Adenosine A

DRG neuron OPC OPC/DRGN coculture action potentials adenosine A2B receptors confocal microscopy myelination

Journal

Glia
ISSN: 1098-1136
Titre abrégé: Glia
Pays: United States
ID NLM: 8806785

Informations de publication

Date de publication:
30 Jul 2024
Historique:
revised: 02 07 2024
received: 08 11 2023
accepted: 03 07 2024
medline: 30 7 2024
pubmed: 30 7 2024
entrez: 30 7 2024
Statut: aheadofprint

Résumé

Differentiation of oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes (OLs) is a key event for axonal myelination in the brain; this process fails during demyelinating pathologies. Adenosine is emerging as an important player in oligodendrogliogenesis, by activating its metabotropic receptors (A

Identifiants

pubmed: 39077799
doi: 10.1002/glia.24593
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Università degli Studi di Firenze
ID : RICATEN
Organisme : European Union - NextGenerationEU - National Recovery and Resilience Plan, Mission 4 Component 2 - Investment 1.5 - THE - Tuscany Health Ecosystem-
ID : ECS00000017 - CUPB83C22003920001
Organisme : Fondazione Italiana Sclerosi Multipla
ID : 2019/R-Single/036

Informations de copyright

© 2024 The Author(s). GLIA published by Wiley Periodicals LLC.

Références

Antonioli, L., Blandizzi, C., Pacher, P., & Haskó, G. (2013). Immunity, inflammation and cancer: A leading role for adenosine. Nature Reviews Cancer, 13, 842–857. www.nature.com/reviews/cancer
Arellano, R. O., Sánchez‐Gómez, M. V., Alberdi, E., Canedo‐Antelo, M., Chara, J. C., Palomino, A., Pérez‐Samartín, A., & Matute, C. (2016). Axon‐to‐glia interaction regulates gabaa receptor expression in oligodendrocytes. Molecular Pharmacology, 89, 63–74. https://pubmed.ncbi.nlm.nih.gov/26538574/
Attali, B., Wang, N., Kolot, A., Sobko, A., Cherepanov, V., & Soliven, B. (1997). Characterization of delayed rectifier Kv channels in oligodendrocytes and progenitor cells. Journal of Neuroscience, 17, 8234–8245.
Barateiro, A., Miron, V. E., Santos, S. D., Relvas, J. B., Fernandes, A., Ffrench‐Constant, C., & Brites, D. (2013). Unconjugated bilirubin restricts oligodendrocyte differentiation and axonal myelination. Molecular Neurobiology, 47, 632–644. https://pubmed.ncbi.nlm.nih.gov/23086523/
Barres, B. A. (2008). The mystery and magic of glia: A perspective on their roles in health and disease. Neuron, 60, 430–440. https://pubmed.ncbi.nlm.nih.gov/18995817/
Barres, B. A., & Raff, M. C. (1993). Proliferation of oligodendrocyte precursor cells depends on electrical activity in axons. Nature, 361, 258–260. https://www.nature.com/articles/361258a0
Barres, B. A., & Raff, M. C. (1999). Axonal control of oligodendrocyte development. Journal of Cell Biology, 147, 1123–1128. http://www.jcb.org
Bergles, D. E., Roberts, J. D. B., Somogyl, P., & Jahr, C. E. (2000). Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature, 405, 187–191. https://pubmed.ncbi.nlm.nih.gov/10821275/
Bolte, S., & Cordelières, F. P. (2006). A guided tour into subcellular colocalization analysis in light microscopy. Journal of Microscopy, 224, 213–232. https://pubmed.ncbi.nlm.nih.gov/17210054/
Bradl, M., & Lassmann, H. (2010). Oligodendrocytes: Biology and pathology. Acta Neuropathologica, 119, 37–53. https://pubmed.ncbi.nlm.nih.gov/19847447/
Buonvicino, D., Urru, M., Muzzi, M., Ranieri, G., Luceri, C., Oteri, C., Lapucci, A., & Chiarugi, A. (2018). Trigeminal ganglion transcriptome analysis in 2 rat models of medication‐overuse headache reveals coherent and widespread induction of pronociceptive gene expression patterns. Pain, 159, 1980–1988. https://pubmed.ncbi.nlm.nih.gov/29794878/
Calza, L., Fernandez, M., Giuliani, A., Aloe, L., & Giardino, L. (2002). Thyroid hormone activates oligodendrocyte precursors and increases a myelin‐forming protein and NGF content in the spinal cord during experimental allergic encephalomyelitis. Proceedings of the National Academy of Sciences of the United States of America, 99, 3258–3263. https://pubmed.ncbi.nlm.nih.gov/11867745/
Chan, J. R., Watkins, T. A., Cosgaya, J. M., Zhang, C., Chen, L., Reichardt, L. F., Shooter, E. M., & Barres, B. A. (2004). NGF controls axonal receptivity to myelination by Schwann cells or oligodendrocytes. Neuron, 43, 183–191. https://pubmed.ncbi.nlm.nih.gov/15260955/
Cherchi, F., Bulli, I., Venturini, M., Pugliese, A. M., & Coppi, E. (2021). Ion channels as new attractive targets to improve re‐myelination processes in the brain. International Journal of Molecular Sciences, 22, 7277 https://pubmed.ncbi.nlm.nih.gov/34298893/
Cherchi, F., Pugliese, A. M., & Coppi, E. (2021). Oligodendrocyte precursor cell maturation: Role of adenosine receptors. Neural Regeneration Research, 16, 1686 http://www.nrronline.org/text.asp?2021/16/9/1686/306058
Chittajallu, R., Aguirre, A., & Gallo, V. (2004). NG2‐positive cells in the mouse white and grey matter display distinct physiological properties. Journal of Physiology, 561, 109–122. https://pubmed.ncbi.nlm.nih.gov/15358811/
Chittajallu, R., Chen, Y., Wang, H., Yuan, X., Ghiani, C. A., Heckman, T., McBain, C. J., & Gallo, V. (2002). Regulation of Kv1 subunit expression in oligodendrocyte progenitor cells and their role in G 1/S phase progression of the cell cycle. Proceedings of the National Academy of Sciences of the United States of America, 99, 2350–2355.
Christofi, F. L., Zhang, H., Yu, J. G., Guzman, J., Xue, J., Kim, M., Wang, Y. Z., & Cooke, H. J. (2001). Differential gene expression of adenosine A1, A2a, A2b, and A3 receptors in the human enteric nervous system. The Journal of Comparative Neurology, 439, 46–64. https://pubmed.ncbi.nlm.nih.gov/11579381/
Cohen, C. C. H., Popovic, M. A., Klooster, J., Weil, M. T., Möbius, W., Nave, K. A., & Kole, M. H. P. (2020). Saltatory conduction along myelinated axons involves a periaxonal nanocircuit. Cell, 180, 311–322.e15.
Coppi, E., Cherchi, F., Fusco, I., Dettori, I., Gaviano, L., Magni, G., Catarzi, D., Colotta, V., Varano, F., Rossi, F., Bernacchioni, C., Donati, C., Bruni, P., Pedata, F., Cencetti, F., & Pugliese, A. M. (2020). Adenosine A2B receptors inhibit K+ currents and cell differentiation in cultured oligodendrocyte precursor cells and modulate sphingosine‐1‐phosphate signaling pathway. Biochemical Pharmacology, 177, 113956 https://pubmed.ncbi.nlm.nih.gov/32251679/
Coppi, E., Cherchi, F., Fusco, I., Failli, P., Vona, A., Dettori, I., Gaviano, L., Lucarini, E., Jacobson, K. A., Tosh, D. K., Salvemini, D., Ghelardini, C., Pedata, F., Di Cesare, M. L., & Pugliese, A. M. (2019). Adenosine A3 receptor activation inhibits pronociceptive N‐type Ca2+ currents and cell excitability in dorsal root ganglion neurons. Pain, 160, 1103–1118. https://pubmed.ncbi.nlm.nih.gov/31008816/
Coppi, E., Dettori, I., Cherchi, F., Bulli, I., Venturini, M., Lana, D., Giovannini, M. G., Pedata, F., & Pugliese, A. M. (2020). A2b adenosine receptors: When outsiders may become an attractive target to treat brain ischemia or demyelination. International Journal of Molecular Sciences, 21, 9697 https://www.mdpi.com/1422-0067/21/24/9697
Coppi, E., Maraula, G., Fumagalli, M., Failli, P., Cellai, L., Bonfanti, E., Mazzoni, L., Coppini, R., Abbracchio, M. P., Pedata, F., & Pugliese, A. M. (2013). UDP‐glucose enhances outward K + currents necessary for cell differentiation and stimulates cell migration by activating the GPR17 receptor in oligodendrocyte precursors. Glia, 61, 1155–1171. https://doi.org/10.1002/glia.22506
Corset, V., Nguyen‐Ba‐Charvet, K. T., Forcet, C., Moyse, E., Chédotal, A., & Mehlen, P. (2000). Netrin‐1‐mediated axon outgrowth and cAMP production requires interaction with adenosine A2b receptor. Nature, 407, 747–750. https://www.nature.com/articles/35037600
DeBiase, L. M., Kang, S. H., Baxi, E. G., Fukaya, M., Pucak, M. L., Mishina, M., Calabresi, P. A., & Bergles, D. E. (2011). NMDA receptor signaling in oligodendrocyte progenitors is not required for oligodendrogenesis and myelination. Journal of Neuroscience, 31, 12650–12662. https://pubmed.ncbi.nlm.nih.gov/21880926/
De Biase, L. M., Nishiyama, A., & Bergles, D. E. (2010). Excitability and synaptic communication within the oligodendrocyte lineage. Journal of Neuroscience, 30, 3600–3611. https://www.jneurosci.org/content/30/10/3600
Duncan, G. J., Simkins, T. J., & Emery, B. (2021). Neuron‐oligodendrocyte interactions in the structure and integrity of axons. Frontiers in Cell and Developmental Biology, 9, 460. https://doi.org/10.3389/fcell.2021.653101/full
Fannon, J., Tarmier, W., & Fulton, D. (2015). Neuronal activity and AMPA‐type glutamate receptor activation regulates the morphological development of oligodendrocyte precursor cells. Glia, 63, 1021–1035. https://pubmed.ncbi.nlm.nih.gov/25739948/
Fields, R. D. (2004). Volume transmission in activity‐dependent regulation of myelinating glia. Neurochemistry International, 45, 503–509.
Fields, R. D., & Burnstock, G. (2006). Purinergic signalling in neuron‐glia interactions. Nature Reviews. Neuroscience, 7, 423–436.
Fitzner, D., Schneider, A., Kippert, A., Möbius, W., Willig, K. I., Hell, S. W., Bunt, G., Gaus, K., & Simons, M. (2006). Myelin basic protein‐dependent plasma membrane reorganization in the formation of myelin. The EMBO Journal, 25, 5037–5048. https://pubmed.ncbi.nlm.nih.gov/17036049/
Forbes, T. A., & Gallo, V. (2017). All wrapped up: Environmental effects on myelination. Trends in Neurosciences, 40, 572–587. https://pubmed.ncbi.nlm.nih.gov/28844283/
Fredholm, B. B., IJzerman, A. P., Jacobson, K. A., Linden, J., & Muller, C. E. (2011). International union of basic and clinical pharmacology. LXXXI. Nomenclature and classification of adenosine receptors—An update. Pharmacological Reviews, 63, 1–34. http://www.ncbi.nlm.nih.gov/pubmed/21303899
Fusco, I., Cherchi, F., Catarzi, D., Colotta, V., Varano, F., Pedata, F., Pugliese, A. M., & Coppi, E. (2019). Functional characterization of a novel adenosine A2B receptor agonist on short‐term plasticity and synaptic inhibition during oxygen and glucose deprivation in the rat CA1 hippocampus. Brain Research Bulletin, 151, 174–180.
Fusco, I., Ugolini, F., Lana, D., Coppi, E., Dettori, I., Gaviano, L., Nosi, D., Cherchi, F., Pedata, F., Giovannini, M. G., & Pugliese, A. M. (2018). The selective antagonism of adenosine A2B receptors reduces the synaptic failure and neuronal death induced by oxygen and glucose deprivation in rat CA1 hippocampus in vitro. Frontiers in Pharmacology, 9, 399.
Gallo, V., Mangin, J.‐M., Kukley, M., & Dietrich, D. (2008). Synapses on NG2‐expressing progenitors in the brain: Multiple functions? The Journal Of Physiology, 586, 3767–3781. https://doi.org/10.1113/jphysiol.2008.158436
Gallo, V., Zhou, J. M., McBain, C. J., Wright, P., Knutson, P. L., & Armstrong, R. C. (1996). Oligodendrocyte progenitor cell proliferation and lineage progression are regulated by glutamate receptor‐mediated K+ channel block. Journal of Neuroscience, 16, 2659–2670. https://pubmed.ncbi.nlm.nih.gov/8786442/
Gensel, J. C., Schonberg, D. L., Alexander, J. K., McTigue, D. M., & Popovich, P. G. (2010). Semi‐automated Sholl analysis for quantifying changes in growth and differentiation of neurons and glia. Journal of Neuroscience Methods, 190, 71–79.
Gerace, E., Ilari, A., Caffino, L., Buonvicino, D., Lana, D., Ugolini, F., Resta, F., Nosi, D., Grazia Giovannini, M., Ciccocioppo, R., Fumagalli, F., Pellegrini‐Giampietro, D. E., Masi, A., & Mannaioni, G. (2021). Ethanol neurotoxicity is mediated by changes in expression, surface localization and functional properties of glutamate AMPA receptors. Journal of Neurochemistry, 157, 2106–2118. https://doi.org/10.1111/jnc.15223
Gonçalves, F. Q., Pires, J., Pliassova, A., Beleza, R., Lemos, C., Marques, J. M., Rodrigues, R. J., Canas, P. M., Köfalvi, A., Cunha, R. A., & Rial, D. (2015). Adenosine A2b receptors control A1 receptor‐mediated inhibition of synaptic transmission in the mouse hippocampus. European Journal of Neuroscience, 41, 876–886. https://pubmed.ncbi.nlm.nih.gov/25704806/
Igado, O. O., Andrioli, A., Azeez, I. A., Girolamo, F., Errede, M., Aina, O. O., Glaser, J., Holzgrabe, U., Bentivoglio, M., & Olopade, J. O. (2020). The ameliorative effects of a phenolic derivative of Moringa oleifera leave against vanadium‐induced neurotoxicity in mice. IBRO Neuroscience Reports, 9, 164–182.
Krasnow, A. M., & Attwell, D. (2016). NMDA receptors: Power switches for oligodendrocytes. Neuron, 91, 3–5. https://pubmed.ncbi.nlm.nih.gov/27387644/
Kuhn, S., Gritti, L., Crooks, D., & Dombrowski, Y. (2019). Oligodendrocytes in development, myelin generation and beyond. Cells, 8, 1424 https://pubmed.ncbi.nlm.nih.gov/31726662/
Kukley, M., Nishiyama, A., & Dietrich, D. (2010). The fate of synaptic input to NG2 glial cells: Neurons specifically downregulate transmitter release onto differentiating oligodendroglial cells. Journal of Neuroscience, 30, 8320–8331. https://www.jneurosci.org/content/30/24/8320
Landini, L., Marini, M., Monteiro, S., deAraujo, D., Romitelli, A., Montini, M., Albanese, V., Titiz, M., Innocenti, A., Bianchini, F., Geppetti, P., Nassini, R., & De Logu, F. (2023). Schwann cell insulin‐like growth factor receptor type‐1 mediates metastatic bone cancer pain in mice. Brain, Behavior, and Immunity, 110, 348–364. https://pubmed.ncbi.nlm.nih.gov/36940752/
Latini, S., & Pedata, F. (2001). Adenosine in the central nervous system: Release mechanisms and extracellular concentrations. Journal of Neurochemistry, 79, 463–484. https://doi.org/10.1046/j.1471-4159.2001.00607.x
Lee, X., Yang, Z., Shao, Z., Rosenberg, S. S., Levesque, M., Pepinsky, R. B., Qiu, M., Miller, R. H., Chan, J. R., & Mi, S. (2007). NGF regulates the expression of axonal LINGO‐1 to inhibit oligodendrocyte differentiation and myelination. Journal of Neuroscience, 27, 220–225. https://www.jneurosci.org/content/27/1/220
Li, C., Xiao, L., Liu, X., Yang, W., Shen, W., Hu, C., Yang, G., & He, C. (2013). A functional role of NMDA receptor in regulating the differentiation of oligodendrocyte precursor cells and remyelination. Glia, 61, 732–749. https://pubmed.ncbi.nlm.nih.gov/23440860/
Li, W., Dai, D., Chen, A., Gao, X. F., & Xiong, L. (2022). Characteristics of zusanli dorsal root ganglion neurons in rats and their receptor mechanisms in response to adenosine. The Journal of Pain, 23, 1564–1580. https://pubmed.ncbi.nlm.nih.gov/35472520/
Lundgaard, I., Luzhynskaya, A., Stockley, J. H., Wang, Z., Evans, K. A., Swire, M., Volbracht, K., Gautier, H. O. B., Franklin, R. J. M., Ffrench‐Constant, C., Attwell, D., & Káradóttir, R. T. (2013). Neuregulin and BDNF induce a switch to NMDA receptor‐dependent myelination by oligodendrocytes. PLoS Biology, 11, e1001743. https://doi.org/10.1371/journal.pbio.1001743
Ma, Q., Wang, D., Li, Y., Yang, H., Li, Y., Wang, J., Li, J., Sun, J., & Liu, J. (2022). Activation of A2B adenosine receptor protects against demyelination in a mouse model of schizophrenia. Experimental and Therapeutic Medicine, 23, 396.
Manalo, J. M., Liu, H., Ding, D., Hicks, J., Sun, H., Salvi, R., Kellems, R. E., Pereira, F. A., & Xia, Y. (2020). Adenosine A2B receptor: A pathogenic factor and a therapeutic target for sensorineural hearing loss. FASEB Journal, 34, 15771–15787. https://pubmed.ncbi.nlm.nih.gov/33131093/
Marangon, D., Caporale, N., Boccazzi, M., Abbracchio, M. P., Testa, G., & Lecca, D. (2021). Novel in vitro experimental approaches to study myelination and remyelination in the central nervous system. Frontiers in Cellular Neuroscience, 15, 748849.
Marinelli, C., Bertalot, T., Zusso, M., Skaper, S. D., & Giusti, P. (2016). Systematic review of pharmacological properties of the oligodendrocyte lineage. Frontiers in Cellular Neuroscience, 10, 27 https://pubmed.ncbi.nlm.nih.gov/26903812/
Mason, M. R. J., Ehlert, E. M. E., Eggers, R., Pool, C. W., Hermening, S., Huseinovic, A., Timmermans, E., Blits, B., & Verhaagen, J. (2010). Comparison of AAV serotypes for gene delivery to dorsal root ganglion neurons. Molecular Therapy, 18, 715–724.
Meyer, N., Richter, N., Fan, Z., Siemonsmeier, G., Pivneva, T., Jordan, P., Steinhäuser, C., Semtner, M., Nolte, C., & Kettenmann, H. (2018). Oligodendrocytes in the mouse corpus callosum maintain axonal function by delivery of glucose. Cell Reports, 22, 2383–2394. https://pubmed.ncbi.nlm.nih.gov/29490274/
Pedata, F., Dettori, I., Coppi, E., Melani, A., Fusco, I., Corradetti, R., & Pugliese, A. M. (2016). Purinergic signalling in brain ischemia. Neuropharmacology, 104, 105–130. https://pubmed.ncbi.nlm.nih.gov/26581499/
Philips, T., & Rothstein, J. D. (2017). Oligodendroglia: Metabolic supporters of neurons. Journal of Clinical Investigation, 127, 3271–3280. https://pubmed.ncbi.nlm.nih.gov/28862639/
Popoli, P., & Pepponi, R. (2012). Potential therapeutic relevance of adenosine A2B and A2A receptors in the central nervous system. CNS & Neurological Disorders—Drug Targets, 11, 664–674. https://pubmed.ncbi.nlm.nih.gov/22963436/
Saab, A. S., Tzvetavona, I. D., Trevisiol, A., Baltan, S., Dibaj, P., Kusch, K., Möbius, W., Goetze, B., Jahn, H. M., Huang, W., Steffens, H., Schomburg, E. D., Pérez‐Samartín, A., Pérez‐Cerdá, F., Bakhtiari, D., Matute, C., Löwel, S., Griesinger, C., Hirrlinger, J., … Nave, K. A. (2016). Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism. Neuron, 91, 119–132.
Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671–675. https://www.nature.com/articles/nmeth.2089
Simons, M., & Nave, K. A. (2015). Oligodendrocytes: Myelination and axonal support. Cold Spring Harbor Perspectives in Biology https://pubmed.ncbi.nlm.nih.gov/26101081/, 8, a020479.
Simons, M., & Trajkovic, K. (2006). Neuron‐glia communication in the control of oligodendrocyte function and myelin biogenesis. Journal of Cell Science, 119, 4381–4389. https://pubmed.ncbi.nlm.nih.gov/17074832/
Stevens, B., Porta, S., Haak, L. L., Gallo, V., & Fields, R. D. (2002). Adenosine: A neuron‐glial transmitter promoting myelination in the CNS in response to action potentials. Neuron, 36, 855–868.
Suminaite, D., Lyons, D. A., & Livesey, M. R. (2019). Myelinated axon physiology and regulation of neural circuit function. Glia, 67, 2050–2062.
Sun, W., Matthews, E. A., Nicolas, V., Schoch, S., & Dietrich, D. (2016). Ng2 glial cells integrate synaptic input in global and dendritic calcium signals. eLife, 5, e16262.
Tang, J., Zou, Y., Li, L., Lu, F., Xu, H., Ren, P., Bai, F., Niedermann, G., & Zhu, X. (2021). BAY 60‐6583 enhances the antitumor function of chimeric antigen receptor‐modified T cells independent of the adenosine A2b receptor. Frontiers in Pharmacology, 12, 619800 www.frontiersin.org
Tepavčević, V., & Lubetzki, C. (2022). Oligodendrocyte progenitor cell recruitment and remyelination in multiple sclerosis: The more, the merrier? Brain, 145, 4178–4192. https://doi.org/10.1093/brain/awac307
Thimm, D., Schiedel, A. C., Sherbiny, F. F., Hinz, S., Hochheiser, K., Bertarelli, D. C. G., Maaß, A., & Müller, C. E. (2013). Ligand‐specific binding and activation of the human adenosine A(2B) receptor. Biochemistry, 52, 726–740. https://pubmed.ncbi.nlm.nih.gov/23286920/
Vaes, J. E. G., Brandt, M. J. V., Wanders, N., Benders, M. J. N. L., deTheije, C. G. M., Gressens, P., & Nijboer, C. H. (2021). The impact of trophic and immunomodulatory factors on oligodendrocyte maturation: Potential treatments for encephalopathy of prematurity. Glia, 69, 1311–1340. https://doi.org/10.1002/glia.23939
Vautier, F., Belachew, S., Chittajallu, R., & Gallo, V. (2004). Shaker‐type potassium channel subunits differentially control oligodendrocyte progenitor proliferation. Glia, 48, 337–345.
Wang, F., Ruppell, K. T., Zhou, S., Qu, Y., Gong, J., Shang, Y., Wu, J., Liu, X., Diao, W., Li, Y., & Xiang, Y. (2023). Gliotransmission and adenosine signaling promote axon regeneration. Developmental Cell, 58, 660–676.e7. https://pubmed.ncbi.nlm.nih.gov/37028426/
Wei, W., Du, C., Lv, J., Zhao, G., Li, Z., Wu, Z., Haskó, G., & Xie, X. (2013). Blocking A2B adenosine receptor alleviates pathogenesis of experimental autoimmune encephalomyelitis via inhibition of IL‐6 production and Th17 differentiation. The Journal of Immunology, 190, 138–146. https://pubmed.ncbi.nlm.nih.gov/23225885/
Zhang, E., Tian, X., Li, R., Chen, C., Li, M., Ma, L., Wei, R., Zhou, Y., & Cui, Y. (2021). Dalfampridine in the treatment of multiple sclerosis: A meta‐analysis of randomised controlled trials. Orphanet Journal of Rare Diseases, 16, 87.
Zonouzi, M., Renzi, M., Farrant, M., & Cull‐Candy, S. G. (2011). Bidirectional plasticity of calcium‐permeable AMPA receptors in oligodendrocyte lineage cells. Nature Neuroscience, 14, 1430–1438.

Auteurs

Federica Cherchi (F)

Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy.

Martina Venturini (M)

Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy.

Giada Magni (G)

Cnr-Istituto di Fisica Applicata "Nello Carrara", Florence, Italy.

Lucia Frulloni (L)

Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy.

Martina Chieca (M)

Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy.

Daniela Buonvicino (D)

Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy.

Clara Santalmasi (C)

Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy.

Francesca Rossi (F)

Cnr-Istituto di Fisica Applicata "Nello Carrara", Florence, Italy.

Francesco De Logu (F)

Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy.

Elisabetta Coppi (E)

Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy.

Anna Maria Pugliese (AM)

Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy.

Classifications MeSH