Labeling of the serotonergic neuronal circuits emerging from the raphe nuclei via some retrograde tracers.
CTB
hypothalamus
serotonin
stereotaxic surgery
thalamus
viral tracers
Journal
Microscopy research and technique
ISSN: 1097-0029
Titre abrégé: Microsc Res Tech
Pays: United States
ID NLM: 9203012
Informations de publication
Date de publication:
23 Jul 2024
23 Jul 2024
Historique:
revised:
20
06
2024
received:
13
02
2024
accepted:
11
07
2024
medline:
23
7
2024
pubmed:
23
7
2024
entrez:
23
7
2024
Statut:
aheadofprint
Résumé
Serotonin (5-hydroxytryptamine, 5-HT) is a very important neurotransmitter emerging from the raphe nuclei to several brain regions. Serotonergic neuronal connectivity has multiple functions in the brain. In this study, several techniques were used to trace serotonergic neurons in the dorsal raphe (DR) and median raphe (MnR) that project toward the arcuate nucleus of the hypothalamus (Arc), dorsomedial hypothalamic nucleus (DM), lateral hypothalamic area (LH), paraventricular hypothalamic nucleus (PVH), ventromedial hypothalamic nucleus (VMH), fasciola cinereum (FC), and medial habenular nucleus (MHb). Cholera toxin subunit B (CTB), retro-adeno-associated virus (rAAV-CMV-mCherry), glycoprotein-deleted rabies virus (RV-ΔG), and simultaneous microinjection of rAAV2-retro-Cre-tagBFP with AAV-dio-mCherry in C57BL/6 mice were used in this study. In addition, rAAV2-retro-Cre-tagBFP was microinjected into Ai9 mice. Serotonin immunohistochemistry was used for the detection of retrogradely traced serotonergic neurons in the raphe nuclei. The results indicated that rAAV2-retro-Cre-tagBFP microinjection in Ai9 mice was the best method for tracing serotonergic neuron circuits. All of the previously listed nuclei exhibited serotonergic neuronal projections from the DR and MnR, with the exception of the FC, which had very few projections from the DR. The serotonergic neuronal projections were directed toward the Arc by the subpeduncular tegmental (SPTg) nuclei. Moreover, the RV-ΔG tracer revealed monosynaptic non-serotonergic neuronal projections from the DR that were directed toward the Arc. Furthermore, rAAV tracers revealed monosynaptic serotonergic neuronal connections from the raphe nuclei toward Arc. These findings validate the variations in neurotropism among several retrograde tracers. The continued discovery of several novel serotonergic neural circuits is crucial for the future discovery of the functions of these circuits. RESEARCH HIGHLIGHTS: Various kinds of retrograde tracers were microinjected into C57BL/6 and Ai9 mice. The optimum method for characterizing serotonergic neuronal circuits is rAAV2-retro-Cre-tagBFP microinjection in Ai9 mice. The DR, MnR, and SPTg nuclei send monosynaptic serotonergic neuronal projections toward the arcuate nucleus of the hypothalamus. Whole-brain quantification analysis of retrograde-labeled neurons in different brain nuclei following rAAV2-retro-Cre-tagBFP microinjection in the Arc, DM, LH, and VMH is shown. Differential quantitative analysis of median and dorsal raphe serotonergic neurons emerging toward the PVH, DM, LH, Arc, VMH, MHb, and FC is shown.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Postdoctoral Scholarship Foundation of Hubei Province of China
Organisme : National Natural Science Foundation of China
ID : 31371106
Organisme : National Natural Science Foundation of China
ID : 91632110
Organisme : National Natural Science Foundation of China
ID : 31700934
Informations de copyright
© 2024 Wiley Periodicals LLC.
Références
Abrams, J. K., Johnson, P. L., Hollis, J. H., & Lowry, C. A. (2004). Anatomic and functional topography of the dorsal raphe nucleus. Annals of the New York Academy of Sciences, 1018(1), 46–57.
Aizawa, H., Kobayashi, M., Tanaka, S., Fukai, T., & Okamoto, H. (2012). Molecular characterization of the subnuclei in rat habenula. Journal of Comparative Neurology, 520(18), 4051–4066.
Aklan, I., Sayar‐Atasoy, N., Deng, F., Kim, H., Yavuz, Y., Rysted, J., Laule, C., Davis, D., Li, Y., & Atasoy, D. (2023). Dorsal raphe serotonergic neurons suppress feeding through redundant forebrain circuits. Molecular Metabolism, 69, 101676.
Andrade, R., & Haj‐Dahmane, S. (2013). Serotonin neuron diversity in the dorsal raphe. ACS Chemical Neuroscience, 4(1), 22–25.
Bargmann, C. I., & Marder, E. (2013). From the connectome to brain function. Nature Methods, 10(6), 483–490.
Berumen, L. C., Rodríguez, A., Miledi, R., & García‐Alcocer, G. (2012). Serotonin receptors in hippocampus. The Scientific World Journal, 2012, 1–15.
Biagioni, A. F., de Oliveira, R. C., de Oliveira, R., da Silva, J. A., dos Anjos‐Garcia, T., Roncon, C. M., Corrado, A. P., Jr, H. Z., & Coimbra, N. C. (2016). 5‐Hydroxytryptamine 1A receptors in the dorsomedial hypothalamus connected to dorsal raphe nucleus inputs modulate defensive behaviors and mediate innate fear‐induced antinociception. European College of Neuropsychopharmacology, 26(3), 532–545.
Daut, R. A., & Fonken, L. K. (2019). Circadian regulation of depression: A role for serotonin. Frontiers in Neuroendocrinology, 54, 100746.
de Git, K. C., van Tuijl, D. C., Luijendijk, M. C., Wolterink‐Donselaar, I. G., Ghanem, A., Conzelmann, K. K., & Adan, R. A. (2018). Anatomical projections of the dorsomedial hypothalamus to the periaqueductal gray and their role in thermoregulation: A cautionary note. Physiological Reports, 6(14), e13807.
Deneris, E. S., & Wyler, S. C. (2012). Serotonergic transcriptional networks and potential importance to mental health. Nature Neuroscience, 15(4), 519–527.
Dorocic, I. P., Fürth, D., Xuan, Y., Johansson, Y., Pozzi, L., Silberberg, G., Carlen, M., & Meletis, K. (2014). A whole‐brain atlas of inputs to serotonergic neurons of the dorsal and median raphe nuclei. Neuron, 83(3), 663–678.
Fenselau, H., Campbell, J. N., Verstegen, A. M. J., Madara, J. C., Xu, J., Shah, B. P., Resch, J. M., & Lowell, B. B. (2017). A rapidly acting glutamatergic ARC→PVH satiety circuit postsynaptically regulated by α‐MSH. Nature Neuroscience, 20(1), 42–51. https://doi.org/10.1038/nn.4442
Gautron, L., Lazarus, M., Scott, M. M., Saper, C. B., & Elmquist, J. K. (2010). Identifying the efferent projections of leptin‐responsive neurons in the dorsomedial hypothalamus using a novel conditional tracing approach. Journal of Comparative Neurology, 518(11), 2090–2108.
Geerling, J. C., Shin, J. W., Chimenti, P. C., & Loewy, A. D. (2010). Paraventricular hypothalamic nucleus: Axonal projections to the brainstem. Journal of Comparative Neurology, 518(9), 1460–1499.
Ginger, M., Haberl, M., Conzelmann, K.‐K., Schwarz, M. K., & Frick, A. (2013). Revealing the secrets of neuronal circuits with recombinant rabies virus technology. Frontiers in Neural Circuits, 7, 2.
Hainer, C., Mosienko, V., Koutsikou, S., Crook, J. J., Gloss, B., Kasparov, S., Lumb, B. M., & Alenina, N. (2015). Beyond gene inactivation: Evolution of tools for analysis of serotonergic circuitry. ACS Chemical Neuroscience, 6(7), 1116–1129.
Hao, S., Yang, H., Wang, X., He, Y., Xu, H., Wu, X., Pan, L., Liu, Y., Lou, H., Xu, H., Ma, H., Xi, W., Zhou, Y., Duan, S., & Xu, H. (2019). The lateral hypothalamic and BNST GABAergic projections to the anterior ventrolateral periaqueductal gray regulate feeding. Cell Reports, 28(3), 616–624.
Hintiryan, H., Foster, N. N., Bowman, I., Bay, M., Song, M. Y., Gou, L., Yamashita, S., Bienkowski, M. S., Zingg, B., Zhu, M., Yang, X. W., Shih, J. C., Toga, A. W., & Dong, H. (2016). The mouse cortico‐striatal projectome. Nature Neuroscience, 19(8), 1100–1114.
Janušonis, S., Haiman, J. H., Metzler, R., & Vojta, T. (2023). Predicting the distribution of serotonergic axons: A supercomputing simulation of reflected fractional Brownian motion in a 3D‐mouse brain model. Frontiers in Computational Neuroscience, 17, 1189853.
Jeong, J. H., Lee, D. K., & Jo, Y.‐H. (2017). Cholinergic neurons in the dorsomedial hypothalamus regulate food intake. Molecular Metabolism, 6(3), 306–312.
King, B. M. (2006). The rise, fall, and resurrection of the ventromedial hypothalamus in the regulation of feeding behavior and body weight. Physiology & Behavior, 87(2), 221–244.
Lewis, J. E., Woodward, O. R., Nuzzaci, D., Smith, C. A., Adriaenssens, A. E., Billing, L., Brighton, C., Phillips, B. U., Tadross, J. A., Kinston, S. J., Ciabatti, E., Gottgens, B., Tripodi, M., Hornigold, D., Baker, D., Gribble, F. M., & Reimann, F. (2022). Relaxin/insulin‐like family peptide receptor 4 (Rxfp4) expressing hypothalamic neurons modulate food intake and preference in mice. Molecular Metabolism, 66, 101604.
Li, J., Liu, T., Dong, Y., Kondoh, K., & Lu, Z. (2019). Trans‐synaptic neural circuit‐tracing with neurotropic viruses. Neuroscience Bulletin, 35(5), 909–920. https://doi.org/10.1007/s12264-019-00374-9
Li, P., Tjen‐A‐Looi, S. C., Guo, Z.‐L., & Longhurst, J. C. (2010). An arcuate‐ventrolateral periaqueductal gray reciprocal circuit participates in electroacupuncture cardiovascular inhibition. Autonomic Neuroscience, 158(1‐2), 13–23.
Li, S.‐B., & de Lecea, L. (2020). The hypocretin (orexin) system: From a neural circuitry perspective. Neuropharmacology, 167, 107993.
Lima, L. B., Bueno, D., Leite, F., Souza, S., Gonçalves, L., Furigo, I. C., Jr, J. D., & Metzger, M. (2017). Afferent and efferent connections of the interpeduncular nucleus with special reference to circuits involving the habenula and raphe nuclei. Journal of Comparative Neurology, 525(10), 2411–2442.
Liu, Y., Hegarty, S., Winter, C., Wang, F., & He, Z. (2020). Viral vectors for neuronal cell type‐specific visualization and manipulations. Current Opinion in Neurobiology, 63, 67–76.
Luan, X., Sun, X., Guo, F., Zhang, D., Wang, C., Ma, L., & Xu, L. (2017). Lateral hypothalamic orexin‐A‐ergic projections to the arcuate nucleus modulate gastric function in vivo. Journal of Neurochemistry, 143(6), 697–707.
Maday, S., Twelvetrees, A. E., Moughamian, A. J., & Holzbaur, E. L. (2014). Axonal transport: Cargo‐specific mechanisms of motility and regulation. Neuron, 84(2), 292–309.
Metzger, M., Bueno, D., & Lima, L. B. (2017). The lateral habenula and the serotonergic system. Pharmacology Biochemistry and Behavior, 162, 22–28.
Metzger, M., Souza, R., Lima, L. B., Bueno, D., Gonçalves, L., Sego, C., J. J. D., & Shammah‐Lagnado, S. J. (2021). Habenular connections with the dopaminergic and serotonergic system and their role in stress‐related psychiatric disorders. European Journal of Neuroscience, 53(1), 65–88.
Muzerelle, A., Scotto‐Lomassese, S., Bernard, J. F., Soiza‐Reilly, M., & Gaspar, P. (2016). Conditional anterograde tracing reveals distinct targeting of individual serotonin cell groups (B5–B9) to the forebrain and brainstem. Brain Structure and Function, 221(1), 535–561. https://doi.org/10.1007/s00429-014-0924-4
Ogawa, S. K., & Watabe‐Uchida, M. (2018). Organization of dopamine and serotonin system: Anatomical and functional mapping of monosynaptic inputs using rabies virus. Pharmacology Biochemistry and Behavior, 174, 9–22.
Park, S.‐B., Lim, H.‐Y., Lee, E.‐Y., Yoo, S.‐W., Jung, H.‐S., Lee, E., Yoo, S., Jung, H., Lee, E., Sun, W., & Lee, I. (2022). The fasciola cinereum subregion of the hippocampus is important for the acquisition of visual contextual memory. Progress in Neurobiology, 210, 102217.
Park, S. B., Yoo, S. W., Jung, H. S., Lim, H. Y., Lee, E., Sun, W., & Lee, I. (2019). The fasciola cinereum of the hippocampus is important in the acquisition, but not the retrieval, of visual contextual memory. Paper presented at the conference proceedings: Annual international conference of the IEEE engineering in medicine and biology society. IEEE Engineering in Medicine and Biology Society. Annual Conference.
Quina, L. A., Walker, A., Morton, G., Han, V., & Turner, E. E. (2020). GAD2 expression defines a class of excitatory lateral habenula neurons in mice that project to the raphe and pontine tegmentum. ENeuro, 7(3): p. ENEURO.0527‐19.2020.
Ren, J., Friedmann, D., Xiong, J., Liu, C. D., Ferguson, B. R., Weerakkody, T., Deloacg, K. E., Ran, C., Pun, A., Sun, Y., Weissbourd, B., Neve, R. L., Huguenard, J., Horowitz, M. A., & Luo, L. (2018). Anatomically defined and functionally distinct dorsal raphe serotonin subsystems. Cell, 175(2), 472–487.e20.
Reznitsky, M., Plenge, P., & Hay‐Schmidt, A. (2016). Serotonergic projections from the raphe nuclei to the subthalamic nucleus; a retrograde‐and anterograde neuronal tracing study. Neuroscience Letters, 612, 172–177.
Schneeberger, M., Parolari, L., Banerjee, T. D., Bhave, V., Wang, P., Patel, B., Topiko, T., Wu, Z., Choi, C. J., Yu, X., Pellegrino, K., Engel, E. A., Cohen, P., Renier, N., Friedman, J. M., & Nectow, A. R. (2019). Regulation of energy expenditure by brainstem GABA neurons. Cell, 178(3), 672–685.
Schnell, M. J., McGettigan, J. P., Wirblich, C., & Papaneri, A. (2010). The cell biology of rabies virus: Using stealth to reach the brain. Nature Reviews Microbiology, 8(1), 51–61.
Sharp, T., & Barnes, N. M. (2020). Central 5‐HT receptors and their function; present and future. Neuropharmacology, 177, 108155.
Sun, L., Tang, Y., Yan, K., Yu, J., Zou, Y., Xu, W., Xiao, K., Zhang, Z., Li, W., Wu, B., Hu, Z., Chen, K., Fu, Z. F., Dai, J., & Gang, C. (2019). Differences in neurotropism and neurotoxicity among retrograde viral tracers. Molecular Neurodegeneration, 14, 1–24.
Ullah, F., dos Anjos‐Garcia, T., Mendes‐Gomes, J., Elias‐Filho, D. H., Falconi‐Sobrinho, L. L., de Freitas, R. L., Khan, A. U., Oliveira, R., & Coimbra, N. C. (2017). Connexions between the dorsomedial division of the ventromedial hypothalamus and the dorsal periaqueductal gray matter are critical in the elaboration of hypothalamically mediated panic‐like behavior. Behavioral Brain Research, 319, 135–147.
Wang, D., He, X., Zhao, Z., Feng, Q., Lin, R., Sun, Y., Ding, T., Xu, F., Luo, M., & Zhan, C. (2015). Whole‐brain mapping of the direct inputs and axonal projections of POMC and AgRP neurons. Frontiers in Neuroanatomy, 9, 40.
Wang, H. L., Zhang, S., Qi, J., Wang, H., Cachope, R., Mejias‐Aponte, C. A., Gomez, J. A., Gabriel, E. M., Beaudoin, G. M., Paladini, C. A., Cheer, J. F., & Morales, M. (2019). Dorsal raphe dual serotonin‐glutamate neurons drive reward by establishing excitatory synapses on VTA mesoaccumbens dopamine neurons. Cell Reports, 26(5), 1128–1142.e7. https://doi.org/10.1016/j.celrep.2019.01.014
Wang, S., Tan, Y., Zhang, J. E., & Luo, M. (2013). Pharmacogenetic activation of midbrain dopaminergic neurons induces hyperactivity. Neuroscience Bulletin, 29(5), 517–524. https://doi.org/10.1007/s12264-013-1327-x
Wang, Y., Liu, Z., Sun, D., Sun, L., Cao, G., & Dai, J. (2022). The connectome and chemo‐connectome databases for mice brain connection analysis. Frontiers in Neuroanatomy, 16, 886925.
Xu, X., Holmes, T. C., Luo, M.‐H., Beier, K. T., Horwitz, G. D., Zhao, F., Zeng, W., Hui, M., Semler, B. L., & Sandri‐Goldin, R. M. (2020). Viral vectors for neural circuit mapping and recent advances in trans‐synaptic anterograde tracers. Neuron, 107(6), 1029–1047.
Yousefvand, S., & Hamidi, F. (2021). The role of ventromedial hypothalamus receptors in the central regulation of food intake. International Journal of Peptide Research and Therapeutics, 27, 689–702.
Yu, H., Miao, W., Ji, E., Huang, S., Jin, S., Zhu, X., Liu, M., Sun, Y., Xu, F., & Yu, X. (2022). Social touch‐like tactile stimulation activates a tachykinin 1‐oxytocin pathway to promote social interactions. Neuron, 110(6), 1051–1067.
Zhou, L., Liu, M.‐Z., Li, Q., Deng, J., Mu, D., & Sun, Y.‐G. (2017). Organization of functional long‐range circuits controlling the activity of serotonergic neurons in the dorsal raphe nucleus. Cell Reports, 18(12), 3018–3032.
Zolotukhin, S., Byrne, B. J., Mason, E., Zolotukhin, I., Potter, M., Chesnut, K., Summerford, C., Samulski, R. J., & Muzyczka, N. (1999). Recombinant adeno‐associated virus purification using novel methods improves infectious titer and yield. Gene Therapy, 6(6), 973.