Potential for Drug Repositioning of Midazolam as an Inhibitor of Inflammatory Bone Resorption.

bone resorption drug repositioning inflammation midazolam reactive oxygen species signal transduction

Journal

International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791

Informations de publication

Date de publication:
12 Jul 2024
Historique:
received: 10 06 2024
revised: 03 07 2024
accepted: 09 07 2024
medline: 27 7 2024
pubmed: 27 7 2024
entrez: 27 7 2024
Statut: epublish

Résumé

Drug repositioning is a method for exploring new effects of existing drugs, the safety and pharmacokinetics of which have been confirmed in humans. Here, we demonstrate the potential drug repositioning of midazolam (MDZ), which is used for intravenous sedation, as an inhibitor of inflammatory bone resorption. We cultured a mouse macrophage-like cell line with or without MDZ and evaluated its effects on the induction of differentiation of these cells into osteoclasts. For in vivo investigations, we administered lipopolysaccharide (LPS) together with MDZ (LPS+MDZ) to the parietal region of mice and evaluated the results based on the percentage of bone resorption and calvaria volume. Furthermore, we examined the effects of MDZ on the production of reactive oxygen species (ROS) in cells and on its signaling pathway. MDZ inhibited osteoclast differentiation and bone resorption activity. In animal studies, the LPS+MDZ group showed a decreasing trend associated with the rate of bone resorption. In addition, the bone matrix volume in the LPS+MDZ group was slightly higher than in the LPS only group. MDZ inhibited osteoclast differentiation by decreasing ROS production and thereby negatively regulating the p38 mitogen-activated protein kinase pathway. Thus, we propose that MDZ could potentially be used for treating inflammatory bone resorption, for example, in periodontal disease.

Identifiants

pubmed: 39062893
pii: ijms25147651
doi: 10.3390/ijms25147651
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Japan Society for the Promotion of Science
ID : JP21K09945
Organisme : Japan Society for the Promotion of Science
ID : JP22K10027

Auteurs

Hiroko Harigaya (H)

Department of Dental Anesthesiology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.

Risako Chiba-Ohkuma (R)

Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.

Takeo Karakida (T)

Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.

Ryuji Yamamoto (R)

Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.

Keiko Fujii-Abe (K)

Department of Dental Anesthesiology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.

Hiroshi Kawahara (H)

Department of Dental Anesthesiology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.

Yasuo Yamakoshi (Y)

Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.

Classifications MeSH