An Introduction to Rift Valley Fever Virus.


Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2024
Historique:
medline: 23 7 2024
pubmed: 23 7 2024
entrez: 22 7 2024
Statut: ppublish

Résumé

Rift Valley fever virus (RVFV) is a pathogen transmitted to humans and livestock via mosquito bites. This virus, which was discovered in Kenya in 1930, is considered by the World Health Organization (WHO) and the World Organisation for Animal Health (WOAH) to be associated with a high risk of causing large-scale epidemics. However, means dedicated to fighting RVFV have been limited, and despite recent research efforts, the virus remains poorly understood at both the molecular and cellular levels as well as at a broader scale of research in the field and in animal and human populations. In this introductory chapter of a methods book, we aim to provide readers with a concise overview of RVFV, from its ecology and transmission to the structural and genomic organization of virions and its life cycle in host cells.

Identifiants

pubmed: 39039402
doi: 10.1007/978-1-0716-3926-9_1
doi:

Types de publication

Journal Article Introductory Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1-14

Informations de copyright

© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Daubney R, Hudson JR, Garnham PC (1931) Enzootic hepatitis or Rift Valley fever. an undescribed virus disease of sheep cattle and man from East Africa. J Pathol Bacteriol 34:545–579
doi: 10.1002/path.1700340418
Wright D, Kortekaas J, Bowden TA, Warimwe GM (2019) Rift Valley fever: biology and epidemiology. J Gen Virol 100(8):1187–1199. https://doi.org/10.1099/jgv.0.001296
doi: 10.1099/jgv.0.001296 pubmed: 31310198
Xu Y, Wang X, Jiang L, Zhou Y, Liu Y, Wang F, Zhang L (2023) Natural hosts and animal models for Rift Valley fever phlebovirus. Front Vet Sci 10:1258172. https://doi.org/10.3389/fvets.2023.1258172
doi: 10.3389/fvets.2023.1258172 pubmed: 37929288 pmcid: 10621046
Connors KA, Hartman AL (2022) Advances in understanding neuropathogenesis of Rift Valley fever virus. Annu Rev Virol 9(1):437–450. https://doi.org/10.1146/annurev-virology-091919-065806
doi: 10.1146/annurev-virology-091919-065806 pubmed: 36173701 pmcid: 10316117
Lumley S, Horton DL, Hernandez-Triana LLM, Johnson N, Fooks AR, Hewson R (2017) Rift Valley fever virus: strategies for maintenance, survival and vertical transmission in mosquitoes. J Gen Virol 98(5):875–887. https://doi.org/10.1099/jgv.0.000765
doi: 10.1099/jgv.0.000765 pubmed: 28555542
Bird BH, McElroy AK (2016) Rift Valley fever virus: unanswered questions. Antivir Res 132:274–280. https://doi.org/10.1016/j.antiviral.2016.07.005
doi: 10.1016/j.antiviral.2016.07.005 pubmed: 27400990
Gregor KM, Michaely LM, Gutjahr B, Rissmann M, Keller M, Dornbusch S, Naccache F, Schon K, Jansen S, Heitmann A, Konig R, Brennan B, Elliott RM, Becker S, Eiden M, Spitzbarth I, Baumgartner W, Puff C, Ulrich R, Groschup MH (2021) Rift Valley fever virus detection in susceptible hosts with special emphasis in insects. Sci Rep 11(1):9822. https://doi.org/10.1038/s41598-021-89226-z
doi: 10.1038/s41598-021-89226-z pubmed: 33972596 pmcid: 8110843
Peyre M, Chevalier V, Abdo-Salem S, Velthuis A, Antoine-Moussiaux N, Thiry E, Roger F (2015) A systematic scoping study of the socio-economic impact of Rift Valley fever: research gaps and needs. Zoonoses Public Health 62(5):309–325. https://doi.org/10.1111/zph.12153
doi: 10.1111/zph.12153 pubmed: 25256804
Linthicum KJ, Britch SC, Anyamba A (2016) Rift Valley fever: an emerging mosquito-borne disease. Annu Rev Entomol 61:395–415. https://doi.org/10.1146/annurev-ento-010715-023819
doi: 10.1146/annurev-ento-010715-023819 pubmed: 26982443
Herath V, Romay G, Urrutia CD, Verchot J (2020) Family level phylogenies reveal relationships of plant viruses within the order Bunyavirales. Viruses 12(9). https://doi.org/10.3390/v12091010
Freiberg AN, Sherman MB, Morais MC, Holbrook MR, Watowich SJ (2008) Three-dimensional organization of Rift Valley fever virus revealed by cryoelectron tomography. J Virol 82(21):10341–10348. https://doi.org/10.1128/JVI.01191-08
doi: 10.1128/JVI.01191-08 pubmed: 18715915 pmcid: 2573222
Léger P, Lozach P-Y (2015) Bunyaviruses: from transmission by arthropods to virus entry into the mammalian host first-target cells. Future Virol 10(7):859–881. https://doi.org/10.2217/fvl.15.52
doi: 10.2217/fvl.15.52
Wuerth JD, Weber F (2016) Phleboviruses and the type I interferon response. Viruses 8(6). https://doi.org/10.3390/v8060174
Malet H, Williams HM, Cusack S, Rosenthal M (2023) The mechanism of genome replication and transcription in bunyaviruses. PLoS Pathog 19(1):e1011060. https://doi.org/10.1371/journal.ppat.1011060
doi: 10.1371/journal.ppat.1011060 pubmed: 36634042 pmcid: 9836281
Peinado RDS, Eberle RJ, Arni RK, Coronado MA (2022) A review of omics studies on arboviruses: alphavirus, orthobunyavirus and phlebovirus. Viruses 14(10). https://doi.org/10.3390/v14102194
Ganaie SS, Leung DW, Hartman AL, Amarasinghe GK (2023) Host entry factors of Rift Valley fever virus infection. Adv Virus Res 117:121–136. https://doi.org/10.1016/bs.aivir.2023.09.001
doi: 10.1016/bs.aivir.2023.09.001 pubmed: 37832991
Balaraman V, Indran SV, Li Y, Meekins DA, Jakkula L, Liu H, Hays MP, Souza-Neto JA, Gaudreault NN, Hardwidge PR, Wilson WC, Weber F, Richt JA (2023) Identification of host factors for Rift Valley fever Phlebovirus. Viruses 15(11). https://doi.org/10.3390/v15112251
Filone CM, Hanna SL, Caino MC, Bambina S, Doms RW, Cherry S (2010) Rift Valley fever virus infection of human cells and insect hosts is promoted by protein kinase C epsilon. PLoS One 5(11):e15483. https://doi.org/10.1371/journal.pone.0015483
doi: 10.1371/journal.pone.0015483 pubmed: 21124804 pmcid: 2991366
de Boer SM, Kortekaas J, de Haan CA, Rottier PJ, Moormann RJ, Bosch BJ (2012) Heparan sulfate facilitates Rift Valley fever virus entry into the cell. J Virol 86(24):13767–13771. https://doi.org/10.1128/JVI.01364-12
doi: 10.1128/JVI.01364-12 pubmed: 23015725 pmcid: 3503077
Riblett AM, Blomen VA, Jae LT, Altamura LA, Doms RW, Brummelkamp TR, Wojcechowskyj JA (2016) A haploid genetic screen identifies Heparan sulfate proteoglycans supporting Rift Valley fever virus infection. J Virol 90(3):1414–1423. https://doi.org/10.1128/JVI.02055-15
doi: 10.1128/JVI.02055-15 pubmed: 26581979 pmcid: 4719632
Leger P, Tetard M, Youness B, Cordes N, Rouxel RN, Flamand M, Lozach PY (2016) Differential use of the C-type lectins L-SIGN and DC-SIGN for Phlebovirus endocytosis. Traffic 17(6):639–656. https://doi.org/10.1111/tra.12393
doi: 10.1111/tra.12393 pubmed: 26990254
Lozach PY, Kuhbacher A, Meier R, Mancini R, Bitto D, Bouloy M, Helenius A (2011) DC-SIGN as a receptor for phleboviruses. Cell Host Microbe 10(1):75–88. https://doi.org/10.1016/j.chom.2011.06.007
doi: 10.1016/j.chom.2011.06.007 pubmed: 21767814
Ganaie SS, Schwarz MM, McMillen CM, Price DA, Feng AX, Albe JR, Wang W, Miersch S, Orvedahl A, Cole AR, Sentmanat MF, Mishra N, Boyles DA, Koenig ZT, Kujawa MR, Demers MA, Hoehl RM, Moyle AB, Wagner ND, Stubbs SH, Cardarelli L, Teyra J, McElroy A, Gross ML, Whelan SPJ, Doench J, Cui X, Brett TJ, Sidhu SS, Virgin HW, Egawa T, Leung DW, Amarasinghe GK, Hartman AL (2021) Lrp1 is a host entry factor for Rift Valley fever virus. Cell 184 (20):5163–5178 e5124. https://doi.org/10.1016/j.cell.2021.09.001
Devignot S, Sha TW, Burkard TR, Schmerer P, Hagelkruys A, Mirazimi A, Elling U, Penninger JM, Weber F (2023) Low-density lipoprotein receptor-related protein 1 (LRP1) as an auxiliary host factor for RNA viruses. Life Sci Alliance 6(7):e202302005. https://doi.org/10.26508/lsa.202302005
doi: 10.26508/lsa.202302005 pubmed: 37072184 pmcid: 10114362
Schwarz MM, Ganaie SS, Feng A, Brown G, Yangdon T, White JM, Hoehl RM, McMillen CM, Rush RE, Connors KA, Cui X, Leung DW, Egawa T, Amarasinghe GK, Hartman AL (2023) Lrp1 is essential for lethal Rift Valley fever hepatic disease in mice. Sci Adv 9(28):eadh2264. https://doi.org/10.1126/sciadv.adh2264
doi: 10.1126/sciadv.adh2264 pubmed: 37450601 pmcid: 10348670
Bermudez-Mendez E, Angelino P, van Keulen L, van de Water S, Rockx B, Pijlman GP, Ciuffi A, Kortekaas J, Wichgers Schreur PJ (2023) Transcriptomic profiling reveals intense host-pathogen dispute compromising homeostasis during acute Rift Valley fever virus infection. J Virol 97(6):e0041523. https://doi.org/10.1128/jvi.00415-23
doi: 10.1128/jvi.00415-23 pubmed: 37306574
Koch J, Xin Q, Tischler ND, Lozach PY (2021) Entry of phenuiviruses into mammalian host cells. Viruses 13(2). https://doi.org/10.3390/v13020299
Confort MP, Duboeuf M, Thiesson A, Pons L, Marziali F, Desloire S, Ratinier M, Cimarelli A, Arnaud F (2023) IFITMs from naturally infected animal species exhibit distinct restriction capacities against Toscana and Rift Valley fever viruses. Viruses 15(2). https://doi.org/10.3390/v15020306
de Boer SM, Kortekaas J, Spel L, Rottier PJ, Moormann RJ, Bosch BJ (2012) Acid-activated structural reorganization of the Rift Valley fever virus Gc fusion protein. J Virol 86(24):13642–13652. https://doi.org/10.1128/JVI.01973-12
doi: 10.1128/JVI.01973-12 pubmed: 23035232 pmcid: 3503025
Koch J, Xin Q, Obr M, Schafer A, Rolfs N, Anagho HA, Kudulyte A, Woltereck L, Kummer S, Campos J, Uckeley ZM, Bell-Sakyi L, Krausslich HG, Schur FK, Acuna C, Lozach PY (2023) The phenuivirus Toscana virus makes an atypical use of vacuolar acidity to enter host cells. PLoS Pathog 19(8):e1011562. https://doi.org/10.1371/journal.ppat.1011562
doi: 10.1371/journal.ppat.1011562 pubmed: 37578957 pmcid: 10449198
Wu Y, Zhu Y, Gao F, Jiao Y, Oladejo BO, Chai Y, Bi Y, Lu S, Dong M, Zhang C, Huang G, Wong G, Li N, Zhang Y, Li Y, Feng WH, Shi Y, Liang M, Zhang R, Qi J, Gao GF (2017) Structures of phlebovirus glycoprotein Gn and identification of a neutralizing antibody epitope. Proc Natl Acad Sci USA 114(36):E7564–E7573. https://doi.org/10.1073/pnas.1705176114
doi: 10.1073/pnas.1705176114 pubmed: 28827346 pmcid: 5594662
Dessau M, Modis Y (2013) Crystal structure of glycoprotein C from Rift Valley fever virus. Proc Natl Acad Sci USA 110(5):1696–1701. https://doi.org/10.1073/pnas.1217780110
doi: 10.1073/pnas.1217780110 pubmed: 23319635 pmcid: 3562824
Guardado-Calvo P, Atkovska K, Jeffers SA, Grau N, Backovic M, Perez-Vargas J, de Boer SM, Tortorici MA, Pehau-Arnaudet G, Lepault J, England P, Rottier PJ, Bosch BJ, Hub JS, Rey FA (2017) A glycerophospholipid-specific pocket in the RVFV class II fusion protein drives target membrane insertion. Science 358(6363):663–667. https://doi.org/10.1126/science.aal2712
doi: 10.1126/science.aal2712 pubmed: 29097548
Wang X, Hu C, Ye W, Wang J, Dong X, Xu J, Li X, Zhang M, Lu H, Zhang F, Wu W, Dai S, Wang HW, Chen Z (2022) Structure of Rift Valley fever virus RNA-dependent RNA polymerase. J Virol 96(3):e0171321. https://doi.org/10.1128/JVI.01713-21
doi: 10.1128/JVI.01713-21 pubmed: 34787453
Won S, Ikegami T, Peters CJ, Makino S (2006) NSm and 78-kilodalton proteins of Rift Valley fever virus are nonessential for viral replication in cell culture. J Virol 80(16):8274–8278. https://doi.org/10.1128/JVI.00476-06
doi: 10.1128/JVI.00476-06 pubmed: 16873285 pmcid: 1563821
Kreher F, Tamietti C, Gommet C, Guillemot L, Ermonval M, Failloux AB, Panthier JJ, Bouloy M, Flamand M (2014) The Rift Valley fever accessory proteins NSm and P78/NSm-GN are distinct determinants of virus propagation in vertebrate and invertebrate hosts. Emerg Microbes Infect 3(10):e71. https://doi.org/10.1038/emi.2014.71
doi: 10.1038/emi.2014.71 pubmed: 26038497 pmcid: 4217093
Hornak KE, Lanchy JM, Lodmell JS (2016) RNA encapsidation and packaging in the phleboviruses. Viruses 8(7). https://doi.org/10.3390/v8070194
Ferron F, Li Z, Danek EI, Luo D, Wong Y, Coutard B, Lantez V, Charrel R, Canard B, Walz T, Lescar J (2011) The hexamer structure of Rift Valley fever virus nucleoprotein suggests a mechanism for its assembly into ribonucleoprotein complexes. PLoS Pathog 7(5):e1002030. https://doi.org/10.1371/journal.ppat.1002030
doi: 10.1371/journal.ppat.1002030 pubmed: 21589902 pmcid: 3093367
Uckeley ZM, Moeller R, Kuhn LI, Nilsson E, Robens C, Lasswitz L, Lindqvist R, Lenman A, Passos V, Voss Y, Sommerauer C, Kampmann M, Goffinet C, Meissner F, Overby AK, Lozach PY, Gerold G (2019) Quantitative proteomics of Uukuniemi virus-host cell interactions reveals GBF1 as Proviral host factor for phleboviruses. Mol Cell Proteomics 18(12):2401–2417. https://doi.org/10.1074/mcp.RA119.001631
doi: 10.1074/mcp.RA119.001631 pubmed: 31570497 pmcid: 6885706
Lee WS, Webster JA, Madzokere ET, Stephenson EB, Herrero LJ (2019) Mosquito antiviral defense mechanisms: a delicate balance between innate immunity and persistent viral infection. Parasit Vectors 12(1):165. https://doi.org/10.1186/s13071-019-3433-8
doi: 10.1186/s13071-019-3433-8 pubmed: 30975197 pmcid: 6460799
Gabrieli P, Caccia S, Varotto-Boccazzi I, Arnoldi I, Barbieri G, Comandatore F, Epis S (2021) Mosquito trilogy: microbiota, immunity and pathogens, and their implications for the control of disease transmission. Front Microbiol 12:630438. https://doi.org/10.3389/fmicb.2021.630438
doi: 10.3389/fmicb.2021.630438 pubmed: 33889137 pmcid: 8056039
Leger P, Lara E, Jagla B, Sismeiro O, Mansuroglu Z, Coppee JY, Bonnefoy E, Bouloy M (2013) Dicer-2- and Piwi-mediated RNA interference in Rift Valley fever virus-infected mosquito cells. J Virol 87(3):1631–1648. https://doi.org/10.1128/JVI.02795-12
doi: 10.1128/JVI.02795-12 pubmed: 23175368 pmcid: 3554164
Nair N, Osterhaus A, Rimmelzwaan GF, Prajeeth CK (2023) Rift Valley fever virus-infection, pathogenesis and host immune responses. Pathogens 12(9). https://doi.org/10.3390/pathogens12091174
Chapman NS, Hulswit RJG, Westover JLB, Stass R, Paesen GC, Binshtein E, Reidy JX, Engdahl TB, Handal LS, Flores A, Gowen BB, Bowden TA, Crowe JE Jr (2023) Multifunctional human monoclonal antibody combination mediates protection against Rift Valley fever virus at low doses. Nat Commun 14(1):5650. https://doi.org/10.1038/s41467-023-41171-3
doi: 10.1038/s41467-023-41171-3 pubmed: 37704627 pmcid: 10499838
McMillen CM, Chapman NS, Hoehl RM, Skvarca LB, Schwarz MM, Handal LS, Crowe JE Jr, Hartman AL (2023) A highly potent human neutralizing antibody prevents vertical transmission of Rift Valley fever virus in a rat model. Nat Commun 14(1):4507. https://doi.org/10.1038/s41467-023-40187-z
doi: 10.1038/s41467-023-40187-z pubmed: 37495594 pmcid: 10372071
Allen ER, Krumm SA, Raghwani J, Halldorsson S, Elliott A, Graham VA, Koudriakova E, Harlos K, Wright D, Warimwe GM, Brennan B, Huiskonen JT, Dowall SD, Elliott RM, Pybus OG, Burton DR, Hewson R, Doores KJ, Bowden TA (2018) A protective monoclonal antibody targets a site of vulnerability on the surface of Rift Valley fever virus. Cell Rep 25 (13):3750–3758 e3754. https://doi.org/10.1016/j.celrep.2018.12.001
Terasaki K, Makino S (2015) Interplay between the virus and host in Rift Valley fever pathogenesis. J Innate Immun 7(5):450–458. https://doi.org/10.1159/000373924
doi: 10.1159/000373924 pubmed: 25766761 pmcid: 4551617
Weber M, Gawanbacht A, Habjan M, Rang A, Borner C, Schmidt AM, Veitinger S, Jacob R, Devignot S, Kochs G, Garcia-Sastre A, Weber F (2013) Incoming RNA virus nucleocapsids containing a 5′-triphosphorylated genome activate RIG-I and antiviral signaling. Cell Host Microbe 13(3):336–346. https://doi.org/10.1016/j.chom.2013.01.012
doi: 10.1016/j.chom.2013.01.012 pubmed: 23498958 pmcid: 5515363
Leventhal SS, Wilson D, Feldmann H, Hawman DW (2021) A look into Bunyavirales genomes: functions of non-structural (NS) proteins. Viruses 13(2). https://doi.org/10.3390/v13020314
Bouloy M, Janzen C, Vialat P, Khun H, Pavlovic J, Huerre M, Haller O (2001) Genetic evidence for an interferon-antagonistic function of rift valley fever virus nonstructural protein NSs. J Virol 75(3):1371–1377. https://doi.org/10.1128/JVI.75.3.1371-1377.2001
doi: 10.1128/JVI.75.3.1371-1377.2001 pubmed: 11152510 pmcid: 114043
Swanepoel R, Blackburn NK (1977) Demonstration of nuclear immunofluorescence in Rift Valley fever infected cells. J Gen Virol 34(3):557–561. https://doi.org/10.1099/0022-1317-34-3-557
doi: 10.1099/0022-1317-34-3-557 pubmed: 323417
Benferhat R, Josse T, Albaud B, Gentien D, Mansuroglu Z, Marcato V, Soues S, Le Bonniec B, Bouloy M, Bonnefoy E (2012) Large-scale chromatin immunoprecipitation with promoter sequence microarray analysis of the interaction of the NSs protein of Rift Valley fever virus with regulatory DNA regions of the host genome. J Virol 86(20):11333–11344. https://doi.org/10.1128/JVI.01549-12
doi: 10.1128/JVI.01549-12 pubmed: 22896612 pmcid: 3457170
Barski M, Brennan B, Miller OK, Potter JA, Vijayakrishnan S, Bhella D, Naismith JH, Elliott RM, Schwarz-Linek U (2017) Rift Valley fever phlebovirus NSs protein core domain structure suggests molecular basis for nuclear filaments. elife 6. https://doi.org/10.7554/eLife.29236
Leger P, Nachman E, Richter K, Tamietti C, Koch J, Burk R, Kummer S, Xin Q, Stanifer M, Bouloy M, Boulant S, Krausslich HG, Montagutelli X, Flamand M, Nussbaum-Krammer C, Lozach PY (2020) NSs amyloid formation is associated with the virulence of Rift Valley fever virus in mice. Nat Commun 11(1):3281. https://doi.org/10.1038/s41467-020-17101-y
doi: 10.1038/s41467-020-17101-y pubmed: 32612175 pmcid: 7329897
Peng K, Lozach PY (2021) Rift Valley fever virus: a new avenue of research on the biological functions of amyloids? Future Virol 16(10):677–689. https://doi.org/10.2217/fvl-2021-0094
doi: 10.2217/fvl-2021-0094
Wandera N, Olds P, Muhindo R, Ivers L (2023) Rift Valley fever - the need for an integrated response. N Engl J Med 389(20):1829–1832. https://doi.org/10.1056/NEJMp2308666
doi: 10.1056/NEJMp2308666 pubmed: 37861216
Garcia S, Crance JM, Billecocq A, Peinnequin A, Jouan A, Bouloy M, Garin D (2001) Quantitative real-time PCR detection of Rift Valley fever virus and its application to evaluation of antiviral compounds. J Clin Microbiol 39(12):4456–4461. https://doi.org/10.1128/JCM.39.12.4456-4461.2001
doi: 10.1128/JCM.39.12.4456-4461.2001 pubmed: 11724861 pmcid: 88565
Park C, Park D, Hassan ZU, Choi SH, Kim S (2023) Comparison of RT-qPCR and RT-ddPCR with rift valley fever virus (RVFV) RNA. Sci Rep 13(1):3085. https://doi.org/10.1038/s41598-023-29023-y
doi: 10.1038/s41598-023-29023-y pubmed: 36813787 pmcid: 9944419
Balaraman V, Gaudreault NN, Trujillo JD, Indran SV, Wilson WC, Richt JA (2023) RT-qPCR genotyping assays for differentiating Rift Valley fever phlebovirus strains. J Virol Methods 315:114693. https://doi.org/10.1016/j.jviromet.2023.114693
doi: 10.1016/j.jviromet.2023.114693 pubmed: 36801236 pmcid: 10040438
Billecocq A, Gauliard N, Le May N, Elliott RM, Flick R, Bouloy M (2008) RNA polymerase I-mediated expression of viral RNA for the rescue of infectious virulent and avirulent Rift Valley fever viruses. Virology 378(2):377–384. https://doi.org/10.1016/j.virol.2008.05.033
doi: 10.1016/j.virol.2008.05.033 pubmed: 18614193
Ikegami T, Won S, Peters CJ, Makino S (2006) Rescue of infectious rift valley fever virus entirely from cDNA, analysis of virus lacking the NSs gene, and expression of a foreign gene. J Virol 80(6):2933–2940. https://doi.org/10.1128/JVI.80.6.2933-2940.2006
doi: 10.1128/JVI.80.6.2933-2940.2006 pubmed: 16501102 pmcid: 1395455
Tercero B, Makino S (2024) Reverse genetics system for Rift Valley fever virus. Methods Mol Biol 2733:101–113. https://doi.org/10.1007/978-1-0716-3533-9_7
doi: 10.1007/978-1-0716-3533-9_7 pubmed: 38064029
Habjan M, Penski N, Spiegel M, Weber F (2008) T7 RNA polymerase-dependent and -independent systems for cDNA-based rescue of Rift Valley fever virus. J Gen Virol 89(Pt 9):2157–2166. https://doi.org/10.1099/vir.0.2008/002097-0
doi: 10.1099/vir.0.2008/002097-0 pubmed: 18753225
Bridgen A, Elliott RM (1996) Rescue of a segmented negative-strand RNA virus entirely from cloned complementary DNAs. Proc Natl Acad Sci USA 93(26):15400–15404. https://doi.org/10.1073/pnas.93.26.15400
doi: 10.1073/pnas.93.26.15400 pubmed: 8986823 pmcid: 26416
Wichgers Schreur PJ, Bird BH, Ikegami T, Bermudez-Mendez E, Kortekaas J (2023) Perspectives of next-generation live-attenuated Rift Valley fever vaccines for animal and human use. Vaccines (Basel) 11(3). https://doi.org/10.3390/vaccines11030707
Alkan C, Jurado-Cobena E, Ikegami T (2023) Advancements in Rift Valley fever vaccines: a historical overview and prospects for next generation candidates. NPJ Vaccines 8(1):171. https://doi.org/10.1038/s41541-023-00769-w
doi: 10.1038/s41541-023-00769-w pubmed: 37925544 pmcid: 10625542

Auteurs

Friedemann Weber (F)

Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany.

Michèle Bouloy (M)

Institut Pasteur, Université Paris Cité, Bunyavirus Molecular Genetics Unit, Paris, France.

Pierre-Yves Lozach (PY)

IVPC UMR754, INRAE, Université Claude Bernard Lyon 1, EPHE, PSL Research University, Lyon, France. pierre-yves.lozach@inrae.fr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH