. Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol. 13, R42 (2012).
pubmed: 22698087
pmcid: 3446314
doi: 10.1186/gb-2012-13-6-r42
van ’t Hof, W., Veerman, E. C. I., Nieuw Amerongen, A. V. & Ligtenberg, A. J. M. Antimicrobial defense systems in saliva. Monogr. Oral. Sci. 24, 40–51 (2014).
pubmed: 24862593
doi: 10.1159/000358783
Amerongen, A. V. N. & Veerman, E. C. I. Saliva—the defender of the oral cavity. Oral. Dis. 8, 12–22 (2002).
pubmed: 11936451
doi: 10.1034/j.1601-0825.2002.1o816.x
Lynge Pedersen, A. M. & Belstrøm, D. The role of natural salivary defences in maintaining a healthy oral microbiota. J. Dent. 80, S3–S12 (2019).
pubmed: 30696553
doi: 10.1016/j.jdent.2018.08.010
Ahuja, M. et al. Orai1-mediated antimicrobial secretion from pancreatic acini shapes the gut microbiome and regulates gut innate immunity. Cell Metab. 25, 635–646 (2017).
pubmed: 28273482
pmcid: 5345693
doi: 10.1016/j.cmet.2017.02.007
Martinsen, T. C., Bergh, K. & Waldum, H. L. Gastric juice: a barrier against infectious diseases. Basic. Clin. Pharmacol. Toxicol. 96, 94–102 (2005).
pubmed: 15679471
doi: 10.1111/j.1742-7843.2005.pto960202.x
Tennant, S. M. et al. Influence of gastric acid on susceptibility to infection with ingested bacterial pathogens. Infect. Immun. 76, 639–645 (2008).
pubmed: 18025100
doi: 10.1128/IAI.01138-07
Bischoff, S. C. et al. Intestinal permeability—a new target for disease prevention and therapy. BMC Gastroenterol. 14, 189 (2014).
pubmed: 25407511
pmcid: 4253991
doi: 10.1186/s12876-014-0189-7
Odenwald, M. A. & Turner, J. R. The intestinal epithelial barrier: a therapeutic target? Nat. Rev. Gastroenterol. Hepatol. 14, 9–21 (2017).
pubmed: 27848962
doi: 10.1038/nrgastro.2016.169
Pott, J. & Hornef, M. Innate immune signalling at the intestinal epithelium in homeostasis and disease. EMBO Rep. 13, 684–698 (2012).
pubmed: 22801555
pmcid: 3410395
doi: 10.1038/embor.2012.96
Dillon, A. & Lo, D. D. M cells: intelligent engineering of mucosal immune surveillance. Front. Immunol. 10, 1499 (2019).
pubmed: 31312204
pmcid: 6614372
doi: 10.3389/fimmu.2019.01499
Huus, K. E., Petersen, C. & Finlay, B. B. Diversity and dynamism of IgA–microbiota interactions. Nat. Rev. Immunol. 21, 514–525 (2021).
pubmed: 33568782
doi: 10.1038/s41577-021-00506-1
Buffie, C. G. & Pamer, E. G. Microbiota-mediated colonization resistance against intestinal pathogens. Nat. Rev. Immunol. 13, 790–801 (2013).
pubmed: 24096337
pmcid: 4194195
doi: 10.1038/nri3535
Pickard, J. M., Zeng, M. Y., Caruso, R. & Núñez, G. Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunol. Rev. 279, 70–89 (2017).
pubmed: 28856738
pmcid: 5657496
doi: 10.1111/imr.12567
Parker, C. T., Tindall, B. J. & Garrity, G. M. (eds) International code of nomenclature of prokaryotes. Int. J. Syst. Evol. Microbiol. 69, S1–S111 (2019).
doi: 10.1099/ijsem.0.000778
Tikhonov, M., Leach, R. W. & Wingreen, N. S. Interpreting 16S metagenomic data without clustering to achieve sub-OTU resolution. ISME J. 9, 68–80 (2015).
pubmed: 25012900
doi: 10.1038/ismej.2014.117
Amir, A. et al. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems 2, e00191–e00216 (2017).
pubmed: 28289731
pmcid: 5340863
doi: 10.1128/mSystems.00191-16
Johnson, J. S. et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 10, 5029 (2019).
pubmed: 31695033
pmcid: 6834636
doi: 10.1038/s41467-019-13036-1
Alneberg, J. et al. Genomes from uncultivated prokaryotes: a comparison of metagenome-assembled and single-amplified genomes. Microbiome 6, 173 (2018).
pubmed: 30266101
pmcid: 6162917
doi: 10.1186/s40168-018-0550-0
Zolfo, M., Tett, A., Jousson, O., Donati, C. & Segata, N. MetaMLST: multi-locus strain-level bacterial typing from metagenomic samples. Nucleic Acids Res. 45, e7 (2017).
pubmed: 27651451
doi: 10.1093/nar/gkw837
Smillie, C. S. et al. Strain tracking reveals the determinants of bacterial engraftment in the human gut following fecal microbiota transplantation. Cell Host Microbe 23, 229–240.e5 (2018).
pubmed: 29447696
pmcid: 8318347
doi: 10.1016/j.chom.2018.01.003
Truong, D. T., Tett, A., Pasolli, E., Huttenhower, C. & Segata, N. Microbial strain-level population structure and genetic diversity from metagenomes. Genome Res. 27, 626–638 (2017).
pubmed: 28167665
pmcid: 5378180
doi: 10.1101/gr.216242.116
Nayfach, S., Rodriguez-Mueller, B., Garud, N. & Pollard, K. S. An integrated metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission and biogeography. Genome Res. 26, 1612–1625 (2016).
pubmed: 27803195
pmcid: 5088602
doi: 10.1101/gr.201863.115
Albanese, D. & Donati, C. Strain profiling and epidemiology of bacterial species from metagenomic sequencing. Nat. Commun. 8, 2260 (2017).
pubmed: 29273717
pmcid: 5741664
doi: 10.1038/s41467-017-02209-5
Shaiber, A. & Eren, A. M. Composite metagenome-assembled genomes reduce the quality of public genome repositories. mBio 10, e00725–e00819 (2019).
pubmed: 31164461
pmcid: 6550520
doi: 10.1128/mBio.00725-19
Lo Curto, A. et al. Survival of probiotic lactobacilli in the upper gastrointestinal tract using an in vitro gastric model of digestion. Food Microbiol. 28, 1359–1366 (2011).
pubmed: 21839386
doi: 10.1016/j.fm.2011.06.007
Minekus, M. et al. A standardised static in vitro digestion method suitable for food—an international consensus. Food Funct. 5, 1113–1124 (2014).
pubmed: 24803111
doi: 10.1039/C3FO60702J
Zmora, N. et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 174, 1388–1405.e21 (2018).
pubmed: 30193112
doi: 10.1016/j.cell.2018.08.041
Van den Abbeele, P. et al. Microbial community development in a dynamic gut model is reproducible, colon region specific, and selective for Bacteroidetes and Clostridium cluster IX. Appl. Environ. Microbiol. 76, 5237–5246 (2010).
pubmed: 20562281
pmcid: 2916472
doi: 10.1128/AEM.00759-10
Van den Abbeele, P. et al. Incorporating a mucosal environment in a dynamic gut model results in a more representative colonization by lactobacilli. Microb. Biotechnol. 5, 106–115 (2012).
pubmed: 21989255
doi: 10.1111/j.1751-7915.2011.00308.x
Minekus, M., Marteau, P., Havenaar, R. & Veld, J. H. J. H. I. A multicompartmental dynamic computer-controlled model simulating the stomach and small intestine. Altern. Lab. Anim. 23, 197–209 (1995).
doi: 10.1177/026119299502300205
Thévenot, J. et al. Enterohemorrhagic Escherichia coli O157:H7 survival in an in vitro model of the human large intestine and interactions with probiotic yeasts and resident microbiota. Appl. Environ. Microbiol. 79, 1058–1064 (2013).
pubmed: 23204410
pmcid: 3568547
doi: 10.1128/AEM.03303-12
Etienne-Mesmin, L. et al. In vitro modelling of oral microbial invasion in the human colon. Microbiol. Spectr. 11, e0434422 (2023).
pubmed: 36971547
doi: 10.1128/spectrum.04344-22
Calatayud, M. et al. Salivary and gut microbiomes play a significant role in in vitro oral bioaccessibility, biotransformation, and intestinal absorption of arsenic from food. Environ. Sci. Technol. 52, 14422–14435 (2018).
pubmed: 30403856
pmcid: 6300781
doi: 10.1021/acs.est.8b04457
Marzorati, M. et al. The HMI™ module: a new tool to study the host–microbiota interaction in the human gastrointestinal tract in vitro. BMC Microbiol. 14, 133 (2014).
pubmed: 24884540
pmcid: 4039060
doi: 10.1186/1471-2180-14-133
Shah, P. et al. A microfluidics-based in vitro model of the gastrointestinal human–microbe interface. Nat. Commun. 7, 11535 (2016).
pubmed: 27168102
pmcid: 4865890
doi: 10.1038/ncomms11535
Jalili-Firoozinezhad, S. et al. A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip. Nat. Biomed. Eng. 3, 520–531 (2019).
pubmed: 31086325
pmcid: 6658209
doi: 10.1038/s41551-019-0397-0
Xavier, M. et al. From mouth to gut: microfluidic in vitro simulation of human gastro-intestinal digestion and intestinal permeability. Analyst 148, 3193–3203 (2023).
pubmed: 37259813
doi: 10.1039/D2AN02088B
Molero-Abraham, M. et al. Human oral epithelial cells impair bacteria-mediated maturation of dendritic cells and render T cells unresponsive to stimulation. Front. Immunol. 10, 1434 (2019).
pubmed: 31316504
pmcid: 6611079
doi: 10.3389/fimmu.2019.01434
Zhang, Y. et al. Stable reconstructed human gingiva–microbe interaction model: differential response to commensals and pathogens. Front. Cell. Infect. Microbiol. 12, 991128 (2022).
pubmed: 36339338
pmcid: 9631029
doi: 10.3389/fcimb.2022.991128
Shang, L. et al. Multi-species oral biofilm promotes reconstructed human gingiva epithelial barrier function. Sci. Rep. 8, 16061 (2018).
pubmed: 30375445
pmcid: 6207751
doi: 10.1038/s41598-018-34390-y
Shang, L. et al. Commensal and pathogenic biofilms alter Toll-like receptor signaling in reconstructed human gingiva. Front. Cell. Infect. Microbiol. 9, 282 (2019).
pubmed: 31448244
pmcid: 6692492
doi: 10.3389/fcimb.2019.00282
Adelfio, M. et al. Three-dimensional humanized model of the periodontal gingival pocket to study oral microbiome. Adv. Sci. 10, e2205473 (2023).
doi: 10.1002/advs.202205473
Rahimi, C. et al. Oral mucosa-on-a-chip to assess layer-specific responses to bacteria and dental materials. Biomicrofluidics 12, 054106 (2018).
pubmed: 30310527
pmcid: 6158033
doi: 10.1063/1.5048938
Makkar, H., Zhou, Y., Tan, K. S., Lim, C. T. & Sriram, G. Modeling crevicular fluid flow and host–oral microbiome interactions in a gingival crevice-on-chip. Adv. Healthc. Mater. 12, e2202376 (2023).
pubmed: 36398428
doi: 10.1002/adhm.202202376