GAS6 and AXL promote insulin resistance by rewiring insulin signaling and increasing insulin receptor trafficking to endosomes.


Journal

Diabetes
ISSN: 1939-327X
Titre abrégé: Diabetes
Pays: United States
ID NLM: 0372763

Informations de publication

Date de publication:
24 Jul 2024
Historique:
received: 27 06 2024
accepted: 07 07 2024
medline: 26 7 2024
pubmed: 26 7 2024
entrez: 24 7 2024
Statut: aheadofprint

Résumé

Growth-arrest specific 6 (GAS6) is a secreted protein that acts as a ligand for TAM receptors (TYRO3, AXL and MERTK). In humans, GAS6 circulating levels and genetic variations in GAS6 are associated with hyperglycemia and increased risk of type 2 diabetes. However, the mechanisms by which GAS6 influences glucose metabolism are not understood. Here, we show that Gas6 deficiency in mice increases insulin sensitivity and protects from diet-induced insulin resistance. Conversely, increasing GAS6 circulating levels is sufficient to reduce insulin sensitivity in vivo. GAS6 inhibits the activation of the insulin receptor (IR) and reduces insulin response in muscle cells in vitro and in vivo. Mechanistically, AXL and IR form a complex, while GAS6 reprograms signaling pathways downstream of IR. This results in increased IR endocytosis following insulin treatment. This study contributes to a better understanding of the cellular and molecular mechanisms by which GAS6 and AXL influence insulin sensitivity.

Identifiants

pubmed: 39046834
pii: 157022
doi: 10.2337/db23-0802
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024 by the American Diabetes Association.

Auteurs

Céline Schott (C)

Molecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada.
Programme de Biologie Moléculaire, Université de Montréal, Montréal, Québec, Canada.

Amélie Germain (A)

Molecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada.
Programme de Biologie Moléculaire, Université de Montréal, Montréal, Québec, Canada.

Julie Lacombe (J)

Molecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada.

Monica Pata (M)

Molecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada.

Denis Faubert (D)

Mass Spectrometry and Proteomics Platform, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Canada.

Jonathan Boulais (J)

Cytoskeletal Organization and Cell Migration Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada.

Peter Carmeliet (P)

Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, 3000, Belgium.
Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.

Jean-François Côté (JF)

Programme de Biologie Moléculaire, Université de Montréal, Montréal, Québec, Canada.
Cytoskeletal Organization and Cell Migration Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada.
Département de Médicine, Université de Montréal, Montréal, Québec, Canada.
Division of Experimental Medicine, McGill University, Montréal, Québec, Canada.

Mathieu Ferron (M)

Molecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada.
Programme de Biologie Moléculaire, Université de Montréal, Montréal, Québec, Canada.
Département de Médicine, Université de Montréal, Montréal, Québec, Canada.
Division of Experimental Medicine, McGill University, Montréal, Québec, Canada.

Classifications MeSH