Intracellular Macromolecular Crowding within Individual Stress Fibers Analyzed by Fluorescence Correlation Spectroscopy.
Autocorrelation
FCS
Macromolecular crowding
Nucleus
Protein diffusion
Stress fibers
Journal
Cellular and molecular bioengineering
ISSN: 1865-5025
Titre abrégé: Cell Mol Bioeng
Pays: United States
ID NLM: 101468590
Informations de publication
Date de publication:
Jun 2024
Jun 2024
Historique:
received:
27
03
2024
accepted:
06
05
2024
medline:
26
7
2024
pubmed:
26
7
2024
entrez:
25
7
2024
Statut:
epublish
Résumé
The diffusion of cell components such as proteins is crucial to the function of all living cells. The abundance of macromolecules in cells is likely to cause a state of macromolecular crowding, but its effects on the extent of diffusion remain poorly understood. Here we investigate the diffusion rate in three distinct locations in mesenchymal cell types, namely the open cytoplasm, the stress fibers in the open cytoplasm, and those below the nucleus using three kinds of biologically inert green fluorescent proteins (GFPs), namely a monomer, dimer, and trimer GFP. Fluorescence correlation spectroscopy (FCS) was used to determine the diffusion coefficients. We show that diffusion tends to be lowered on average in stress fibers and is significantly lower in those located below the nucleus. Our data suggest that the diffusive properties of GFPs, and potentially other molecules as well, are hindered by macromolecular crowding. However, although the size dependence on protein diffusion was also studied for monomer, dimer, and trimer GFPs, there was no significant difference in the diffusion rates among the GFPs of these sizes. These results could be attributed to the lack of significant change in protein size among the selected GFP multimers. The data presented here would provide a basis for better understanding of the complex protein diffusion in the nonuniform cytoplasm, shedding light on cellular responses to mechanical stress, their local mechanical properties, and reduced turnover in senescent cells.
Identifiants
pubmed: 39050511
doi: 10.1007/s12195-024-00803-4
pii: 803
pmc: PMC11263330
doi:
Types de publication
Journal Article
Langues
eng
Pagination
165-176Informations de copyright
© The Author(s) 2024.
Déclaration de conflit d'intérêts
Conflict of interestThe authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Biophys Chem. 1997 Jun 30;66(2-3):211-28
pubmed: 9362560
Mol Cell. 2022 Sep 1;82(17):3255-3269.e8
pubmed: 35987199
J Biol Chem. 2005 Mar 4;280(9):7823-8
pubmed: 15632160
Biophys Rev. 2018 Apr;10(2):241-253
pubmed: 29235084
Biophys J. 2001 Oct;81(4):2010-9
pubmed: 11566774
Mol Biol Cell. 2022 Jan 1;33(1):ar10
pubmed: 34705524
Biorheology. 2009;46(5):401-15
pubmed: 19940356
J Biol Chem. 2018 Sep 14;293(37):14520-14533
pubmed: 30049798
J Biol Chem. 2001 Apr 6;276(14):10577-80
pubmed: 11279227
J Mech Behav Biomed Mater. 2009 Apr;2(2):173-85
pubmed: 19627821
Exp Cell Res. 2021 Jul 1;404(1):112619
pubmed: 33965400
J Bacteriol. 2010 Sep;192(18):4535-40
pubmed: 20581203
J Physiol Sci. 2011 Jul;61(4):313-9
pubmed: 21573751
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Feb;81(2 Pt 1):021103
pubmed: 20365526
Biophys J. 2005 Dec;89(6):4029-42
pubmed: 16199500
J Biomech. 2005 Sep;38(9):1751-9
pubmed: 16005465
Nat Mater. 2009 Jan;8(1):11-3
pubmed: 19096387
Am J Physiol Cell Physiol. 2008 Dec;295(6):C1569-78
pubmed: 18923059
FEBS J. 2020 Dec;287(23):5039-5067
pubmed: 32463979
Am J Physiol Cell Physiol. 2021 Jun 1;320(6):C1153-C1163
pubmed: 33881935
Curr Pharm Biotechnol. 2011 May;12(5):824-33
pubmed: 21446904
Biophys J. 2014 Sep 16;107(6):1474-84
pubmed: 25229154
Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10123-8
pubmed: 10468573
Phys Rev Lett. 2008 Jun 27;100(25):250602
pubmed: 18643647
Curr Pharm Biotechnol. 2010 Aug;11(5):527-43
pubmed: 20553227
Phys Rev Lett. 2009 Jul 17;103(3):038102
pubmed: 19659323
Biochim Biophys Acta. 2015 Nov;1853(11 Pt B):3065-74
pubmed: 25896524
Proc Natl Acad Sci U S A. 2015 Jun 30;112(26):7990-5
pubmed: 26080429
PLoS One. 2022 Nov 7;17(11):e0276909
pubmed: 36342915
Nature. 2003 Sep 4;425(6953):27-8
pubmed: 12955122
Cell. 2019 Feb 21;176(5):1083-1097.e18
pubmed: 30739799
APL Bioeng. 2018 Jun 12;2(2):026110
pubmed: 31069307
Annu Rev Biophys Biomol Struct. 1993;22:27-65
pubmed: 7688609
Biorheology. 2009;46(2):93-105
pubmed: 19458413
Curr Opin Struct Biol. 2001 Feb;11(1):114-9
pubmed: 11179900
Phys Biol. 2010 Dec 22;7(4):046014
pubmed: 21178242
Biophys J. 2022 Aug 2;121(15):2921-2930
pubmed: 35778840
Biomech Model Mechanobiol. 2020 Apr;19(2):543-555
pubmed: 31549258
Biochem Biophys Res Commun. 2018 Nov 2;505(3):879-884
pubmed: 30301526
J Bacteriol. 2006 May;188(10):3442-8
pubmed: 16672597
Nat Rev Drug Discov. 2016 Aug;15(8):533-50
pubmed: 27050677
Phys Chem Chem Phys. 2011 Apr 28;13(16):7396-407
pubmed: 21412541
Annu Rev Biophys. 2008;37:375-97
pubmed: 18573087
J Biomech. 2006;39(14):2603-10
pubmed: 16216252
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jan;81(1 Pt 1):010101
pubmed: 20365308
J Phys Chem B. 2020 Sep 3;124(35):7537-7543
pubmed: 32790396