Cultivation and visualization of a methanogen of the phylum Thermoproteota.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
24 Jul 2024
24 Jul 2024
Historique:
received:
20
01
2023
accepted:
30
05
2024
medline:
26
7
2024
pubmed:
26
7
2024
entrez:
24
7
2024
Statut:
aheadofprint
Résumé
Methane is the second most abundant climate-active gas, and understanding its sources and sinks is an important endeavour in microbiology, biogeochemistry, and climate sciences
Identifiants
pubmed: 39048824
doi: 10.1038/s41586-024-07631-6
pii: 10.1038/s41586-024-07631-6
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Thauer, R. K., Kaster, A.-K., Seedorf, H., Buckel, W. & Hedderich, R. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 6, 579–591 (2008).
pubmed: 18587410
doi: 10.1038/nrmicro1931
Garcia, P. S., Gribaldo, S. & Borrel, G. Diversity and evolution of methane-related pathways in archaea. Annu. Rev. Microbiol. 76, 727–755 (2022).
pubmed: 35759872
doi: 10.1146/annurev-micro-041020-024935
Borrel, G. et al. Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea. Nat Microbiol 4, 603–613 (2019).
pubmed: 30833729
pmcid: 6453112
doi: 10.1038/s41564-019-0363-3
Wang, Y., Wegener, G., Hou, J., Wang, F. & Xiao, X. Expanding anaerobic alkane metabolism in the domain of Archaea. Nat. Microbiol. 4, 595–602 (2019).
pubmed: 30833728
doi: 10.1038/s41564-019-0364-2
Evans, P. N. et al. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350, 434–438 (2015).
pubmed: 26494757
doi: 10.1126/science.aac7745
Vanwonterghem, I. et al. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat. Microbiol. 1, 1–9 (2016).
doi: 10.1038/nmicrobiol.2016.170
Saunois, M. et al. The Global Methane Budget 2000-2017. Earth Syst. Sci. Data 12, 1561–1623 (2020).
doi: 10.5194/essd-12-1561-2020
Conrad, R. The global methane cycle: recent advances in understanding the microbial processes involved. Environ. Microbiol. Rep. 1, 285–292 (2009).
pubmed: 23765881
doi: 10.1111/j.1758-2229.2009.00038.x
Thauer, R. K. Methyl (Alkyl)-Coenzyme M reductases: nickel F-430-containing enzymes involved in anaerobic methane formation and in anaerobic oxidation of methane or of short chain alkanes. Biochemistry 58, 5198–5220 (2019).
pubmed: 30951290
doi: 10.1021/acs.biochem.9b00164
Evans, P. N. et al. An evolving view of methane metabolism in the Archaea. Nat. Rev. Microbiol. 17, 219–232 (2019).
pubmed: 30664670
doi: 10.1038/s41579-018-0136-7
Stephenson, M. & Stickland, L. H. Hydrogenase: the bacterial formation of methane by the reduction of one-carbon compounds by molecular hydrogen. Biochem. J. 27, 1517–1527 (1933).
pubmed: 16745264
pmcid: 1253060
doi: 10.1042/bj0271517
Rinke, C. et al. A standardized archaeal taxonomy for the Genome Taxonomy Database. Nat. Microbiol. 6, 946–959 (2021).
pubmed: 34155373
doi: 10.1038/s41564-021-00918-8
Seitz, K. W. et al. Asgard archaea capable of anaerobic hydrocarbon cycling. Nat. Commun. 10, 1822 (2019).
pubmed: 31015394
pmcid: 6478937
doi: 10.1038/s41467-019-09364-x
McKay, L. J. et al. Co-occurring genomic capacity for anaerobic methane metabolism and dissimilatory sulfite reduction discovered in the Korarchaeota. Nat. Microbiol. 4, 614–622 (2019).
pubmed: 30833730
doi: 10.1038/s41564-019-0362-4
McKay, L. J., Hatzenpichler, R., Inskeep, W. P. & Fields, M. W. Occurrence and expression of novel methyl-coenzyme M reductase gene (mcrA) variants in hot spring sediments. Sci. Rep. 7, 7252 (2017).
pubmed: 28775334
pmcid: 5543129
doi: 10.1038/s41598-017-07354-x
Hua, Z.-S. et al. Insights into the ecological roles and evolution of methyl-coenzyme M reductase-containing hot spring Archaea. Nat. Commun. 10, 4574 (2019).
pubmed: 31594929
pmcid: 6783470
doi: 10.1038/s41467-019-12574-y
Lynes, M. M. et al. Diversity and function of methyl-coenzyme M reductase-encoding archaea in Yellowstone hot springs revealed by metagenomics and mesocosm experiments. ISME Commun. 3, 22 (2023).
pubmed: 36949220
pmcid: 10033731
doi: 10.1038/s43705-023-00225-9
Buessecker, S. et al. Mcr-dependent methanogenesis in Archaeoglobaceae enriched from a terrestrial hot spring. ISME J. 17, 1649–1659 (2023).
pubmed: 37452096
doi: 10.1038/s41396-023-01472-3
Wang, J. et al. Evidence for nontraditional mcr-containing archaea contributing to biological methanogenesis in geothermal springs. Sci. Adv. 9, eadg6004 (2023).
pubmed: 37379385
pmcid: 10306296
doi: 10.1126/sciadv.adg6004
Lynes, M. M., Jay, Z. J., Kohtz, A. J. & Hatzenpichler, R. Methylotrophic methanogenesis in the Archaeoglobi revealed by cultivation of Ca. Methanoglobus hypatiae from a Yellowstone hot spring. ISME J. 18, wrae026 (2024).
Liu, Y.-F. et al. Long-term cultivation and meta-omics reveal methylotrophic methanogenesis in hydrocarbon-impacted habitats. Engineering 24, 264–275 (2023).
Oren, A., Garrity, G. M., Parker, C. T., Chuvochina, M. & Trujillo, M. E. Lists of names of prokaryotic Candidatus taxa. Int. J. Syst. Evol. Microbiol. 70, 3956–4042 (2020).
pubmed: 32603289
doi: 10.1099/ijsem.0.003789
Zeikus, J., Ben-Bassat, A. & Hegge, P. Microbiology of methanogenesis in thermal, volcanic environments. J. Bacteriol. 143, 432–440 (1980).
pubmed: 7400098
pmcid: 294264
doi: 10.1128/jb.143.1.432-440.1980
McKay, L. J., Klingelsmith, K. B., Deutschbauer, A. M., Inskeep, W. P. & Fields, M. W. Draft genome sequence of Methanothermobacter thermautotrophicus WHS, a thermophilic hydrogenotrophic methanogen from Washburn Hot Springs in Yellowstone National Park, USA. Microbiol. Resour. Announc. 10, e01157–01120 (2021).
pubmed: 33541873
pmcid: 7862951
doi: 10.1128/MRA.01157-20
Cheng, L., Dai, L., Li, X., Zhang, H. & Lu, Y. Isolation and characterization of Methanothermobacter crinale sp. nov., a novel hydrogenotrophic methanogen from the Shengli oil field. Appl. Environ. Microbiol. 77, 5212–5219 (2011).
pubmed: 21705537
pmcid: 3147489
doi: 10.1128/AEM.00210-11
Balk, M., Weijma, J. & Stams, A. J. Thermotoga lettingae sp. nov., a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor. Int. J. Syst. Evol. Microbiol. 52, 1361–1368 (2002).
pubmed: 12148651
Paulo, P. et al. Pathways of methanol conversion in a thermophilic anaerobic (55 C) sludge consortium. Appl. Microbiol. Biotechnol. 63, 307–314 (2003).
pubmed: 12856164
doi: 10.1007/s00253-003-1391-7
Hatzenpichler, R., Krukenberg, V., Spietz, R. L. & Jay, Z. J. Next-generation physiology approaches to study microbiome function at single cell level. Nat. Rev. Microbiol., 18, 241–256 (2020).
Hatzenpichler, R. et al. Visualizing in situ translational activity for identifying and sorting slow-growing archaeal− bacterial consortia. Proc. Natl Acad. Sci. USA 113, E4069–E4078 (2016).
pubmed: 27357680
pmcid: 4948357
doi: 10.1073/pnas.1603757113
Wu, K. et al. Isolation of a methyl-reducing methanogen outside the Euryarchaeota. Nature https://doi.org/10.1038/s41586-024-07728-y (2024).
Kohtz, A. J., Jay, Z. J., Lynes, M. M., Krukenberg, V. & Hatzenpichler, R. Culexarchaeia, a novel archaeal class of anaerobic generalists inhabiting geothermal environments. ISME Commun. 2, 1–13 (2022).
doi: 10.1038/s43705-022-00175-8
Major, T. A., Liu, Y. & Whitman, W. B. Characterization of energy-conserving hydrogenase B in Methanococcus maripaludis. J. Bacteriol. 192, 4022–4030 (2010).
pubmed: 20511510
pmcid: 2916364
doi: 10.1128/JB.01446-09
Ma, K., Schicho, R. N., Kelly, R. M. & Adams, M. Hydrogenase of the hyperthermophile Pyrococcus furiosus is an elemental sulfur reductase or sulfhydrogenase: evidence for a sulfur-reducing hydrogenase ancestor. Proc. Natl Acad. Sci. USA 90, 5341–5344 (1993).
pubmed: 8389482
pmcid: 46712
doi: 10.1073/pnas.90.11.5341
Lang, K. et al. New mode of energy metabolism in the seventh order of methanogens as revealed by comparative genome analysis of “Candidatus Methanoplasma termitum”. Appl. Environ. Microbiol. 81, 1338–1352 (2015).
pubmed: 25501486
pmcid: 4309702
doi: 10.1128/AEM.03389-14
Loh, H. Q., Hervé, V. & Brune, A. Metabolic potential for reductive acetogenesis and a novel energy-converting [NiFe] hydrogenase in Bathyarchaeia from termite guts–A genome-centric analysis. Front. Microbiol. 11, 635786 (2021).
pubmed: 33613473
pmcid: 7886697
doi: 10.3389/fmicb.2020.635786
Kröninger, L., Berger, S., Welte, C. & Deppenmeier, U. Evidence for the involvement of two heterodisulfide reductases in the energy‐conserving system of Methanomassiliicoccus luminyensis. FEBS J. 283, 472–483 (2016).
pubmed: 26573766
doi: 10.1111/febs.13594
Kröninger, L. et al. Energy conservation in the gut microbe Methanomassiliicoccus luminyensis is based on membrane‐bound ferredoxin oxidation coupled to heterodisulfide reduction. FEBS J. 286, 3831–3843 (2019).
pubmed: 31162794
doi: 10.1111/febs.14948
Bryant, M., Campbell, L. L., Reddy, C. & Crabill, M. Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl. Environ. Microbiol. 33, 1162–1169 (1977).
pubmed: 879775
pmcid: 170843
doi: 10.1128/aem.33.5.1162-1169.1977
McInerney, M. J. & Bryant, M. P. Anaerobic degradation of lactate by syntrophic associations of Methanosarcina barkeri and Desulfovibrio species and effect of H2 on acetate degradation. Appl. Environ. Microbiol. 41, 346–354 (1981).
pubmed: 16345708
pmcid: 243697
doi: 10.1128/aem.41.2.346-354.1981
Hwang, W. C. et al. LUD, a new protein domain associated with lactate utilization. BMC Bioinf. 14, 1–9 (2013).
doi: 10.1186/1471-2105-14-341
Young, L. N. & Villa, E. Bringing Structure to Cell Biology with Cryo-Electron Tomography. Annu. Rev. Biophys. 52, 573–595 (2023).
pubmed: 37159298
pmcid: 10763975
doi: 10.1146/annurev-biophys-111622-091327
Briegel, A. et al. Structural conservation of chemotaxis machinery across A rchaea and B acteria. Environ. Microbiol. Rep. 7, 414–419 (2015).
pubmed: 25581459
doi: 10.1111/1758-2229.12265
Albers, S.-V. & Jarrell, K. F. The archaellum: an update on the unique archaeal motility structure. Trends Microbiol. 26, 351–362 (2018).
pubmed: 29452953
doi: 10.1016/j.tim.2018.01.004
Quax, T. E., Albers, S.-V. & Pfeiffer, F. Taxis in archaea. Emerg. Top. Life Sci. 2, 535–546 (2018).
pubmed: 33525831
pmcid: 7289035
doi: 10.1042/ETLS20180089
Baidya, A. K., Bhattacharya, S., Dubey, G. P., Mamou, G. & Ben-Yehuda, S. Bacterial nanotubes: a conduit for intercellular molecular trade. Curr. Opin. Microbiol. 42, 1–6 (2018).
pubmed: 28961452
doi: 10.1016/j.mib.2017.08.006
Liu, J. et al. Extracellular membrane vesicles and nanotubes in Archaea. microLife 2, uqab007 (2021).
pubmed: 37223257
pmcid: 10117752
doi: 10.1093/femsml/uqab007
Sivabalasarma, S. et al. Analysis of cell–cell bridges in Haloferax volcanii using electron cryo-tomography reveal a continuous cytoplasm and S-layer. Front. Microbiol. 11, 612239 (2021).
pubmed: 33519769
pmcid: 7838353
doi: 10.3389/fmicb.2020.612239
Brandis, A. & Thauer, R. K. Growth of Desulfovibrio species on hydrogen and sulphate as sole energy source. Microbiology 126, 249–252 (1981).
doi: 10.1099/00221287-126-1-249
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).
pubmed: 23193283
pmcid: 3531112
doi: 10.1093/nar/gks1219
Ludwig, W. et al. ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363–1371 (2004).
pubmed: 14985472
pmcid: 390282
doi: 10.1093/nar/gkh293
Stoecker, K., Dorninger, C., Daims, H. & Wagner, M. Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) improves signal intensity and increases rRNA accessibility. Appl. Environ. Microbiol. 76, 922–926 (2010).
pubmed: 19966029
doi: 10.1128/AEM.02456-09
Stahl, D. A. in Nucleic Acid Techniques in Bacterial Systematics (eds Stackebrandt, E. & Goodfellow, M.) 205–248 (Wiley, 1991).
Wallner, G., Amann, R. & Beisker, W. Optimizing fluorescent in situ hybridization with rRNA‐targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytom.: J. Int. Soc. Anal. Cytol. 14, 136–143 (1993).
doi: 10.1002/cyto.990140205
Daims, H. Use of fluorescence in situ hybridization and the daime image analysis program for the cultivation-independent quantification of microorganisms in environmental and medical samples. Cold Spring Harb. Protoc. 2009, pdb. prot5253 (2009).
pubmed: 20147218
doi: 10.1101/pdb.prot5253
Daims, H., Lücker, S. & Wagner, M. Daime, a novel image analysis program for microbial ecology and biofilm research. Environ. Microbiol. 8, 200–213 (2006).
pubmed: 16423009
doi: 10.1111/j.1462-2920.2005.00880.x
Zhou, J., Bruns, M. A. & Tiedje, J. M. DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 62, 316–322 (1996).
pubmed: 8593035
pmcid: 167800
doi: 10.1128/aem.62.2.316-322.1996
Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome research 27, 824–834 (2017).
pubmed: 28298430
pmcid: 5411777
doi: 10.1101/gr.213959.116
Bushnell, B. BBMap: a fast, accurate, splice-aware aligner (Lawrence Berkeley National Lab., 2014).
Wu, Y.-W., Tang, Y.-H., Tringe, S. G., Simmons, B. A. & Singer, S. W. MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm. Microbiome 2, 1–18 (2014).
doi: 10.1186/2049-2618-2-26
Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 (2014).
pubmed: 25218180
doi: 10.1038/nmeth.3103
Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).
pubmed: 31388474
pmcid: 6662567
doi: 10.7717/peerj.7359
Miller, I. J. et al. Autometa: automated extraction of microbial genomes from individual shotgun metagenomes. Nucleic Acids Res. 47, e57–e57 (2019).
pubmed: 30838416
pmcid: 6547426
doi: 10.1093/nar/gkz148
Sieber, C. M. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol. 3, 836–843 (2018).
pubmed: 29807988
pmcid: 6786971
doi: 10.1038/s41564-018-0171-1
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).
pubmed: 25977477
pmcid: 4484387
doi: 10.1101/gr.186072.114
Kolmogorov, M. et al. metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat. Methods 17, 1103–1110 (2020).
pubmed: 33020656
pmcid: 10699202
doi: 10.1038/s41592-020-00971-x
Wick, R. R. & Holt, K. E. Polypolish: short-read polishing of long-read bacterial genome assemblies. PLoS Comput. Biol. 18, e1009802 (2022).
pubmed: 35073327
pmcid: 8812927
doi: 10.1371/journal.pcbi.1009802
Zimin, A. V. & Salzberg, S. L. The genome polishing tool POLCA makes fast and accurate corrections in genome assemblies. PLoS Comput. Biol. 16, e1007981 (2020).
pubmed: 32589667
pmcid: 7347232
doi: 10.1371/journal.pcbi.1007981
Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806 R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137 (2015).
doi: 10.3354/ame01753
Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).
pubmed: 26271760
doi: 10.1111/1462-2920.13023
Reichart, N. J. et al. Activity-based cell sorting reveals responses of uncultured archaea and bacteria to substrate amendment. ISME J. 14, 2851–2861 (2020).
pubmed: 32887944
pmcid: 7784905
doi: 10.1038/s41396-020-00749-1
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).
pubmed: 31341288
pmcid: 7015180
doi: 10.1038/s41587-019-0209-9
Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
pubmed: 27214047
pmcid: 4927377
doi: 10.1038/nmeth.3869
Nawrocki, E. P., Kolbe, D. L. & Eddy, S. R. Infernal 1.0: inference of RNA alignments. Bioinformatics 25, 1335–1337 (2009).
pubmed: 19307242
pmcid: 2732312
doi: 10.1093/bioinformatics/btp157
Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).
pubmed: 15034147
pmcid: 390337
doi: 10.1093/nar/gkh340
Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).
pubmed: 19505945
pmcid: 2712344
doi: 10.1093/bioinformatics/btp348
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K., Von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).
pubmed: 28481363
pmcid: 5453245
doi: 10.1038/nmeth.4285
Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).
pubmed: 20525638
doi: 10.1093/sysbio/syq010
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
pubmed: 23329690
pmcid: 3603318
doi: 10.1093/molbev/mst010
Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).
pubmed: 24642063
doi: 10.1093/bioinformatics/btu153
Lu, S. et al. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res. 48, D265–D268 (2020).
pubmed: 31777944
doi: 10.1093/nar/gkz991
Zimmermann, L. et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J. Mol. Biol. 430, 2237–2243 (2018).
pubmed: 29258817
doi: 10.1016/j.jmb.2017.12.007
Chen, I.-M. A. et al. IMG/M v. 5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 47, D666–D677 (2019).
pubmed: 30289528
doi: 10.1093/nar/gky901
Søndergaard, D., Pedersen, C. N. & Greening, C. HydDB: a web tool for hydrogenase classification and analysis. Sci. Rep. 6, 1–8 (2016).
doi: 10.1038/srep34212
Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).
pubmed: 28263959
pmcid: 5600148
doi: 10.1038/nmeth.4197
Ai, G., Zhu, J., Dong, X. & Sun, T. Simultaneous characterization of methane and carbon dioxide produced by cultured methanogens using gas chromatography/isotope ratio mass spectrometry and gas chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 27, 1935–1944 (2013).
pubmed: 23939960
doi: 10.1002/rcm.6651
Lagkouvardos, I. et al. IMNGS: a comprehensive open resource of processed 16S rRNA microbial profiles for ecology and diversity studies. Sci. Rep. 6, 1–9 (2016).
doi: 10.1038/srep33721
Iancu, C. V. et al. Electron cryotomography sample preparation using the Vitrobot. Nat. Protoc. 1, 2813–2819 (2006).
pubmed: 17406539
doi: 10.1038/nprot.2006.432
Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).
pubmed: 16182563
doi: 10.1016/j.jsb.2005.07.007
Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).
pubmed: 8742726
doi: 10.1006/jsbi.1996.0013
Mastronarde, D. Correction for non‐perpendicularity of beam and tilt axis in tomographic reconstructions with the IMOD package. J. Microsc. 230, 212–217 (2008).
pubmed: 18445149
doi: 10.1111/j.1365-2818.2008.01977.x
Tegunov, D. & Cramer, P. Real-time cryo-electron microscopy data preprocessing with Warp. Nat. Methods 16, 1146–1152 (2019).
pubmed: 31591575
pmcid: 6858868
doi: 10.1038/s41592-019-0580-y
Pettersen, E. F. et al. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).
pubmed: 32881101
doi: 10.1002/pro.3943
Schaible, G. A., Kohtz, A. J., Cliff, J. & Hatzenpichler, R. Correlative SIP-FISH-Raman-SEM-NanoSIMS links identity, morphology, biochemistry, and physiology of environmental microbes. ISME Commun. 2, 52 (2022).
pubmed: 37938730
pmcid: 9723565
doi: 10.1038/s43705-022-00134-3
Fernando, E. Y. et al. Resolving the individual contribution of key microbial populations to enhanced biological phosphorus removal with Raman–FISH. ISME J. 13, 1933–1946 (2019).
pubmed: 30894691
pmcid: 6776032
doi: 10.1038/s41396-019-0399-7
Majed, N. & Gu, A. Z. Application of Raman microscopy for simultaneous and quantitative evaluation of multiple intracellular polymers dynamics functionally relevant to enhanced biological phosphorus removal processes. Environ. Sci. Technol. 44, 8601–8608 (2010).
pubmed: 20949949
doi: 10.1021/es1016526