Genetic Characteristics of a Large Pediatric Cohort of Patients with Inborn Errors of Immunity: Single-Center Experience.
Genetic diagnosis
Immunodeficiency
Inborn errors of immunity
Variants of uncertain significance
Journal
Journal of clinical immunology
ISSN: 1573-2592
Titre abrégé: J Clin Immunol
Pays: Netherlands
ID NLM: 8102137
Informations de publication
Date de publication:
25 Jul 2024
25 Jul 2024
Historique:
received:
25
02
2024
accepted:
15
07
2024
medline:
26
7
2024
pubmed:
26
7
2024
entrez:
25
7
2024
Statut:
epublish
Résumé
More than 450 genetic defects result in inborn errors of immunity (IEI). Their individual prevalence in specific cohorts is influenced by national characteristics and other factors. We present results of genetic testing conducted in 1809 Russian children with IEI. Genetic defects confirming IEI were found in 1112 out of 1809 (61.5%) probands. These defects included variants in 118 single genes (87.9% of patients) and aberrations in 6 chromosomes (11.8%). Notably, three patients harbored pathogenic variants in more than one IEI gene. Large deletions constituted 5% of all defects. Out of the 799 original variants, 350 (44%) have not been described previously. Rare genetic defects (10 or fewer patients per gene) were identified in 20% of the patients. Among 967 probands with germline variants, defects were inherited in an autosomal dominant manner in 29%, X-linked in 34%, and autosomal recessive in 37%. Four females with non-random X-inactivation exhibited symptoms of X-linked diseases (BTK, WAS, CYBB, IKBKG gene defects). Despite a relatively low rate of consanguinity in Russia, 47.9% of autosomal recessive gene defects were found in a homozygous state. Notably, 28% of these cases carried "Slavic" mutation of the NBN gene or known hot-spot mutations in other genes. The diversity of IEI genetic forms and the high frequency of newly described variants underscore the genetic heterogeneity within the Russian IEI group. The new variants identified in this extensive cohort will enrich genetic databases.
Identifiants
pubmed: 39052144
doi: 10.1007/s10875-024-01767-w
pii: 10.1007/s10875-024-01767-w
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
165Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Tangye SG, Al-Herz W, Bousfiha A, Cunningham-Rundles C, Franco JL, Holland SM, Klein C, Morio T, Oksenhendler E, Picard C, Puel A, Puck J, Seppänen MRJ, Somech R, Su HC, Sullivan KE, Torgerson TR, Meyts I. Human inborn errors of immunity: 2022 update on the classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol. 2022;42(7):1473–507. https://doi.org/10.1007/s10875-022-01289-3 .
doi: 10.1007/s10875-022-01289-3
pubmed: 35748970
pmcid: 9244088
Bousfiha A, Moundir A, Tangye SG, et al. The 2022 update of IUIS Phenotypical classification for human inborn errors of immunity. J Clin Immunol. 2022;42(7):1508–20. https://doi.org/10.1007/s10875-022-01352-z .
doi: 10.1007/s10875-022-01352-z
pubmed: 36198931
Oliveira JB, Fleisher TA. Laboratory evaluation of primary immunodeficiencies. J Allergy Clin Immunol. 2010;7. https://doi.org/10.3389/fimmu.2016.00466 .
Gallo V, Dotta L, Giardino G, Cirillo E, Lougaris V, D’Assante R, et al. Diagnostics of primary immunodeficiencies through next generation sequencing. Front Immunol. 2016;7. https://doi.org/10.3389/fimmu.2016.00466 .
Heimall JR, Hagin D, Hajjar J, Henrickson SE, Hernandez-Trujillo HS, Tan Y, et al. Use of genetic testing for primary immunodeficiency patients. J Clin Immunol. 2018;38:320–9. https://doi.org/10.1007/s10875-018-0489-8 .
doi: 10.1007/s10875-018-0489-8
pubmed: 29675737
Notarangelo LD, Sorensen R. Is it necessary to identify molecular defects in primary immunodeficiency disease? J Allergy Clin Immunol. 2008;122:1069–73. https://doi.org/10.1016/j.jaci.2008.08.038 .
doi: 10.1016/j.jaci.2008.08.038
pubmed: 18992927
Raje N, Soden S, Swanson D, Ciaccio CE, Kingsmore SF, Dinwiddie DL. Utility of next generation sequencing in clinical primary immunodeficiencies. Curr Allergy Asthma Rep. 2014;14:468. https://doi.org/10.1007/s11882-014-0468-y .
doi: 10.1007/s11882-014-0468-y
pubmed: 25149170
pmcid: 4582650
Fischer A. Gene therapy for inborn errors of immunity: past, present and future. Nat Rev Immunol. 2023;397–408. https://doi.org/10.1038/s41577-022-00800-6 .
Abolhassani H, Azizi G, Sharifi L, et al. Global systematic review of primary immunodeficiency registries. Expert Rev Clin Immunol. 2020;16(7):717–32. https://doi.org/10.1080/1744666X.2020.1801422 .
doi: 10.1080/1744666X.2020.1801422
pubmed: 32720819
El-Helou SM, Biegner AK, Bode S, Ehl SR, Heeg M, Maccari ME, et al. The German National registry of primary immunodeficiencies (2012–2017). Front Immunol. 2019;10:1272. https://doi.org/10.3389/fimmu.2019.01272 .
doi: 10.3389/fimmu.2019.01272
pubmed: 31379802
pmcid: 6659583
Marschall K, Hoernes M, Bitzenhofer-Grüber M, Jandus P, Duppenthaler A, Wuillemin WA, et al. The Swiss National Registry for primary immunodeficiencies: report on the first 6 years’ activity from 2008 to (2014). Clin Exp Immunol. 2015;182:45–50. https://doi.org/10.1111/cei.12661 .
doi: 10.1111/cei.12661
pubmed: 26031847
pmcid: 4578507
Naidoo R, Ungerer L, Cooper M, et al. Primary immunodeficiencies: a 27-year review at a tertiary paediatric hospital in Cape Town, South Africa. J Clin Immunol. 2011;31(1):99–105.
doi: 10.1007/s10875-010-9465-7
pubmed: 20859665
Deripapa E, Balashov D, Rodina Y, et al. Prospective study of a cohort of Russian Nijmegen Breakage Syndrome patients demonstrating predictive value of low Kappa-Deleting recombination Excision Circle (KREC) numbers and beneficial effect of hematopoietic stem cell transplantation (HSCT). Front Immunol. 2017;8:807. https://doi.org/10.3389/fimmu.2017.00807 .
doi: 10.3389/fimmu.2017.00807
pubmed: 28791007
pmcid: 5523727
Alghamdi M. Familial Mediterranean fever, review of the literature. Clin Rheumatol. 2017;36(8):1707–13. https://doi.org/10.1007/s10067-017-3715-5 .
doi: 10.1007/s10067-017-3715-5
pubmed: 28624931
Ma CS, Freeman AF, Fleisher TA. Inborn errors of immunity: a role for functional testing and Flow Cytometry in Aiding Clinical diagnosis. J Allergy Clin Immunol Pract. 2023;11(6):1579–91. https://doi.org/10.1016/j.jaip.2023.03.049 .
doi: 10.1016/j.jaip.2023.03.049
pubmed: 37054882
pmcid: 10330903
European Society for Immunodeficiencies. Registry Working Party Diagnosis Criteria. (2018). Available online at: https://esid.org/Working-Parties/Registry-Working-Party/Diagnosis-criteria (accessed December 3, 2019).
Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–23. https://doi.org/10.1038/gim.2015.30 .
doi: 10.1038/gim.2015.30
pubmed: 25741868
pmcid: 4544753
O’Connell J. The basics of RT-PCR. In: O’Connell J, editor. RT-PCR protocols. Methods in Molecular Biology. Volume 193. Humana; 2002.
Mitui M, Bernatowska E, Pietrucha B, et al. ATM gene founder haplotypes and associated mutations in Polish families with ataxia-telangiectasia. Ann Hum Genet. 2005;69(Pt 6):657–64. https://doi.org/10.1111/j.1529-8817.2005.00199.x .
doi: 10.1111/j.1529-8817.2005.00199.x
pubmed: 16266405
Suspitsin E, Sokolenko A, Bizin I, et al. ATM mutation spectrum in Russian children with ataxia-telangiectasia. Eur J Med Genet. 2020;63(1):103630. https://doi.org/10.1016/j.ejmg.2019.02.003 .
doi: 10.1016/j.ejmg.2019.02.003
pubmed: 30772474
Husebye ES, Anderson MS, Kämpe O. Autoimmune polyendocrine syndromes. N Engl J Med. 2018;378(12):1132–41. https://doi.org/10.1056/NEJMra1713301 .
doi: 10.1056/NEJMra1713301
pubmed: 29562162
pmcid: 6007870
Garelli S, Dalla Costa M, Sabbadin C, et al. Autoimmune polyendocrine syndrome type 1: an Italian survey on 158 patients. J Endocrinol Invest. 2021;44:2493–510. https://doi.org/10.1007/s40618-021-01585-6 .
doi: 10.1007/s40618-021-01585-6
pubmed: 34003463
pmcid: 8502131
Heino M, Pr Peterson, Kudoh J, Shimizu N, Antonarakis SE, Scott HS, et al. APECED mutations in the autoimmune regulator (AIRE) gene. Hum Mutat. 2001;18(3):205–11. https://doi.org/10.1002/humu.1176 .
doi: 10.1002/humu.1176
pubmed: 11524731
Papendorf JJ, Ebstein F, Alehashemi S, et al. Identification of eight novel proteasome variants in five unrelated cases of proteasome-associated autoinflammatory syndromes (PRAAS). Front Immunol. 2023;14:1190104. https://doi.org/10.3389/fimmu.2023.1190104 .
doi: 10.3389/fimmu.2023.1190104
pubmed: 37600812
pmcid: 10436547
Deordieva EA, Shvets ОA, Serova ES, Pavlova AV, Raykina ЕV, Plyasunova SA, Mandzhieva AI, Pshonkin AV, Shcherbina A. Clericusio syndrome (poikiloderm with neutropenia). Pediatr Hematology/Oncology Immunopathol. 2019;18(3):96–103. https://doi.org/10.24287/1726-1708-2019-18-3-96-103 . (In Russ.).
doi: 10.24287/1726-1708-2019-18-3-96-103
Al-Herz W, Al-Ahmad M, Al-Khabaz A, Husain A, Sadek A, Othman Y. The Kuwait National Primary Immunodeficiency Registry 2004–2018. Front Immunol. 2019;10:1754. https://doi.org/10.3389/fimmu.2019.01754 .
doi: 10.3389/fimmu.2019.01754
pubmed: 31396239
pmcid: 6668014
Jindal AK, Pilania RK, Rawat A, Singh S. Primary Immunodeficiency disorders in India-A situational review. Front Immunol. 2017;8:714. https://doi.org/10.3389/fimmu.2017.00714 .
doi: 10.3389/fimmu.2017.00714
pubmed: 28674536
pmcid: 5474457
Zakharova V, Raykina E, Mersiyanova I, Kuzmenko N, et al. Cancer-causing MAP2K1 mutation in a mosaic patient with cardio-facio-cutaneous syndrome and immunodeficiency. Hum Mutat. 2022;43(12):1852–5. https://doi.org/10.1002/humu.24463 .
doi: 10.1002/humu.24463
pubmed: 36054331
Terentieva AI, Viktorova EA, Zaharova VV, Konovalov DV, Burlakov VI, Rodina JA, Kuzmenko NB, Raikina EV, Kozlova AL. Clinical case of proteasome-associated autoinflammatory syndrome-2 (PRAAS2). Pediatr Hematology/Oncology Immunopathol. 2019;18(2):108–13. https://doi.org/10.24287/1726-1708-2019-18-2-108-113 . (In Russ.).
doi: 10.24287/1726-1708-2019-18-2-108-113
Le Coz C, Nguyen DN, Su C, et al. Constrained chromatin accessibility in PU.1-mutated agammaglobulinemia patients. J Exp Med. 2021;218(7):e20201750. https://doi.org/10.1084/jem.20201750 .
doi: 10.1084/jem.20201750
pubmed: 33951726
pmcid: 8105723
Bousfiha AA, Jeddane L, El Hafidi N, et al. First report on the Moroccan registry of primary immunodeficiencies: 15 years of experience (1998–2012). J Clin Immunol. 2014;34(4):459–68. https://doi.org/10.1007/s10875-014-0005-8 .
doi: 10.1007/s10875-014-0005-8
pubmed: 24619622
Al-Saud B, Al-Mousa H, Al Gazlan S, et al. Primary Immunodeficiency diseases in Saudi Arabia: a Tertiary Care Hospital experience over a period of three years (2010–2013). J Clin Immunol. 2015;35(7):651–60. https://doi.org/10.1007/s10875-015-0197-6 .
doi: 10.1007/s10875-015-0197-6
pubmed: 26395454
Qureshi S, Mir F, Junejo S, et al. The spectrum of primary immunodeficiencies at a tertiary care hospital in Pakistan. World Allergy Organ J. 2020;13(7):100133. https://doi.org/10.1016/j.waojou.2020.100133 .
doi: 10.1016/j.waojou.2020.100133
pubmed: 32793328
pmcid: 7414008
Cekic S, Metin A, Aytekin C, et al. The evaluation of malignancies in Turkish primary immunodeficiency patients; a multicenter study. Pediatr Allergy Immunol. 2020;31(5):528–36. https://doi.org/10.1111/pai.13231 .
doi: 10.1111/pai.13231
pubmed: 32060950
Al-Herz W, Chou J, Delmonte OM, et al. Comprehensive Genetic results for primary Immunodeficiency disorders in a highly Consanguineous Population. Front Immunol. 2019;9:3146. https://doi.org/10.3389/fimmu.2018.03146 .
doi: 10.3389/fimmu.2018.03146
pubmed: 30697212
pmcid: 6340972
Aghamohammadi A, Mohammadinejad P, Abolhassani H, et al. Primary immunodeficiency disorders in Iran: update and new insights from the third report of the national registry. J Clin Immunol. 2014;34(4):478–90. https://doi.org/10.1007/s10875-014-0001-z .
doi: 10.1007/s10875-014-0001-z
pubmed: 24659230
Bulayeva KB. Overview of genetic-epidemiological studies in ethnically and demographically diverse isolates of Dagestan, Northern Caucasus, Russia. Croat Med J. 2006;47(4):641–8.
pubmed: 16912990
pmcid: 2080444
Boocock GR, Morrison JA, Popovic M, et al. Mutations in SBDS are associated with Shwachman-Diamond syndrome. Nat Genet. 2003;33(1):97–101. https://doi.org/10.1038/ng1062 .
doi: 10.1038/ng1062
pubmed: 12496757
Berody S, Galeotti C, Koné-Paut I, Piram M. A restrospective survey of patients’s journey before the diagnosis of mevalonate kinase deficiency. Joint Bone Spine. 2015;82(4):240–4. https://doi.org/10.1016/j.jbspin.2014.12.011 .
doi: 10.1016/j.jbspin.2014.12.011
pubmed: 25677409
Boursier G, Piram M, Rittore C, Sarrabay G, Touitou I. Phenotypic associations of PSTPIP1 sequence variants in PSTPIP1-Associated Autoinflammatory diseases. J Invest Dermatol. 2021;141(5):1141–7. https://doi.org/10.1016/j.jid.2020.08.028 .
doi: 10.1016/j.jid.2020.08.028
pubmed: 33218716
Jamee M, Moniri S, Zaki-Dizaji M, et al. Clinical, immunological, and genetic features in patients with activated PI3Kδ syndrome (APDS): a systematic review. Clin Rev Allergy Immunol. 2020;59(3):323–33. https://doi.org/10.1007/s12016-019-08738-9 .
doi: 10.1007/s12016-019-08738-9
pubmed: 31111319
Santangelo L, Gigante M, Netti GS, et al. A novel SMARCAL1 mutation associated with a mild phenotype of Schimke Immuno-osseous dysplasia (SIOD). BMC Nephrol. 2014;15:41. https://doi.org/10.1186/1471-2369-15-41 .
doi: 10.1186/1471-2369-15-41
pubmed: 24589093
pmcid: 3973878
Lipska-Ziętkiewicz BS, Gellermann J, Boyer O, et al. Low renal but high extrarenal phenotype variability in Schimke Immuno-osseous dysplasia. PLoS ONE. 2017;12(8):e0180926. https://doi.org/10.1371/journal.pone.0180926 . Published 2017 Aug 10.
doi: 10.1371/journal.pone.0180926
pubmed: 28796785
pmcid: 5552097
Sharapova SO, Skomska-Pawliszak M, Rodina YA, et al. The clinical and genetic spectrum of 82 patients with RAG Deficiency including a c.256_257delAA founder variant in slavic countries. Front Immunol. 2020;11:900. https://doi.org/10.3389/fimmu.2020.00900 .
doi: 10.3389/fimmu.2020.00900
pubmed: 32655540
pmcid: 7325958
Coutinho G, Mitui M, Campbell C, et al. Five haplotypes account for 55% of ATM mutations in Brazilian patients with ataxia telangiectasia: seven new mutations. Am J Med Genet A. 2004;126A(1):33–40. https://doi.org/10.1002/ajmg.a.20570 .
doi: 10.1002/ajmg.a.20570
pubmed: 15039971
van Os NJH, van Deuren M, Weemaes CMR, van Gaalen J, Hijdra H, Taylor AMR, van de Warrenburg BPC, Willemsen MAAP. Classic ataxia-telangiectasia: the phenotype of long-term survivors. J Neurol. 2020;267(3):830–7. https://doi.org/10.1007/s00415-019-09641-1 .
doi: 10.1007/s00415-019-09641-1
pubmed: 31776720
Seemanova E, Varon R, Vejvalka J, Jarolim P, Seeman P, Chrzanowska KH, Digweed M, Resnick I, Kremensky I, Saar K, Hoffmann K, Dutrannoy V, Karbasiyan M, Ghani M, Barić I, Tekin M, Kovacs P, Krawczak M, Reis A, Sperling K, Nothnagel M. The slavic NBN founder mutation: a role for Reproductive Fitness? PLoS ONE. 2016;11(12):e0167984. https://doi.org/10.1371/journal.pone.0167984 . PMID: 27936167; PMCID: PMC5148078.
doi: 10.1371/journal.pone.0167984
pubmed: 27936167
pmcid: 5148078
Park YH, Remmers EF, Lee W, Ombrello AK, Chung LK, Shilei Z, Stone DL, Ivanov MI, Loeven NA, Barron KS, Hoffmann P, Nehrebecky M, Akkaya-Ulum YZ, Sag E, Balci-Peynircioglu B, Aksentijevich I, Gül A, Rotimi CN, Chen H, Bliska JB, Ozen S, Kastner DL, Shriner D, Chae JJ. Ancient familial Mediterranean fever mutations in human pyrin and resistance to Yersinia pestis. Nat Immunol. 2020;21(8):857–67. https://doi.org/10.1038/s41590-020-0705-6 . Epub 2020 Jun 29. PMID: 32601469; PMCID: PMC7381377.
doi: 10.1038/s41590-020-0705-6
pubmed: 32601469
pmcid: 7381377
Youness A, Miquel C-H, Guéry J-C. Escape from X chromosome inactivation and the female predominance in Autoimmune diseases. Int J Mol Sci. 2021;22:1114. https://doi.org/10.3390/ijms22031114 .
doi: 10.3390/ijms22031114
pubmed: 33498655
pmcid: 7865432
Eguchi M, Yagi C, Tauchi H, Kobayashi M, Ishii E, Eguchi-Ishimae M. Exon skipping in CYBB mRNA and skewed inactivation of X chromosome cause late-onset chronic granulomatous disease. Pediatr Hematol Oncol. 2018;35(5–6):341–9. https://doi.org/10.1080/08880018.2018.1522402 .
doi: 10.1080/08880018.2018.1522402
pubmed: 30633606
Lewis EM, Singla M, Sergeant S, Koty PP, McPhail LC. X-linked chronic granulomatous disease secondary to skewed X chromosome inactivation in a female with a novel CYBB mutation and late presentation. Clin Immunol. 2008;129(2):372–80. https://doi.org/10.1016/j.clim.2008.07.022 .
doi: 10.1016/j.clim.2008.07.022
pubmed: 18774749
pmcid: 2599929
Staels F, Collignon T, Betrains A, et al. Monogenic adult-onset inborn errors of immunity. Front Immunol. 2021;12:753978. https://doi.org/10.3389/fimmu.2021.753978 .
doi: 10.3389/fimmu.2021.753978
pubmed: 34867986
pmcid: 8635491
Maffucci P, Filion CA, Boisson B, et al. Genetic diagnosis using whole Exome sequencing in common variable immunodeficiency. Front Immunol. 2016;7:220. https://doi.org/10.3389/fimmu.2016.00220 .
doi: 10.3389/fimmu.2016.00220
pubmed: 27379089
pmcid: 4903998
Seleman M, Hoyos-Bachiloglu R, Geha RS, Chou J. Uses of next-generation sequencing technologies for the diagnosis of primary immunodeficiencies. Front Immunol. 2017;8:847. https://doi.org/10.3389/fimmu.2017.00847 .
doi: 10.3389/fimmu.2017.00847
pubmed: 28791010
pmcid: 5522848
Seidel MG, Kindle G, Gathmann B, et al. The European Society for Immunodeficiencies (ESID) Registry Working definitions for the clinical diagnosis of inborn errors of immunity. J Allergy Clin Immunol Pract. 2019;7(6):1763–70. https://doi.org/10.1016/j.jaip.2019.02.004 .
doi: 10.1016/j.jaip.2019.02.004
pubmed: 30776527
Abraham RS, Butte MJ. The New Wholly Trinity in the diagnosis and management of inborn errors of immunity. J Allergy Clin Immunol Pract. 2021;9(2):613–25. https://doi.org/10.1016/j.jaip.2020.11.044 .
doi: 10.1016/j.jaip.2020.11.044
pubmed: 33551037
Sullivan KE. The scary world of variants of uncertain significance (VUS): a hitchhiker’s guide to interpretation. J Allergy Clin Immunol. 2021;147(2):492–4. https://doi.org/10.1016/j.jaci.2020.06.011 .
doi: 10.1016/j.jaci.2020.06.011
pubmed: 32598897