Host circuit engagement of human cortical organoids transplanted in rodents.
Journal
Nature protocols
ISSN: 1750-2799
Titre abrégé: Nat Protoc
Pays: England
ID NLM: 101284307
Informations de publication
Date de publication:
29 Jul 2024
29 Jul 2024
Historique:
received:
06
11
2023
accepted:
22
05
2024
medline:
30
7
2024
pubmed:
30
7
2024
entrez:
29
7
2024
Statut:
aheadofprint
Résumé
Human neural organoids represent promising models for studying neural function; however, organoids grown in vitro lack certain microenvironments and sensory inputs that are thought to be essential for maturation. The transplantation of patient-derived neural organoids into animal hosts helps overcome some of these limitations and offers an approach for neural organoid maturation and circuit integration. Here, we describe a method for transplanting human stem cell-derived cortical organoids (hCOs) into the somatosensory cortex of newborn rats. The differentiation of human induced pluripotent stem cells into hCOs occurs over 30-60 days, and the transplantation procedure itself requires ~0.5-1 hours per animal. The use of neonatal hosts provides a developmentally appropriate stage for circuit integration and allows the generation and experimental manipulation of a unit of human neural tissue within the cortex of a living animal host. After transplantation, animals can be maintained for hundreds of days, and transplanted hCO growth can be monitored by using brain magnetic resonance imaging. We describe the assessment of human neural circuit function in vivo by monitoring genetically encoded calcium responses and extracellular activity. To demonstrate human neuron-host functional integration, we also describe a procedure for engaging host neural circuits and for modulating animal behavior by using an optogenetic behavioral training paradigm. The transplanted human neurons can then undergo ex vivo characterization across modalities including dendritic morphology reconstruction, single-nucleus transcriptomics, optogenetic manipulation and electrophysiology. This approach may enable the discovery of cellular phenotypes from patient-derived cells and uncover mechanisms that contribute to human brain evolution from previously inaccessible developmental stages.
Identifiants
pubmed: 39075308
doi: 10.1038/s41596-024-01029-4
pii: 10.1038/s41596-024-01029-4
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : U.S. Department of Health & Human Services | NIH | National Institute on Drug Abuse (NIDA)
ID : DA050662
Informations de copyright
© 2024. Springer Nature Limited.
Références
Pașca, S. P. The rise of three-dimensional human brain cultures. Nature 553, 437–445 (2018).
pubmed: 29364288
doi: 10.1038/nature25032
Kelley, K. W. & Pașca, S. P. Human brain organogenesis: toward a cellular understanding of development and disease. Cell 185, 42–61 (2022).
pubmed: 34774127
doi: 10.1016/j.cell.2021.10.003
Mansour, A. A., Schafer, S. T. & Gage, F. H. Cellular complexity in brain organoids: current progress and unsolved issues. Semin. Cell Dev. Biol. 111, 32–39 (2021).
pubmed: 32499191
doi: 10.1016/j.semcdb.2020.05.013
Di Lullo, E. & Kriegstein, A. R. The use of brain organoids to investigate neural development and disease. Nat. Rev. Neurosci. 18, 573–584 (2017).
pubmed: 28878372
pmcid: 5667942
doi: 10.1038/nrn.2017.107
Velasco, S., Paulsen, B. & Arlotta, P. 3D brain organoids: studying brain development and disease outside the embryo. Annu. Rev. Neurosci. 43, 375–389 (2020).
pubmed: 32640930
doi: 10.1146/annurev-neuro-070918-050154
Qian, X., Song, H. & Ming, G. Brain organoids: advances, applications and challenges. Development 146, dev166074 (2019).
pubmed: 30992274
pmcid: 6503989
doi: 10.1242/dev.166074
Sasai, Y. Cytosystems dynamics in self-organization of tissue architecture. Nature 493, 318–326 (2013).
pubmed: 23325214
doi: 10.1038/nature11859
Lancaster, M. A. & Knoblich, J. A. Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345, 1247125 (2014).
pubmed: 25035496
doi: 10.1126/science.1247125
Pașca, S. P. et al. A nomenclature consensus for nervous system organoids and assembloids. Nature 609, 907–910 (2022).
pubmed: 36171373
pmcid: 10571504
doi: 10.1038/s41586-022-05219-6
Velasco, S. et al. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature 570, 523–527 (2019).
pubmed: 31168097
pmcid: 6906116
doi: 10.1038/s41586-019-1289-x
Qian, X. et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165, 1238–1254 (2016).
pubmed: 27118425
pmcid: 4900885
doi: 10.1016/j.cell.2016.04.032
Paşca, A. M. et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat. Methods 12, 671–678 (2015).
pubmed: 26005811
pmcid: 4489980
doi: 10.1038/nmeth.3415
Sloan, S. A. et al. Human astrocyte maturation captured in 3D cerebral cortical spheroids derived from pluripotent stem cells. Neuron 95, 779–790.e6 (2017).
pubmed: 28817799
pmcid: 5890820
doi: 10.1016/j.neuron.2017.07.035
Yoon, S.-J. et al. Reliability of human cortical organoid generation. Nat. Methods 16, 75–78 (2019).
pubmed: 30573846
doi: 10.1038/s41592-018-0255-0
Trevino, A. E. et al. Chromatin accessibility dynamics in a model of human forebrain development. Science 367, eaay1645 (2020).
pubmed: 31974223
pmcid: 7313757
doi: 10.1126/science.aay1645
Gordon, A. et al. Long-term maturation of human cortical organoids matches key early postnatal transitions. Nat. Neurosci. 24, 331–342 (2021).
pubmed: 33619405
pmcid: 8109149
doi: 10.1038/s41593-021-00802-y
Sloan, S. A., Andersen, J., Pașca, A. M., Birey, F. & Pașca, S. P. Generation and assembly of human brain region–specific three-dimensional cultures. Nat. Protoc. 13, 2062–2085 (2018).
pubmed: 30202107
pmcid: 6597009
doi: 10.1038/s41596-018-0032-7
Revah, O. et al. Maturation and circuit integration of transplanted human cortical organoids. Nature 610, 319–326 (2022).
pubmed: 36224417
pmcid: 9556304
doi: 10.1038/s41586-022-05277-w
Bjorklund, A. & Stenevi, U. Neural Grafting in the Mammalian CNS (Elsevier, 1985).
Strömberg, I., Bygdeman, M., Goldstein, M., Seiger, Å. & Olson, L. Human fetal substantia nigra grafted to the dopamine-denervated striatum of immunosuppressed rats: evidence for functional reinnervation. Neurosci. Lett. 71, 271–276 (1986).
pubmed: 2879264
doi: 10.1016/0304-3940(86)90632-4
Brundin, P. et al. Behavioural effects of human fetal dopamine neurons grafted in a rat model of Parkinson’s disease. Exp. Brain Res. 65, 235–240 (1986).
pubmed: 3542544
doi: 10.1007/BF00243848
Strömberg, I. et al. Intracerebral xenografts of human mesencephalic tissue into athymic rats: immunochemical and in vivo electrochemical studies. Proc. Natl Acad. Sci. USA 85, 8331–8334 (1988).
pubmed: 3186728
pmcid: 282423
doi: 10.1073/pnas.85.21.8331
Kriks, S. et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480, 547–551 (2011).
pubmed: 22056989
pmcid: 3245796
doi: 10.1038/nature10648
Grealish, S. et al. Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson’s disease. Cell Stem Cell 15, 653–665 (2014).
pubmed: 25517469
pmcid: 4232736
doi: 10.1016/j.stem.2014.09.017
Espuny-Camacho, I. et al. Pyramidal neurons derived from human pluripotent stem cells integrate efficiently into mouse brain circuits in vivo. Neuron 77, 440–456 (2013).
pubmed: 23395372
doi: 10.1016/j.neuron.2012.12.011
Linaro, D. et al. Xenotransplanted human cortical neurons reveal species-specific development and functional integration into mouse visual circuits. Neuron 104, 972–986.e6 (2019).
pubmed: 31761708
pmcid: 6899440
doi: 10.1016/j.neuron.2019.10.002
Real, R. et al. In vivo modeling of human neuron dynamics and Down syndrome. Science 362, eaau1810 (2018).
pubmed: 30309905
pmcid: 6570619
doi: 10.1126/science.aau1810
Maroof, A. M. et al. Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. Cell Stem Cell 12, 559–572 (2013).
pubmed: 23642365
pmcid: 3681523
doi: 10.1016/j.stem.2013.04.008
Nicholas, C. R. et al. Functional maturation of hPSC-derived forebrain interneurons requires an extended timeline and mimics human neural development. Cell Stem Cell 12, 573–586 (2013).
pubmed: 23642366
pmcid: 3699205
doi: 10.1016/j.stem.2013.04.005
Han, X. et al. Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. Cell Stem Cell 12, 342–353 (2013).
pubmed: 23472873
pmcid: 3700554
doi: 10.1016/j.stem.2012.12.015
Mansour, A. A. et al. An in vivo model of functional and vascularized human brain organoids. Nat. Biotechnol. 36, 432–441 (2018).
pubmed: 29658944
pmcid: 6331203
doi: 10.1038/nbt.4127
Wilson, M. N. et al. Multimodal monitoring of human cortical organoids implanted in mice reveal functional connection with visual cortex. Nat. Commun. 13, 7945 (2022).
pubmed: 36572698
pmcid: 9792589
doi: 10.1038/s41467-022-35536-3
Schafer, S. T. et al. An in vivo neuroimmune organoid model to study human microglia phenotypes. Cell 186, 2111–2126.e20 (2023).
pubmed: 37172564
pmcid: 10284271
doi: 10.1016/j.cell.2023.04.022
Luhmann, H. J. et al. Spontaneous neuronal activity in developing neocortical networks: from single cells to large-scale interactions. Front. Neural Circuits 10, 40 (2016).
pubmed: 27252626
pmcid: 4877528
doi: 10.3389/fncir.2016.00040
Chen, X. et al. Antisense oligonucleotide therapeutic approach for Timothy syndrome. Nature 628, 818–825 (2024).
pubmed: 38658687
pmcid: 11043036
doi: 10.1038/s41586-024-07310-6
Birey, F. et al. Assembly of functionally integrated human forebrain spheroids. Nature 545, 54–59 (2017).
pubmed: 28445465
pmcid: 5805137
doi: 10.1038/nature22330
Miura, Y. et al. Generation of human striatal organoids and cortico-striatal assembloids from human pluripotent stem cells. Nat. Biotechnol. 38, 1421–1430 (2020).
pubmed: 33273741
pmcid: 9042317
doi: 10.1038/s41587-020-00763-w
Miura, Y. et al. Engineering brain assembloids to interrogate human neural circuits. Nat. Protoc. 17, 15–35 (2022).
pubmed: 34992269
doi: 10.1038/s41596-021-00632-z
Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates (Elsevier, 2013).
Matson, K. J. E. et al. Isolation of adult spinal cord nuclei for massively parallel single-nucleus RNA sequencing. J. Vis. Exp. 2018, 58413 (2018).
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).
pubmed: 31178118
pmcid: 6687398
doi: 10.1016/j.cell.2019.05.031
Bakken, T. E. et al. Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature 598, 111–119 (2021).
pubmed: 34616062
pmcid: 8494640
doi: 10.1038/s41586-021-03465-8
Feng, L., Zhao, T. & Kim, J. neuTube 1.0: a new design for efficient neuron reconstruction software based on the SWC format. eNeuro 2, ENEURO.0049-14.2104 (2015).
doi: 10.1523/ENEURO.0049-14.2014
Arshadi, C., Günther, U., Eddison, M., Harrington, K. I. S. & Ferreira, T. A. SNT: a unifying toolbox for quantification of neuronal anatomy. Nat. Methods 18, 374–377 (2021).
pubmed: 33795878
doi: 10.1038/s41592-021-01105-7
Birey, F. & Pașca, S. P. Imaging neuronal migration and network activity in human forebrain assembloids. STAR Protoc. 3, 101478 (2022).
pubmed: 35769932
pmcid: 9234084
doi: 10.1016/j.xpro.2022.101478