A genetic-epigenetic interplay at 1q21.1 locus underlies CHD1L-mediated vulnerability to primary progressive multiple sclerosis.
Humans
Zebrafish
/ genetics
Epigenesis, Genetic
Animals
DNA Methylation
/ genetics
Chromosomes, Human, Pair 1
/ genetics
DNA-Binding Proteins
/ genetics
Brain
/ metabolism
DNA Helicases
/ genetics
Neurons
/ metabolism
Multiple Sclerosis, Chronic Progressive
/ genetics
Induced Pluripotent Stem Cells
/ metabolism
Male
Female
Middle Aged
Genetic Predisposition to Disease
Adult
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
30 Jul 2024
30 Jul 2024
Historique:
received:
28
04
2023
accepted:
21
07
2024
medline:
31
7
2024
pubmed:
31
7
2024
entrez:
30
7
2024
Statut:
epublish
Résumé
Multiple Sclerosis (MS) is a heterogeneous inflammatory and neurodegenerative disease with an unpredictable course towards progressive disability. Treating progressive MS is challenging due to limited insights into the underlying mechanisms. We examined the molecular changes associated with primary progressive MS (PPMS) using a cross-tissue (blood and post-mortem brain) and multilayered data (genetic, epigenetic, transcriptomic) from independent cohorts. In PPMS, we found hypermethylation of the 1q21.1 locus, controlled by PPMS-specific genetic variations and influencing the expression of proximal genes (CHD1L, PRKAB2) in the brain. Evidence from reporter assay and CRISPR/dCas9 experiments supports a causal link between methylation and expression and correlation network analysis further implicates these genes in PPMS brain processes. Knock-down of CHD1L in human iPSC-derived neurons and knock-out of chd1l in zebrafish led to developmental and functional deficits of neurons. Thus, several lines of evidence suggest a distinct genetic-epigenetic-transcriptional interplay in the 1q21.1 locus potentially contributing to PPMS pathogenesis.
Identifiants
pubmed: 39079955
doi: 10.1038/s41467-024-50794-z
pii: 10.1038/s41467-024-50794-z
doi:
Substances chimiques
DNA-Binding Proteins
0
DNA Helicases
EC 3.6.4.-
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
6419Subventions
Organisme : EC | EC Seventh Framework Programm | FP7 Ideas: European Research Council (FP7-IDEAS-ERC - Specific Programme: "Ideas" Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013))
ID : 818170
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : JCJC ANR-17-CE12-0006
Informations de copyright
© 2024. The Author(s).
Références
Stadelmann, C. Multiple sclerosis as a neurodegenerative disease: pathology, mechanisms and therapeutic implications. Curr. Opin. Neurol. 24, 224–229 (2011).
pubmed: 21455066
doi: 10.1097/WCO.0b013e328346056f
Ransohoff, R. M., Hafler, D. A. & Lucchinetti, C. F. Multiple sclerosis—a quiet revolution. Nat. Rev. Neurol. 11, 134–142 (2015).
pubmed: 25686758
pmcid: 4556342
doi: 10.1038/nrneurol.2015.14
Miller, D. H. & Leary, S. M. Primary-progressive multiple sclerosis. Lancet Neurol. 6, 903–912 (2007).
pubmed: 17884680
doi: 10.1016/S1474-4422(07)70243-0
Mahad, D. H., Trapp, B. D. & Lassmann, H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol. 14, 183–193 (2015).
pubmed: 25772897
doi: 10.1016/S1474-4422(14)70256-X
Thompson, A. J. Challenge of progressive multiple sclerosis therapy. Curr. Opin. Neurol. 30, 237–240 (2017).
pubmed: 28338498
doi: 10.1097/WCO.0000000000000453
Alfredsson, L. & Olsson, T. Lifestyle and environmental factors in multiple sclerosis. Cold Spring Harb. Perspect. Med. 9, a028944 (2019).
pubmed: 29735578
pmcid: 6444694
doi: 10.1101/cshperspect.a028944
Ewing, E. et al. Combining evidence from four immune cell types identifies DNA methylation patterns that implicate functionally distinct pathways during multiple sclerosis progression. EBioMedicine 43, 411–423 (2019).
pubmed: 31053557
pmcid: 6558224
doi: 10.1016/j.ebiom.2019.04.042
Graves, M. C. et al. Methylation differences at the HLA-DRB1 locus in CD4+ T-Cells are associated with multiple sclerosis. Mult. Scler. 20, 1033–1041 (2014).
pubmed: 24336351
doi: 10.1177/1352458513516529
Huynh, J. L. et al. Epigenome-wide differences in pathology-free regions of multiple sclerosis-affected brains. Nat. Neurosci. 17, 121–130 (2014).
pubmed: 24270187
doi: 10.1038/nn.3588
Kular, L. et al. Neuronal methylome reveals CREB-associated neuro-axonal impairment in multiple sclerosis. Clin. Epigenet. 11, 86 (2019).
doi: 10.1186/s13148-019-0678-1
Kular, L. et al. DNA methylation as a mediator of HLA-DRB1*15:01 and a protective variant in multiple sclerosis. Nat. Commun. 9, 2397 (2018).
pubmed: 29921915
pmcid: 6008330
doi: 10.1038/s41467-018-04732-5
Kular, L. et al. DNA methylation changes in glial cells of the normal-appearing white matter in multiple sclerosis patients. Epigenetics 17, 1311–1330 (2022).
Bos, S. D. et al. Genome-wide DNA methylation profiles indicate CD8+ T cell hypermethylation in multiple sclerosis. PLoS ONE 10, e0117403 (2015).
pubmed: 25734800
pmcid: 4348521
doi: 10.1371/journal.pone.0117403
Chen, L. et al. Genetic drivers of epigenetic and transcriptional variation in human immune cells. Cell 167, 1398–1414.e24 (2016).
pubmed: 27863251
pmcid: 5119954
doi: 10.1016/j.cell.2016.10.026
Ng, B. et al. An xQTL map integrates the genetic architecture of the human brain’s transcriptome and epigenome. Nat. Neurosci. 20, 1418–1426 (2017).
pubmed: 28869584
pmcid: 5785926
doi: 10.1038/nn.4632
Dumas, L. J. et al. DUF1220-domain copy number implicated in human brain-size pathology and evolution. Am. J. Hum. Genet. 91, 444–454 (2012).
pubmed: 22901949
pmcid: 3511999
doi: 10.1016/j.ajhg.2012.07.016
Zimmer, F. & Montgomery, S. H. Phylogenetic analysis supports a link between DUF1220 domain number and primate brain expansion. Genome Biol. Evol. 7, 2083–2088 (2015).
pubmed: 26112965
pmcid: 4558844
doi: 10.1093/gbe/evv122
Mao, H. et al. Rbm8a haploinsufficiency disrupts embryonic cortical development resulting in microcephaly. J. Neurosci. 35, 7003–7018 (2015).
pubmed: 25948253
pmcid: 4420776
doi: 10.1523/JNEUROSCI.0018-15.2015
Diskin, S. J. et al. Copy number variation at 1q21.1 associated with neuroblastoma. Nature 459, 987–991 (2009).
pubmed: 19536264
pmcid: 2755253
doi: 10.1038/nature08035
Bernier, R. et al. Clinical phenotype of the recurrent 1q21.1 copy-number variant. Genet. Med. 18, 341–349 (2016).
pubmed: 26066539
doi: 10.1038/gim.2015.78
Mehta, D. et al. Comprehensive survey of CNVs influencing gene expression in the human brain and its implications for pathophysiology. Neurosci. Res. 79, 22–33 (2014).
pubmed: 24211644
doi: 10.1016/j.neures.2013.10.009
Josipovic, G. et al. Antagonistic and synergistic epigenetic modulation using orthologous CRISPR/dCas9-based modular system. Nucleic Acids Res. 47, 9637–9657 (2019).
pubmed: 31410472
pmcid: 6765142
doi: 10.1093/nar/gkz709
Malagon, S. G. G. et al. The phenotype of a knockout mouse identifies flavin-containing monooxygenase 5 (FMO5) as a regulator of metabolic ageing. Biochem. Pharmacol. 96, 267–277 (2015).
doi: 10.1016/j.bcp.2015.05.013
Schirmer, L. et al. Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature 573, 75–82 (2019).
pubmed: 31316211
pmcid: 6731122
doi: 10.1038/s41586-019-1404-z
Snider, A. C. et al. The chromatin remodeling factor Chd1l is required in the preimplantation embryo. Biol. Open 2, 121–131 (2012).
pubmed: 23429299
pmcid: 3575647
doi: 10.1242/bio.20122949
Dou, D. et al. CHD1L promotes neuronal differentiation in human embryonic stem cells by upregulating PAX6. Stem Cells Dev. 26, 1626–1636 (2017).
pubmed: 28946814
doi: 10.1089/scd.2017.0110
Zannino, D. A. & Appel, B. Olig2+ precursors produce abducens motor neurons and oligodendrocytes in the zebrafish hindbrain. J. Neurosci. 29, 2322–2333 (2009).
pubmed: 19244509
pmcid: 2720165
doi: 10.1523/JNEUROSCI.3755-08.2009
Choi, E. K., Choi, B. M., Cho, Y. & Kim, S. Myelin toxicity of chlorhexidine in zebrafish larvae. Pediatr. Res. 93, 845–851 (2023).
pubmed: 35854088
doi: 10.1038/s41390-022-02186-6
International Multiple Sclerosis Genetics, C. et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476, 214–219, (2011).
doi: 10.1038/nature10251
Martinelli-Boneschi, F. et al. A genome-wide association study in progressive multiple sclerosis. Mult. Scler. 18, 1384–1394 (2012).
pubmed: 22457343
doi: 10.1177/1352458512439118
Liu, Y. et al. Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat. Biotechnol. 31, 142–147 (2013).
pubmed: 23334450
pmcid: 3598632
doi: 10.1038/nbt.2487
Olsson, A. H. et al. Genome-wide associations between genetic and epigenetic variation influence mRNA expression and insulin secretion in human pancreatic islets. PLoS Genet. 10, e1004735 (2014).
pubmed: 25375650
pmcid: 4222689
doi: 10.1371/journal.pgen.1004735
Hong, X. et al. Genome-wide association study identifies peanut allergy-specific loci and evidence of epigenetic mediation in US children. Nat. Commun. 6, 1–12 (2015).
doi: 10.1038/ncomms7304
Chapman, G. et al. Using induced pluripotent stem cells to investigate human neuronal phenotypes in 1q21. 1 deletion and duplication syndrome. Mol. Psychiatry 27, 819–830 (2022).
pubmed: 34112971
doi: 10.1038/s41380-021-01182-2
Sønderby, I. E. et al. 1q21.1 distal copy number variants are associated with cerebral and cognitive alterations in humans. Transl. Psychiatry 11, 182 (2021).
pubmed: 33753722
pmcid: 7985307
doi: 10.1038/s41398-021-01213-0
Nomura, Y., Nomura, J., Nishikawa, T. & Takumi, T. Reciprocal differentiation via GABAergic components and ASD-related phenotypes in hES with 1q21.1 CNV. Preprint at bioRxiv https://doi.org/10.1101/2021.09.13.460033 (2021).
Nielsen, J. et al. A mouse model of the schizophrenia-associated 1q21.1 microdeletion syndrome exhibits altered mesolimbic dopamine transmission. Transl. Psychiatry 7, 1261 (2017).
pubmed: 29187755
pmcid: 5802512
doi: 10.1038/s41398-017-0011-8
Trubetskoy, V. et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 604, 502–508 (2022).
pubmed: 35396580
pmcid: 9392466
doi: 10.1038/s41586-022-04434-5
International Multiple Sclerosis Genetics Consortium, MultipleMS Consortium. Locus for severity implicates CNS resilience in progression of multiple sclerosis. Nature 619, 323–331 (2023).
Bell, J. T. et al. DNA methylation patterns associate with genetic and gene expression variation in HapMap cell lines. Genome Biol. 12, 1–13 (2011).
Maurano, M. T. et al. Role of DNA methylation in modulating transcription factor occupancy. Cell Rep. 12, 1184–1195 (2015).
Degner, J. F. et al. DNase I sensitivity QTLs are a major determinant of human expression variation. Nature 482, 390–394 (2012).
Kular, L. & Jagodic, M. Epigenetic insights into multiple sclerosis disease progression. J. Intern. Med. 288, 82–102 (2020).
pubmed: 32614160
doi: 10.1111/joim.13045
Ahel, D. et al. Poly(ADP-ribose)-dependent regulation of DNA repair by the chromatin remodeling enzyme ALC1. Science 325, 1240–1243 (2009).
pubmed: 19661379
pmcid: 3443743
doi: 10.1126/science.1177321
Nagy, S. et al. AMPK signaling linked to the schizophrenia-associated 1q21.1 deletion is required for neuronal and sleep maintenance. PLoS Genet. 14, e1007623 (2018).
pubmed: 30566533
pmcid: 6317821
doi: 10.1371/journal.pgen.1007623
Ge, Y. et al. Neuronal cell injury precedes brain atrophy in multiple sclerosis. Neurology 62, 624–627 (2004).
pubmed: 14981182
doi: 10.1212/WNL.62.4.624
Bjartmar, C. & Trapp, B. D. Axonal degeneration and progressive neurologic disability in multiple sclerosis. Neurotox. Res. 5, 157–164 (2003).
pubmed: 12832230
doi: 10.1007/BF03033380
Tallantyre, E. et al. Greater loss of axons in primary progressive multiple sclerosis plaques compared to secondary progressive disease. Brain 132, 1190–1199 (2009).
pubmed: 19420101
doi: 10.1093/brain/awp106
Hedström, A. K., Hillert, J., Olsson, T. & Alfredsson, L. Smoking and multiple sclerosis susceptibility. Eur. J. Epidemiol. 28, 867–874 (2013).
pubmed: 24146047
pmcid: 3898140
doi: 10.1007/s10654-013-9853-4
Aryee, M. J. et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics 30, 1363–1369 (2014).
pubmed: 24478339
pmcid: 4016708
doi: 10.1093/bioinformatics/btu049
Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
pubmed: 17701901
pmcid: 1950838
doi: 10.1086/519795
Khan, A. et al. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 46, D260–D266 (2018).
pubmed: 29140473
doi: 10.1093/nar/gkx1126
Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience https://doi.org/10.1186/s13742-015-0047-8 (2015).
Concordet, J. P. & Haeussler, M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 46, W242–W245 (2018).
pubmed: 29762716
pmcid: 6030908
doi: 10.1093/nar/gky354
Graham, F. L., Smiley, J., Russell, W. & Nairn, R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 36, 59–72 (1977).
pubmed: 886304
doi: 10.1099/0022-1317-36-1-59
Biedler, J. L., Roffler-Tarlov, S., Schachner, M. & Freedman, L. S. Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res. 38, 3751–3757 (1978).
pubmed: 29704
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001).
pubmed: 11846609
doi: 10.1006/meth.2001.1262
Ewels, P., Magnusson, M., Lundin, S. & Kaller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).
pubmed: 27312411
pmcid: 5039924
doi: 10.1093/bioinformatics/btw354
Wu, Z., Wang, X. & Zhang, X. Using non-uniform read distribution models to improve isoform expression inference in RNA-Seq. Bioinformatics 27, 502–508 (2011).
pubmed: 21169371
doi: 10.1093/bioinformatics/btq696
Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).
pubmed: 25690850
pmcid: 4643835
doi: 10.1038/nbt.3122
Song, W.-M. & Zhang, B. Multiscale embedded gene co-expression network analysis. PLoS Comput. Biol. 11, e1004574 (2015).
pubmed: 26618778
pmcid: 4664553
doi: 10.1371/journal.pcbi.1004574
Whitlock, K. E. & Westerfield, M. The olfactory placodes of the zebrafish form by convergence of cellular fields at the edge of the neural plate. Development 127, 3645–3653 (2000).
pubmed: 10934010
doi: 10.1242/dev.127.17.3645
Samudyata et al. SARS-CoV-2 promotes microglial synapse elimination in human brain organoids. Mol. Psychiatry 27, 3939–3950 (2022).
pubmed: 36198765
pmcid: 9533278
doi: 10.1038/s41380-022-01786-2
Gracias, J. et al. Cerebrospinal fluid concentration of complement component 4A is increased in first episode schizophrenia. Nat. Commun. 13, 6427 (2022).
pubmed: 36329007
pmcid: 9633609
doi: 10.1038/s41467-022-33797-6
Xu, R. et al. OLIG2 drives abnormal neurodevelopmental phenotypes in human iPSC-based organoid and chimeric mouse models of down syndrome. Cell Stem Cell 24, 908–926.e8 (2019).
pubmed: 31130512
pmcid: 6944064
doi: 10.1016/j.stem.2019.04.014