Host circuit engagement of human cortical organoids transplanted in rodents.


Journal

Nature protocols
ISSN: 1750-2799
Titre abrégé: Nat Protoc
Pays: England
ID NLM: 101284307

Informations de publication

Date de publication:
29 Jul 2024
Historique:
received: 06 11 2023
accepted: 22 05 2024
medline: 30 7 2024
pubmed: 30 7 2024
entrez: 29 7 2024
Statut: aheadofprint

Résumé

Human neural organoids represent promising models for studying neural function; however, organoids grown in vitro lack certain microenvironments and sensory inputs that are thought to be essential for maturation. The transplantation of patient-derived neural organoids into animal hosts helps overcome some of these limitations and offers an approach for neural organoid maturation and circuit integration. Here, we describe a method for transplanting human stem cell-derived cortical organoids (hCOs) into the somatosensory cortex of newborn rats. The differentiation of human induced pluripotent stem cells into hCOs occurs over 30-60 days, and the transplantation procedure itself requires ~0.5-1 hours per animal. The use of neonatal hosts provides a developmentally appropriate stage for circuit integration and allows the generation and experimental manipulation of a unit of human neural tissue within the cortex of a living animal host. After transplantation, animals can be maintained for hundreds of days, and transplanted hCO growth can be monitored by using brain magnetic resonance imaging. We describe the assessment of human neural circuit function in vivo by monitoring genetically encoded calcium responses and extracellular activity. To demonstrate human neuron-host functional integration, we also describe a procedure for engaging host neural circuits and for modulating animal behavior by using an optogenetic behavioral training paradigm. The transplanted human neurons can then undergo ex vivo characterization across modalities including dendritic morphology reconstruction, single-nucleus transcriptomics, optogenetic manipulation and electrophysiology. This approach may enable the discovery of cellular phenotypes from patient-derived cells and uncover mechanisms that contribute to human brain evolution from previously inaccessible developmental stages.

Identifiants

pubmed: 39075308
doi: 10.1038/s41596-024-01029-4
pii: 10.1038/s41596-024-01029-4
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : U.S. Department of Health & Human Services | NIH | National Institute on Drug Abuse (NIDA)
ID : DA050662

Informations de copyright

© 2024. Springer Nature Limited.

Références

Pașca, S. P. The rise of three-dimensional human brain cultures. Nature 553, 437–445 (2018).
pubmed: 29364288 doi: 10.1038/nature25032
Kelley, K. W. & Pașca, S. P. Human brain organogenesis: toward a cellular understanding of development and disease. Cell 185, 42–61 (2022).
pubmed: 34774127 doi: 10.1016/j.cell.2021.10.003
Mansour, A. A., Schafer, S. T. & Gage, F. H. Cellular complexity in brain organoids: current progress and unsolved issues. Semin. Cell Dev. Biol. 111, 32–39 (2021).
pubmed: 32499191 doi: 10.1016/j.semcdb.2020.05.013
Di Lullo, E. & Kriegstein, A. R. The use of brain organoids to investigate neural development and disease. Nat. Rev. Neurosci. 18, 573–584 (2017).
pubmed: 28878372 pmcid: 5667942 doi: 10.1038/nrn.2017.107
Velasco, S., Paulsen, B. & Arlotta, P. 3D brain organoids: studying brain development and disease outside the embryo. Annu. Rev. Neurosci. 43, 375–389 (2020).
pubmed: 32640930 doi: 10.1146/annurev-neuro-070918-050154
Qian, X., Song, H. & Ming, G. Brain organoids: advances, applications and challenges. Development 146, dev166074 (2019).
pubmed: 30992274 pmcid: 6503989 doi: 10.1242/dev.166074
Sasai, Y. Cytosystems dynamics in self-organization of tissue architecture. Nature 493, 318–326 (2013).
pubmed: 23325214 doi: 10.1038/nature11859
Lancaster, M. A. & Knoblich, J. A. Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345, 1247125 (2014).
pubmed: 25035496 doi: 10.1126/science.1247125
Pașca, S. P. et al. A nomenclature consensus for nervous system organoids and assembloids. Nature 609, 907–910 (2022).
pubmed: 36171373 pmcid: 10571504 doi: 10.1038/s41586-022-05219-6
Velasco, S. et al. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature 570, 523–527 (2019).
pubmed: 31168097 pmcid: 6906116 doi: 10.1038/s41586-019-1289-x
Qian, X. et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165, 1238–1254 (2016).
pubmed: 27118425 pmcid: 4900885 doi: 10.1016/j.cell.2016.04.032
Paşca, A. M. et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat. Methods 12, 671–678 (2015).
pubmed: 26005811 pmcid: 4489980 doi: 10.1038/nmeth.3415
Sloan, S. A. et al. Human astrocyte maturation captured in 3D cerebral cortical spheroids derived from pluripotent stem cells. Neuron 95, 779–790.e6 (2017).
pubmed: 28817799 pmcid: 5890820 doi: 10.1016/j.neuron.2017.07.035
Yoon, S.-J. et al. Reliability of human cortical organoid generation. Nat. Methods 16, 75–78 (2019).
pubmed: 30573846 doi: 10.1038/s41592-018-0255-0
Trevino, A. E. et al. Chromatin accessibility dynamics in a model of human forebrain development. Science 367, eaay1645 (2020).
pubmed: 31974223 pmcid: 7313757 doi: 10.1126/science.aay1645
Gordon, A. et al. Long-term maturation of human cortical organoids matches key early postnatal transitions. Nat. Neurosci. 24, 331–342 (2021).
pubmed: 33619405 pmcid: 8109149 doi: 10.1038/s41593-021-00802-y
Sloan, S. A., Andersen, J., Pașca, A. M., Birey, F. & Pașca, S. P. Generation and assembly of human brain region–specific three-dimensional cultures. Nat. Protoc. 13, 2062–2085 (2018).
pubmed: 30202107 pmcid: 6597009 doi: 10.1038/s41596-018-0032-7
Revah, O. et al. Maturation and circuit integration of transplanted human cortical organoids. Nature 610, 319–326 (2022).
pubmed: 36224417 pmcid: 9556304 doi: 10.1038/s41586-022-05277-w
Bjorklund, A. & Stenevi, U. Neural Grafting in the Mammalian CNS (Elsevier, 1985).
Strömberg, I., Bygdeman, M., Goldstein, M., Seiger, Å. & Olson, L. Human fetal substantia nigra grafted to the dopamine-denervated striatum of immunosuppressed rats: evidence for functional reinnervation. Neurosci. Lett. 71, 271–276 (1986).
pubmed: 2879264 doi: 10.1016/0304-3940(86)90632-4
Brundin, P. et al. Behavioural effects of human fetal dopamine neurons grafted in a rat model of Parkinson’s disease. Exp. Brain Res. 65, 235–240 (1986).
pubmed: 3542544 doi: 10.1007/BF00243848
Strömberg, I. et al. Intracerebral xenografts of human mesencephalic tissue into athymic rats: immunochemical and in vivo electrochemical studies. Proc. Natl Acad. Sci. USA 85, 8331–8334 (1988).
pubmed: 3186728 pmcid: 282423 doi: 10.1073/pnas.85.21.8331
Kriks, S. et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480, 547–551 (2011).
pubmed: 22056989 pmcid: 3245796 doi: 10.1038/nature10648
Grealish, S. et al. Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson’s disease. Cell Stem Cell 15, 653–665 (2014).
pubmed: 25517469 pmcid: 4232736 doi: 10.1016/j.stem.2014.09.017
Espuny-Camacho, I. et al. Pyramidal neurons derived from human pluripotent stem cells integrate efficiently into mouse brain circuits in vivo. Neuron 77, 440–456 (2013).
pubmed: 23395372 doi: 10.1016/j.neuron.2012.12.011
Linaro, D. et al. Xenotransplanted human cortical neurons reveal species-specific development and functional integration into mouse visual circuits. Neuron 104, 972–986.e6 (2019).
pubmed: 31761708 pmcid: 6899440 doi: 10.1016/j.neuron.2019.10.002
Real, R. et al. In vivo modeling of human neuron dynamics and Down syndrome. Science 362, eaau1810 (2018).
pubmed: 30309905 pmcid: 6570619 doi: 10.1126/science.aau1810
Maroof, A. M. et al. Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. Cell Stem Cell 12, 559–572 (2013).
pubmed: 23642365 pmcid: 3681523 doi: 10.1016/j.stem.2013.04.008
Nicholas, C. R. et al. Functional maturation of hPSC-derived forebrain interneurons requires an extended timeline and mimics human neural development. Cell Stem Cell 12, 573–586 (2013).
pubmed: 23642366 pmcid: 3699205 doi: 10.1016/j.stem.2013.04.005
Han, X. et al. Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. Cell Stem Cell 12, 342–353 (2013).
pubmed: 23472873 pmcid: 3700554 doi: 10.1016/j.stem.2012.12.015
Mansour, A. A. et al. An in vivo model of functional and vascularized human brain organoids. Nat. Biotechnol. 36, 432–441 (2018).
pubmed: 29658944 pmcid: 6331203 doi: 10.1038/nbt.4127
Wilson, M. N. et al. Multimodal monitoring of human cortical organoids implanted in mice reveal functional connection with visual cortex. Nat. Commun. 13, 7945 (2022).
pubmed: 36572698 pmcid: 9792589 doi: 10.1038/s41467-022-35536-3
Schafer, S. T. et al. An in vivo neuroimmune organoid model to study human microglia phenotypes. Cell 186, 2111–2126.e20 (2023).
pubmed: 37172564 pmcid: 10284271 doi: 10.1016/j.cell.2023.04.022
Luhmann, H. J. et al. Spontaneous neuronal activity in developing neocortical networks: from single cells to large-scale interactions. Front. Neural Circuits 10, 40 (2016).
pubmed: 27252626 pmcid: 4877528 doi: 10.3389/fncir.2016.00040
Chen, X. et al. Antisense oligonucleotide therapeutic approach for Timothy syndrome. Nature 628, 818–825 (2024).
pubmed: 38658687 pmcid: 11043036 doi: 10.1038/s41586-024-07310-6
Birey, F. et al. Assembly of functionally integrated human forebrain spheroids. Nature 545, 54–59 (2017).
pubmed: 28445465 pmcid: 5805137 doi: 10.1038/nature22330
Miura, Y. et al. Generation of human striatal organoids and cortico-striatal assembloids from human pluripotent stem cells. Nat. Biotechnol. 38, 1421–1430 (2020).
pubmed: 33273741 pmcid: 9042317 doi: 10.1038/s41587-020-00763-w
Miura, Y. et al. Engineering brain assembloids to interrogate human neural circuits. Nat. Protoc. 17, 15–35 (2022).
pubmed: 34992269 doi: 10.1038/s41596-021-00632-z
Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates (Elsevier, 2013).
Matson, K. J. E. et al. Isolation of adult spinal cord nuclei for massively parallel single-nucleus RNA sequencing. J. Vis. Exp. 2018, 58413 (2018).
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).
pubmed: 31178118 pmcid: 6687398 doi: 10.1016/j.cell.2019.05.031
Bakken, T. E. et al. Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature 598, 111–119 (2021).
pubmed: 34616062 pmcid: 8494640 doi: 10.1038/s41586-021-03465-8
Feng, L., Zhao, T. & Kim, J. neuTube 1.0: a new design for efficient neuron reconstruction software based on the SWC format. eNeuro 2, ENEURO.0049-14.2104 (2015).
doi: 10.1523/ENEURO.0049-14.2014
Arshadi, C., Günther, U., Eddison, M., Harrington, K. I. S. & Ferreira, T. A. SNT: a unifying toolbox for quantification of neuronal anatomy. Nat. Methods 18, 374–377 (2021).
pubmed: 33795878 doi: 10.1038/s41592-021-01105-7
Birey, F. & Pașca, S. P. Imaging neuronal migration and network activity in human forebrain assembloids. STAR Protoc. 3, 101478 (2022).
pubmed: 35769932 pmcid: 9234084 doi: 10.1016/j.xpro.2022.101478

Auteurs

Kevin W Kelley (KW)

Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.

Omer Revah (O)

Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.

Felicity Gore (F)

Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
Department of Bioengineering, Stanford University, Stanford, CA, USA.

Konstantin Kaganovsky (K)

Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.

Xiaoyu Chen (X)

Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.

Karl Deisseroth (K)

Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
Department of Bioengineering, Stanford University, Stanford, CA, USA.

Sergiu P Pașca (SP)

Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA. spasca@stanford.edu.
Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA. spasca@stanford.edu.

Classifications MeSH