Analysis of Negative-Strand RNA Viruses by RT-qPCR: Rift Valley Fever Virus and Toscana Virus.
Bunyavirus
Detection method
Negative-strand RNA virus
RT-qPCR
Rift Valley fever virus
Toscana virus
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2024
2024
Historique:
medline:
23
7
2024
pubmed:
23
7
2024
entrez:
22
7
2024
Statut:
ppublish
Résumé
RT-qPCR allows the detection of viruses and the monitoring of viral replication. This technique was extensively employed during the SARS-CoV-2 pandemic, where it demonstrated its efficiency and robustness. Here we describe the analysis of Rift Valley fever and Toscana virus infections over time, achieved through the RT-qPCR quantification of the viral genome. We further elaborate on the method to discriminate between genomic and antigenomic viral RNAs by using primers specific for each strand during the reverse transcription step.
Identifiants
pubmed: 39039406
doi: 10.1007/978-1-0716-3926-9_5
doi:
Substances chimiques
RNA, Viral
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
67-80Informations de copyright
© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Simonin Y (2022) Usutu, West Nile, and tick-borne encephalitis viruses. Viruses 14:2120. https://doi.org/10.3390/v14102120
doi: 10.3390/v14102120
pubmed: 36298675
pmcid: 9608063
Pierson TC, Diamond MS (2020) The continued threat of emerging flaviviruses. Nat Microbiol 5:796–812. https://doi.org/10.1038/s41564-020-0714-0
doi: 10.1038/s41564-020-0714-0
pubmed: 32367055
pmcid: 7696730
Prioritizing diseases for research and development in emergency contexts. https://www.who.int/activities/prioritizing-diseases-for-research-and-development-in-emergency-contexts . Accessed 28 Sept 2023
Sule WF, Oluwayelu DO (2020) Real-time RT-PCR for COVID-19 diagnosis: challenges and prospects. Pan Afr Med J 35:121. https://doi.org/10.11604/pamj.supp.2020.35.24258
doi: 10.11604/pamj.supp.2020.35.24258
pubmed: 33282076
pmcid: 7687508
Xu M-Y, Liu S-Q, Deng C-L, Zhang Q-Y, Zhang B (2016) Detection of Zika virus by SYBR green one-step real-time RT-PCR. J Virol Methods 236:93–97. https://doi.org/10.1016/j.jviromet.2016.07.014
doi: 10.1016/j.jviromet.2016.07.014
pubmed: 27444120
Okeke IN, Ihekweazu C (2021) The importance of molecular diagnostics for infectious diseases in low-resource settings. Nat Rev Microbiol 19:547–548. https://doi.org/10.1038/s41579-021-00598-5
doi: 10.1038/s41579-021-00598-5
pubmed: 34183821
pmcid: 8237771
Marion E, Ganlonon L, Claco E, Blanchard S, Kempf M, Adeye A, Chauty A (2014) Establishment of quantitative PCR (qPCR) and culture laboratory facilities in a field hospital in Benin: 1-year results. J Clin Microbiol 52:4398–4400. https://doi.org/10.1128/JCM.02131-14
doi: 10.1128/JCM.02131-14
pubmed: 25320228
pmcid: 4313327
The rise of qPCR testing in clinical diagnostics
Ikegami T, Makino S (2011) The pathogenesis of Rift Valley fever. Viruses 3:493–519. https://doi.org/10.3390/v3050493
doi: 10.3390/v3050493
pubmed: 21666766
pmcid: 3111045
Laughlin LW, Meegan JM, Strausbaugh LJ, Morens DM, Watten RH (1979) Epidemic Rift Valley fever in Egypt: observations of the spectrum of human illness. Trans R Soc Trop Med Hyg 73:630–633. https://doi.org/10.1016/0035-9203(79)90006-3
doi: 10.1016/0035-9203(79)90006-3
pubmed: 575446
Madani TA, Al-Mazrou YY, Al-Jeffri MH, Mishkhas AA, Al-Rabeah AM, Turkistani AM, Al-Sayed MO, Abodahish AA, Khan AS, Ksiazek TG, Shobokshi O (2003) Rift Valley fever epidemic in Saudi Arabia: epidemiological, clinical, and laboratory characteristics. Clin Infect Dis 37:1084–1092. https://doi.org/10.1086/378747
doi: 10.1086/378747
pubmed: 14523773
Cotteaux-Lautard C, Leparc-goffart I, Berenger JM, Plumet S, Pages F (2016) Phenology and host preferences Phlebotomus perniciosus (Diptera: Phlebotominae) in a focus of Toscana virus (TOSV) in South of France. Acta Trop 153:64–69. https://doi.org/10.1016/j.actatropica.2015.09.020
doi: 10.1016/j.actatropica.2015.09.020
pubmed: 26477847
Ayhan N, Prudhomme J, Laroche L, Bañuls A-L, Charrel RN (2020) Broader geographical distribution of Toscana virus in the Mediterranean region suggests the existence of larger varieties of sand Fly vectors. Microorganisms 8:114. https://doi.org/10.3390/microorganisms8010114
doi: 10.3390/microorganisms8010114
pubmed: 31947561
pmcid: 7022675
Arden KE, Heney C, Shaban B, Nimmo GR, Nissen MD, Sloots TP, Mackay IM (2017) Detection of Toscana virus from an adult traveler returning to Australia with encephalitis. J Med Virol 89:1861–1864. https://doi.org/10.1002/jmv.24839
doi: 10.1002/jmv.24839
pubmed: 28464308
Howell BA, Azar MM, Landry ML, Shaw AC (2015) Toscana virus encephalitis in a traveler returning to the United States. J Clin Microbiol 53:1445–1447. https://doi.org/10.1128/JCM.03498-14
doi: 10.1128/JCM.03498-14
pubmed: 25673791
pmcid: 4365192
Spiegel M, Plegge T, Pöhlmann S (2016) The role of Phlebovirus glycoproteins in viral entry. Assembly and Release Viruses 8. https://doi.org/10.3390/v8070202
Wuerth JD, Weber F (2016) Phleboviruses and the type I interferon response. Viruses 8:174. https://doi.org/10.3390/v8060174
doi: 10.3390/v8060174
pubmed: 27338447
pmcid: 4926194
Ferron F, Weber F, de la Torre JC, Reguera J (2017) Transcription and replication mechanisms of Bunyaviridae and Arenaviridae L proteins. Virus Res 234:118–134. https://doi.org/10.1016/j.virusres.2017.01.018
doi: 10.1016/j.virusres.2017.01.018
pubmed: 28137457
Malet H, Williams HM, Cusack S, Rosenthal M (2023) The mechanism of genome replication and transcription in bunyaviruses. PLoS Pathog 19:e1011060. https://doi.org/10.1371/journal.ppat.1011060
doi: 10.1371/journal.ppat.1011060
pubmed: 36634042
pmcid: 9836281
Gaudreault NN, Indran SV, Balaraman V, Wilson WC, Richt JA (2019) Molecular aspects of Rift Valley fever virus and the emergence of reassortants. Virus Genes 55:1–11. https://doi.org/10.1007/s11262-018-1611-y
doi: 10.1007/s11262-018-1611-y
pubmed: 30426314
Lerolle S, Freitas N, Cosset F-L, Legros V (2021) Host cell restriction factors of Bunyaviruses and viral countermeasures. Viruses 13:784. https://doi.org/10.3390/v13050784
doi: 10.3390/v13050784
pubmed: 33925004
pmcid: 8146327
Aranha C, Patel V, Bhor V, Gogoi D (2021) Cycle threshold values in RT-PCR to determine dynamics of SARS-CoV-2 viral load: an approach to reduce the isolation period for COVID-19 patients. J Med Virol 93:6794–6797. https://doi.org/10.1002/jmv.27206
doi: 10.1002/jmv.27206
pubmed: 34264527
pmcid: 8426941
Comparaison entre la chimie TaqMan et la chimie SYBR - FR. https://www.thermofisher.com/fr/fr/home/life-science/pcr/real-time-pcr/real-time-pcr-learning-center/real-time-pcr-basics/taqman-vs-sybr-chemistry-real-time-pcr.html . Accessed 15 Oct 2023
Rao X, Huang X, Zhou Z, Lin X (2013) An improvement of the 2(−delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinforma Biomath 3:71–85
pubmed: 25558171
pmcid: 4280562
Brennan B, Welch SR, Elliott RM (2014) The consequences of reconfiguring the Ambisense S genome segment of Rift Valley fever virus on viral replication in mammalian and mosquito cells and for genome packaging. PLoS Pathog 10:e1003922. https://doi.org/10.1371/journal.ppat.1003922
doi: 10.1371/journal.ppat.1003922
pubmed: 24550727
pmcid: 3923772
Simons JF, Hellman U, Pettersson RF (1990) Uukuniemi virus S RNA segment: ambisense coding strategy, packaging of complementary strands into virions, and homology to members of the genus Phlebovirus. J Virol 64:247–255
doi: 10.1128/jvi.64.1.247-255.1990
pubmed: 2136709
pmcid: 249097
Co.KG BTG& Influence de la pureté de l’ADN sur la quantification. In: Berthold Technologies GmbH & Co.KG. https://www.berthold.com/fr-fr/bio-analyses/applications/quantification-adn/influence-de-la-purete-de-ladn-sur-la-quantification/?msclkid=f4ca332fb43911ecabe05c6a83d04c3e . Accessed 15 Oct 2023