Adapting and facilitating responses in mouse somatosensory cortex are dynamic and shaped by experience.
barrel cortex
calcium imaging
facilitation
habituation
population drift
sensitization
stimulus-specific adaptation
two-photon
whisker
Journal
Current biology : CB
ISSN: 1879-0445
Titre abrégé: Curr Biol
Pays: England
ID NLM: 9107782
Informations de publication
Date de publication:
20 Jul 2024
20 Jul 2024
Historique:
received:
22
12
2023
revised:
10
05
2024
accepted:
26
06
2024
medline:
27
7
2024
pubmed:
27
7
2024
entrez:
26
7
2024
Statut:
aheadofprint
Résumé
Sensory adaptation is the process whereby brain circuits adjust neuronal activity in response to redundant sensory stimuli. Although sensory adaptation has been extensively studied for individual neurons on timescales of tens of milliseconds to a few seconds, little is known about it over longer timescales or at the population level. We investigated population-level adaptation in the barrel field of the mouse somatosensory cortex (S1BF) using in vivo two-photon calcium imaging and Neuropixels recordings in awake mice. Among stimulus-responsive neurons, we found both adapting and facilitating neurons, which decreased or increased their firing, respectively, with repetitive whisker stimulation. The former outnumbered the latter by 2:1 in layers 2/3 and 4; hence, the overall population response of mouse S1BF was slightly adapting. We also discovered that population adaptation to one stimulus frequency (5 Hz) does not necessarily generalize to a different frequency (12.5 Hz). Moreover, responses of individual neurons to repeated rounds of stimulation over tens of minutes were strikingly heterogeneous and stochastic, such that their adapting or facilitating response profiles were not stable across time. Such representational drift was particularly striking when recording longitudinally across 8-9 days, as adaptation profiles of most whisker-responsive neurons changed drastically from one day to the next. Remarkably, repeated exposure to a familiar stimulus paradoxically shifted the population away from strong adaptation and toward facilitation. Thus, the adapting vs. facilitating response profile of S1BF neurons is not a fixed property of neurons but rather a highly dynamic feature that is shaped by sensory experience across days.
Identifiants
pubmed: 39059392
pii: S0960-9822(24)00854-6
doi: 10.1016/j.cub.2024.06.070
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
Copyright © 2024 Elsevier Inc. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of interests The authors declare no competing interests.