Distinct saliva DNA methylation profiles in relation to treatment outcome in youth with posttraumatic stress disorder.


Journal

Translational psychiatry
ISSN: 2158-3188
Titre abrégé: Transl Psychiatry
Pays: United States
ID NLM: 101562664

Informations de publication

Date de publication:
26 Jul 2024
Historique:
received: 22 12 2021
accepted: 25 04 2023
revised: 20 04 2023
medline: 27 7 2024
pubmed: 27 7 2024
entrez: 26 7 2024
Statut: epublish

Résumé

In youth with posttraumatic stress disorder (PTSD) non-response rates after treatment are often high. Epigenetic mechanisms such as DNA methylation (DNAm) have previously been linked to PTSD pathogenesis, additionally DNAm may affect response to (psychological) therapies. Besides investigating the direct link between DNAm and treatment response, it might be helpful to investigate the link between DNAm and previously associated biological mechanisms with treatment outcome. Thereby gaining a deeper molecular understanding of how psychotherapy (reflecting a change in the environment) relates to epigenetic changes and the adaptability of individuals. To date, limited research is done in clinical samples and no studies have been conducted in youth. Therefore we conducted a study in a Dutch cohort of youth with and without PTSD (n = 87, age 8-18 years). We examined the cross-sectional and longitudinal changes of saliva-based genome-wide DNA methylation (DNAm) levels, and salivary cortisol secretion. The last might reflect possible abbreviations on the hypothalamic-pituitary- adrenal (HPA) axis. The HPA-axis is previously linked to DNAm and the development and recovery of PTSD. Youth were treated with 8 sessions of either Eye Movement Reprocessing Therapy (EMDR) or Trauma Focused Cognitive behavioral Therapy (TF-CBT). Our epigenome wide approach showed distinct methylation between treatment responders and non-responders on C18orf63 gene post-treatment. This genomic region is related to the PAX5 gene, involved in neurodevelopment and inflammation response. Additionally, our targeted approach indicated that there were longitudinal DNAm changes in successfully treated youth at the CRHR2 gene. Methylation at this gene was further correlated with cortisol secretion pre- and post-treatment. Awaiting replication, findings of this first study in youth point to molecular pathways involved in stress response and neuroplasticity to be associated with treatment response.

Identifiants

pubmed: 39060246
doi: 10.1038/s41398-024-02892-1
pii: 10.1038/s41398-024-02892-1
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

309

Informations de copyright

© 2024. The Author(s).

Références

Alisic E, Zalta AK, Van Wesel F, Larsen SE, Hafstad GS, Hassanpour K, et al. Rates of post-traumatic stress disorder in trauma-exposed children and adolescents: meta-analysis. Br J Psychiatry. 2014;204:335–40.
pubmed: 24785767 doi: 10.1192/bjp.bp.113.131227
Association AP, Association AP. Diagnostic and statistical manual of mental disorders: DSM-5. Arlington, VA. (2013).
Carrion VG, Weems CF, Ray R, Reiss AL. Toward an empirical definition of pediatric PTSD: The phenomenology of PTSD symptoms in youth. J Am Acad Child Adolesc Psychiatry. 2002;41:166–73.
pubmed: 11837406 doi: 10.1097/00004583-200202000-00010
Molnar BE, Berkman LF, Buka SL. Psychopathology, childhood sexual abuse and other childhood adversities: relative links to subsequent suicidal behaviour in the US. Psychol. Med. 2001;31:965–77.
pubmed: 11513382 doi: 10.1017/S0033291701004329
Morina N, Koerssen R, Pollet TV. Interventions for children and adolescents with posttraumatic stress disorder: A meta-analysis of comparative outcome studies. Clin Psychol Rev. 2016;47:41–54.
pubmed: 27340855 doi: 10.1016/j.cpr.2016.05.006
Mavranezouli I, Megnin‐Viggars O, Daly C, Dias S, Stockton S, Meiser‐Stedman R, et al. Research review: psychological and psychosocial treatments for children and young people with post‐traumatic stress disorder: a network meta‐analysis. J Child Psychol Psychiatry. 2020;61:18–29.
pubmed: 31313834 doi: 10.1111/jcpp.13094
Leenarts LE, Diehle J, Doreleijers TA, Jansma EP, Lindauer RJ. Evidence-based treatments for children with trauma-related psychopathology as a result of childhood maltreatment: a systematic review. Eur Child Adolesc Psychiatry. 2013;22:269–83.
pubmed: 23266844 doi: 10.1007/s00787-012-0367-5
Bennett RS, Denne M, McGuire R, Hiller RM. A systematic review of controlled-trials for PTSD in maltreated children and adolescents. Child Maltreatment. 2020;26.3:325–43.
Lindebø Knutsen M, Sachser C, Holt T, Goldbeck L, Jensen TK. Trajectories and possible predictors of treatment outcome for youth receiving trauma-focused cognitive behavioral therapy. Psychol Trauma: Theory, Res, Pract, Policy. 2020;12:336.
doi: 10.1037/tra0000482
Bryant R, Felmingham K, Kemp A, Das P, Hughes G, Peduto A, et al. Amygdala and ventral anterior cingulate activation predicts treatment response to cognitive behaviour therapy for post-traumatic stress disorder. Psychol Med. 2008;38:555–61.
pubmed: 18005496 doi: 10.1017/S0033291707002231
Vinkers CH, Geuze E, van Rooij SJ, Kennis M, Schür RR, Nispeling DM, et al. Successful treatment of post-traumatic stress disorder reverses DNA methylation marks. Molecular psychiatry. 2021; 26.4:1264–71.
Yehuda R, Daskalakis NP, Desarnaud F, Makotkine I, Lehrner A, Koch E, et al. Epigenetic biomarkers as predictors and correlates of symptom improvement following psychotherapy in combat veterans with PTSD. Front Psychiatry. 2013;4:118.
pubmed: 24098286 pmcid: 3784793 doi: 10.3389/fpsyt.2013.00118
Yang R, Xu C, Bierer LM, Flory JD, Gautam A, Bader HN, et al. Longitudinal genome-wide methylation study of PTSD treatment using prolonged exposure and hydrocortisone. Transl Psychiatry. 2021;11:1–7.
doi: 10.1038/s41398-021-01513-5
García-Carpizo V, Ruiz Llorente L, Fernández Fraga M, Aranda A. The growing role of gene methylation on endocrine function. J Mol Endocrinol. 2011;47:R75–89.
Schübeler D. Function and information content of DNA methylation. Nature 2015;517:321–6.
pubmed: 25592537 doi: 10.1038/nature14192
Feinberg AP. Phenotypic plasticity and the epigenetics of human disease. Nature 2007;447:433–40.
pubmed: 17522677 doi: 10.1038/nature05919
Yehuda R, Bierer LM. The relevance of epigenetics to PTSD: Implications for the DSM‐V. J Trauma Stress. 2009;22:427–34.
pubmed: 19813242 pmcid: 2891396 doi: 10.1002/jts.20448
McGowan PO, Sasaki A, D’alessio AC, Dymov S, Labonté B, Szyf M, et al. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci. 2009;12:342–8.
pubmed: 19234457 pmcid: 2944040 doi: 10.1038/nn.2270
Labonte B, Yerko V, Gross J, Mechawar N, Meaney MJ, Szyf M, et al. Differential glucocorticoid receptor exon 1B, 1C, and 1H expression and methylation in suicide completers with a history of childhood abuse. Biol Psychiatry. 2012;72:41–8.
pubmed: 22444201 doi: 10.1016/j.biopsych.2012.01.034
Meir Drexler S, Wolf OT. Stress and memory consolidation. Cognitive neuroscience of memory consolidation: Springer. (2017). 285–300.
Dick A, Provencal N. Central neuroepigenetic regulation of the hypothalamic–pituitary–adrenal axis. Prog Mol Biol Transl Sci. 2018;158:105–27.
pubmed: 30072050 doi: 10.1016/bs.pmbts.2018.04.006
Houtepen LC, Vinkers CH, Carrillo-Roa T, Hiemstra M, Van Lier PA, Meeus W, et al. Genome-wide DNA methylation levels and altered cortisol stress reactivity following childhood trauma in humans. Nat Commun. 2016;7:1–10.
doi: 10.1038/ncomms10967
Roque AD, Craske MG, Treanor M, Rosenfield D, Ritz T, Meuret AE. Stress-induced cortisol reactivity as a predictor of success in treatment for affective dimensions. Psychoneuroendocrinology 2020;116:104646.
pubmed: 32200225 pmcid: 8978549 doi: 10.1016/j.psyneuen.2020.104646
Fischer S, Schumacher T, Knaevelsrud C, Ehlert U, Schumacher S. Genes and hormones of the hypothalamic–pituitary–adrenal axis in post-traumatic stress disorder. What is their role symptom Expr Treat response? J Neural Transm. 2021;128:1279–86.
Zantvoord JB, Ensink JB, op den Kelder R, Wessel AM, Lok A, Lindauer RJ. Pretreatment cortisol predicts trauma-focused psychotherapy response in youth with (partial) posttraumatic stress disorder. Psychoneuroendocrinology 2019;109:104380.
pubmed: 31352130 doi: 10.1016/j.psyneuen.2019.104380
Carleial S, Nätt D, Unternährer E, Elbert T, Robjant K, Wilker S, et al. DNA methylation changes following narrative exposure therapy in a randomized controlled trial with female former child soldiers. Sci Rep. 2021;11:1–11.
doi: 10.1038/s41598-021-98067-9
Meaney MJ, Szyf M. Environmental programming of stress responses through DNA methylation: life at the interface between a dynamic environment and a fixed genome. Dialogues Clin Neurosci. 2005;7:103.
pubmed: 16262207 pmcid: 3181727 doi: 10.31887/DCNS.2005.7.2/mmeaney
Weaver IC, Meaney MJ, Szyf M. Maternal care effects on the hippocampal transcriptome and anxiety-mediated behaviors in the offspring that are reversible in adulthood. Proc Natl Acad Sci. 2006;103:3480–5.
pubmed: 16484373 pmcid: 1413873 doi: 10.1073/pnas.0507526103
Cisler JM, Herringa RJ. Posttraumatic stress disorder and the developing adolescent brain. Biol Psychiatry. 2021;89:144–51.
pubmed: 32709416 doi: 10.1016/j.biopsych.2020.06.001
Daskalakis NP, Bagot RC, Parker KJ, Vinkers CH, de Kloet ER. The three-hit concept of vulnerability and resilience: toward understanding adaptation to early-life adversity outcome. Psychoneuroendocrinology 2013;38:1858–73.
pubmed: 23838101 pmcid: 3773020 doi: 10.1016/j.psyneuen.2013.06.008
Nederhof E, Schmidt MV. Mismatch or cumulative stress: toward an integrated hypothesis of programming effects. Physiol Behav. 2012;106:691–700.
pubmed: 22210393 doi: 10.1016/j.physbeh.2011.12.008
Agorastos A, Pervanidou P, Chrousos GP, Baker DG. Developmental trajectories of early life stress and trauma: a narrative review on neurobiological aspects beyond stress system dysregulation. Front Psychiatry. 2019;10:118.
pubmed: 30914979 pmcid: 6421311 doi: 10.3389/fpsyt.2019.00118
Rutten BP, Vermetten E, Vinkers CH, Ursini G, Daskalakis NP, Pishva E, et al. Longitudinal analyses of the DNA methylome in deployed military servicemen identify susceptibility loci for post-traumatic stress disorder. Mol Psychiatry. 2018;23:1145–56.
pubmed: 28630453 doi: 10.1038/mp.2017.120
Santos HP Jr, Bhattacharya A, Martin EM, Addo K, Psioda M, Smeester L, et al. Epigenome-wide DNA methylation in placentas from preterm infants: association with maternal socioeconomic status. Epigenetics 2019;14:751–65.
pubmed: 31062658 pmcid: 6615526 doi: 10.1080/15592294.2019.1614743
Nelson CA III. Hazards to early development: the biological embedding of early life adversity. Neuron 2017;96:262–6.
pubmed: 29024653 doi: 10.1016/j.neuron.2017.09.027
Chin-Lun Hung G, Hahn J, Alamiri B, Buka SL, Goldstein JM, Laird N, et al. Socioeconomic disadvantage and neural development from infancy through early childhood. Int J Epidemiol. 2015;44:1889–99.
pubmed: 26675752 pmcid: 4715254 doi: 10.1093/ije/dyv303
Hammamieh R, Chakraborty N, Gautam A, Muhie S, Donohue D, Daigle BJJ, et al. Whole-Genome DNA Methylation Status Associated with Clinical PTSD Measures of OIF/OEF Veterans (Open Access). US Army Center for Environmental Health Research Fort Detrick United States; (2017).
Dunn EC, Wang M-J, Perlis RH. A Summary of Recent Updates on the Genetic Determinants of Depression. Major Depressive Disorder: Elsevier. (2020)1–27.
Thompson JA, Ziman M. Pax genes during neural development and their potential role in neuroregeneration. Prog Neurobiol. 2011;95:334–51.
pubmed: 21930183 doi: 10.1016/j.pneurobio.2011.08.012
Speer K, Upton D, Semple S, McKune A. Systemic low-grade inflammation in post-traumatic stress disorder: a systematic review. J Inflamm Res. 2018;11:111.
pubmed: 29606885 pmcid: 5868606 doi: 10.2147/JIR.S155903
Kim TD, Lee S, Yoon S. Inflammation in post-traumatic stress disorder (PTSD): a review of potential correlates of PTSD with a neurological perspective. Antioxidants 2020;9:107.
pubmed: 31991875 pmcid: 7070581 doi: 10.3390/antiox9020107
Katrinli S, Maihofer AX, Wani AH, Pfeiffer JR, Ketema E, Ratanatharathorn A, et al. Epigenome-wide meta-analysis of PTSD symptom severity in three military cohorts implicates DNA methylation changes in genes involved in immune system and oxidative stress. Mol Psychiatry. 2022;27:1720–8.
pubmed: 34992238 pmcid: 9106882 doi: 10.1038/s41380-021-01398-2
Al Jowf GI, Snijders C, Rutten BP, de Nijs L, Eijssen LM. The Molecular Biology of Susceptibility to Post-Traumatic Stress Disorder: Highlights of Epigenetics and Epigenomics. Int J Mol Sci. 2021;22:10743.
pubmed: 34639084 pmcid: 8509551 doi: 10.3390/ijms221910743
Smith AK, Ratanatharathorn A, Maihofer AX, Naviaux RK, Aiello AE, Amstadter AB, et al. Epigenome-wide meta-analysis of PTSD across 10 military and civilian cohorts identifies methylation changes in AHRR. Nat Commun. 2020;11:1–9.
doi: 10.1038/s41467-020-19615-x
Kumsta R. The role of epigenetics for understanding mental health difficulties and its implications for psychotherapy research. Psychol Psychotherapy: Theory, Res Pract. 2019;92:190–207.
doi: 10.1111/papt.12227
Miller MW, Wolf EJ, Sadeh N, Logue M, Spielberg JM, Hayes JP, et al. A novel locus in the oxidative stress-related gene ALOX12 moderates the association between PTSD and thickness of the prefrontal cortex. Psychoneuroendocrinology 2015;62:359–65.
pubmed: 26372769 pmcid: 4637246 doi: 10.1016/j.psyneuen.2015.09.003
Miller GE, Chen E, Sze J, Marin T, Arevalo JM, Doll R, et al. A functional genomic fingerprint of chronic stress in humans: blunted glucocorticoid and increased NF-κB signaling. Biol Psychiatry. 2008;64:266–72.
pubmed: 18440494 pmcid: 2581622 doi: 10.1016/j.biopsych.2008.03.017
Løkhammer S, Stavrum A-K, Polushina T, Aas M, Ottesen AA, Andreassen OA, et al. An epigenetic association analysis of childhood trauma in psychosis reveals possible overlap with methylation changes associated with PTSD. Transl Psychiatry. 2022;12:1–9.
doi: 10.1038/s41398-022-01936-8
Boukezzi S, El Khoury-Malhame M, Auzias G, Reynaud E, Rousseau P-F, Richard E, et al. Grey matter density changes of structures involved in Posttraumatic Stress Disorder (PTSD) after recovery following Eye Movement Desensitization and Reprocessing (EMDR) therapy. Psychiatry Res: Neuroimag. 2017;266:146–52.
doi: 10.1016/j.pscychresns.2017.06.009
Helpman L, Papini S, Chhetry BT, Shvil E, Rubin M, Sullivan GM, et al. PTSD remission after prolonged exposure treatment is associated with anterior cingulate cortex thinning and volume reduction. Depress Anxiety. 2016;33:384–91.
pubmed: 26864570 pmcid: 4846556 doi: 10.1002/da.22471
Zantvoord JB, Diehle J, Lindauer RJ. Using neurobiological measures to predict and assess treatment outcome of psychotherapy in posttraumatic stress disorder: systematic review. Psychother Psychosom. 2013;82:142–51.
pubmed: 23548778 doi: 10.1159/000343258
Zantvoord JB, Zhutovsky P, Ensink JB, den Kelder RO, van Wingen GA, Lindauer RJ. Trauma-focused psychotherapy response in youth with posttraumatic stress disorder is associated with changes in insula volume. J Psychiatr Res. 2021;132:207–14.
pubmed: 33189355 doi: 10.1016/j.jpsychires.2020.10.037
Wang W, Li W, Jiang W, Lin H, Wu Y, Wen Y, et al. Genome-wide DNA methylation analysis of cognitive function in middle and old-aged Chinese monozygotic twins. J Psychiatr Res. 2021;136:571–80.
pubmed: 33131831 doi: 10.1016/j.jpsychires.2020.10.031
Liaw CW, Lovenberg TW, Barry G, Oltersdorf T, Grigoriadis DE, de Souza EB. Cloning and characterization of the human corticotropin-releasing factor-2 receptor complementary deoxyribonucleic acid. Endocrinology 1996;137:72–7.
pubmed: 8536644 doi: 10.1210/endo.137.1.8536644
Bale TL, Contarino A, Smith GW, Chan R, Gold LH, Sawchenko PE, et al. Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress. Nat Genet. 2000;24:410–4.
pubmed: 10742108 doi: 10.1038/74263
Roozendaal B, McEwen BS. Chattarji S. Stress, memory and the amygdala. Nat Rev Neurosci. 2009;10:423–33.
pubmed: 19469026 doi: 10.1038/nrn2651
Castro-Vale I, Carvalho D, editors. The pathways between cortisol-related regulation genes and PTSD psychotherapy. Healthcare: MDPI; (2020).
Brenet F, Moh M, Funk P, Feierstein E, Viale AJ, Socci ND, et al. DNA methylation of the first exon is tightly linked to transcriptional silencing. PloS one. 2011;6:e14524.
pubmed: 21267076 pmcid: 3022582 doi: 10.1371/journal.pone.0014524
Tsai P-C, Bell JT. Power and sample size estimation for epigenome-wide association scans to detect differential DNA methylation. Int J Epidemiol. 2015;44:1429–41.
pubmed: 25972603 pmcid: 4588864 doi: 10.1093/ije/dyv041
Hoogsteder LM, Ten Thije L, Schippers EE, Stams GJJ A meta-analysis of the effectiveness of EMDR and TF-CBT in reducing trauma symptoms and externalizing behavior problems in adolescents. Int J Offender Ther Comparat Criminol. 2021; 0306624×211010290.
Kooij LH, van der Pol TM, Daams JG, Hein IM, Lindauer RJ. Common elements of evidence-based trauma therapy for children and adolescents. Eur J Psychotraumatol. 2022;13:2079845.
pubmed: 35759314 pmcid: 9225709 doi: 10.1080/20008198.2022.2079845
Hannon E, Knox O, Sugden K, Burrage J, Wong CC, Belsky DW, et al. Characterizing genetic and environmental influences on variable DNA methylation using monozygotic and dizygotic twins. PLoS Genet. 2018;14:e1007544.
pubmed: 30091980 pmcid: 6084815 doi: 10.1371/journal.pgen.1007544
Armstrong DA, Lesseur C, Conradt E, Lester BM, Marsit CJ. Global and gene‐specific DNA methylation across multiple tissues in early infancy: Implications for children’s health research. The. FASEB J. 2014;28:2088–97.
pubmed: 24478308 pmcid: 3986842 doi: 10.1096/fj.13-238402
Hoye JR, Cheishvili D, Yarger HA, Roth TL, Szyf M, Dozier M. Preliminary indications that the attachment and Biobehavioral catch-up intervention alters DNA methylation in maltreated children. Dev Psychopathol. 2020;32:1486–94.
pubmed: 31854285 doi: 10.1017/S0954579419001421
Diehle J, Opmeer BC, Boer F, Mannarino AP, Lindauer RJ. Trauma-focused cognitive behavioral therapy or eye movement desensitization and reprocessing: What works in children with posttraumatic stress symptoms? A randomized controlled trial. Eur Child Adolesc psychiatry. 2015;24:227–36.
pubmed: 24965797 doi: 10.1007/s00787-014-0572-5
Nader KO, Kriegler J, Blake D, Pynoos R, Newman E, Weathers F. Clinician Administered PTSD scale for children and adolescents. National Center for PTSD. 1996.
Verlinden E, van Laar YL, van Meijel EP, Opmeer BC, Beer R, De Roos C, et al. A parental tool to screen for posttraumatic stress in children: First psychometric results. J Trauma Stress. 2014;27:492–5.
pubmed: 25069420 doi: 10.1002/jts.21929
Diehle J, de Roos C, Boer F, Lindauer RJ A cross-cultural validation of the Clinician Administered PTSD Scale for Children and Adolescents in a Dutch population. Eur J Psychotraumatol. 2013;4.
Weathers FW, Keane TM, Davidson JR. Clinician‐Administered PTSD Scale: A review of the first ten years of research. Depress Anxiety. 2001;13:132–56.
pubmed: 11387733 doi: 10.1002/da.1029
Verlinden E, van Meijel EP, Opmeer BC, Beer R, de Roos C, Bicanic IA, et al. Characteristics of the Children’s Revised Impact of Event Scale in a clinically referred Dutch sample. J Trauma Stress. 2014;27:338–44.
pubmed: 24797017 doi: 10.1002/jts.21910
Perrin S, Meiser-Stedman R, Smith P. The Children’s Revised Impact of Event Scale (CRIES): Validity as a screening instrument for PTSD. Behav Cogn Psychother. 2005;33:487–98.
doi: 10.1017/S1352465805002419
Chorpita BF, Yim L, Moffitt C, Umemoto LA, Francis SE. Assessment of symptoms of DSM-IV anxiety and depression in children: A revised child anxiety and depression scale. Behav Res Ther. 2000;38:835–55.
pubmed: 10937431 doi: 10.1016/S0005-7967(99)00130-8
Kösters MP, Chinapaw MJ, Zwaanswijk M, van der Wal MF, Koot HM. Structure, reliability, and validity of the revised child anxiety and depression scale (RCADS) in a multi-ethnic urban sample of Dutch children. BMC Psychiatry. 2015;15:132.
pubmed: 26100511 pmcid: 4477605 doi: 10.1186/s12888-015-0509-7
Achenbach TM. Manual for the youth self-report and 1991 profile: Department of Psychiatry, University of Vermont Burlington; 1991.
Achenbach TM, Edelbrock CS. Manual for the child behavior checklist and revised child behavior profile. 1983.
Verhulst FC, van der Ende J, Koot JM. Youth Self-Report (YSR): Afdeling Kinder-en Jeugdpsychiatrie, Sophia Kinderziekenhuis/Academisch Ziekenhuis Rotterdam/Erasmus Universiteit Rotterdam; 1997.
Shalev AY, Orr SP, Pitman RK. Psychophysiologic response during script-driven imagery as an outcome measure in posttraumatic stress disorder. J Clin psychiatry. 1992;53:324–6.
pubmed: 1355475
Miller R, Plessow F, Kirschbaum C, Stalder TJPM. Classification criteria for distinguishing cortisol responders from nonresponders to psychosocial stress: evaluation of salivary cortisol pulse detection in panel designs. Psychosom Med. 2013;75:832–40.
pubmed: 24184845 doi: 10.1097/PSY.0000000000000002
Pruessner JC, Kirschbaum C, Meinlschmid G, Hellhammer DH. Two formulas for computation of the area under the curve represent measures of total hormone concentration versus time-dependent change. Psychoneuroendocrinology 2003;28:916–31.
pubmed: 12892658 doi: 10.1016/S0306-4530(02)00108-7

Auteurs

Judith B M Ensink (JBM)

Levvel, Academic Center for Child and Adolescent Psychiatry, Amsterdam, The Netherlands. j.ensink@amsterdamumc.nl.
Department of Child and Adolescent Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health, Amsterdam, The Netherlands. j.ensink@amsterdamumc.nl.
Amsterdam UMC, Department of Human Genetics, Genome Diagnostics laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands. j.ensink@amsterdamumc.nl.

Peter Henneman (P)

Amsterdam UMC, Department of Human Genetics, Genome Diagnostics laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands.

Andrea Venema (A)

Amsterdam UMC, Department of Human Genetics, Genome Diagnostics laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands.

Jasper B Zantvoord (JB)

Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Public Health, Amsterdam, the Netherlands.
Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands.

Rosanne Op den Kelder (RO)

Levvel, Academic Center for Child and Adolescent Psychiatry, Amsterdam, The Netherlands.
Research Institute of Child Development and Education, Amsterdam, The Netherlands, Amsterdam UMC, University of, Amsterdam, The Netherlands.

Marcel M A M Mannens (MMAM)

Amsterdam UMC, Department of Human Genetics, Genome Diagnostics laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands.

Ramón J L Lindauer (RJL)

Levvel, Academic Center for Child and Adolescent Psychiatry, Amsterdam, The Netherlands.
Department of Child and Adolescent Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health, Amsterdam, The Netherlands.

Classifications MeSH