Biomechanical effects of deltoid muscle atrophy on rotator cuff tissue: a finite element study.
Deltoid muscle
Muscle atrophy
Rotator cuff
Stress
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
30 Jul 2024
30 Jul 2024
Historique:
received:
18
10
2023
accepted:
10
07
2024
medline:
31
7
2024
pubmed:
31
7
2024
entrez:
30
7
2024
Statut:
epublish
Résumé
The deltoid muscle and rotator cuff tissue are structural components that maintain the dynamic stability of the shoulder joint. However, atrophy of the deltoid muscle may affect the stability of the shoulder joint, which in turn alters the mechanical distribution of rotator cuff tissue. Currently, the effect of muscle volume changes in the deltoid muscle on reducing the load on the rotator cuff tissue is still unknown. Therefore, this paper intends to analyze the mechanical changes of rotator cuff tissue by deltoid muscle atrophy through finite elements. Based on previously published finite element shoulder models, the deltoid muscle was modeled by constructing deltoid muscle models with different degrees of atrophy as, 100% deltoid muscle (Group 1), 80% deltoid muscle (Group 2), and 50% deltoid muscle (Group 3), respectively. The three models were given the same external load to simulate glenohumeral joint abduction, and the stress changes in the rotator cuff tissue were analyzed and recorded. In all three models, the stress in the rotator cuff tissue showed different degrees of increase with the increase of abduction angle, especially in the supraspinatus muscle. At 90° of glenohumeral abduction, supraspinatus stress increased by 58% and 118% in Group 2 and Group 3, respectively, compared with Group 1; In the subscapularis, the stress in Group 3 increased by 59% and 25% compared with Group 1 and Group 2, respectively. In addition, the stress of the infraspinatus muscle and teres minor muscle in Group 2 and Group 3 were higher than that in Group 1 during the abduction angle from 30° to 90°. Deltoid atrophy alters the abduction movement pattern of the glenohumeral joint. During glenohumeral abduction activity, deltoid atrophy significantly increases the stress on the rotator cuff tissue, whereas normal deltoid volume helps maintain the mechanical balance of the rotator cuff tissue.
Identifiants
pubmed: 39080295
doi: 10.1038/s41598-024-67368-0
pii: 10.1038/s41598-024-67368-0
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
17592Informations de copyright
© 2024. The Author(s).
Références
Hecker, A. et al. Deltoid muscle contribution to shoulder flexion and abduction strength: An experimental approach. J. Should. Elbow Surg. 30(2), e60–e68 (2021).
doi: 10.1016/j.jse.2020.05.023
Hata, Y., Saitoh, S., Murakami, N., Kobayashi, H. & Takaoka, K. Atrophy of the deltoid muscle following rotator cuff surgery. J. Bone Jt. Surg. Am. 86(7), 1414–1419 (2004).
doi: 10.2106/00004623-200407000-00008
Fayet, G., Rouche, A., Hogrel, J. Y., Tomé, F. M. & Fardeau, M. Age-related morphological changes of the deltoid muscle from 50 to 79 years of age. Acta Neuropathol. 101(4), 358–366 (2001).
doi: 10.1007/s004010000294
pubmed: 11355307
Saul, K. R., Vidt, M. E., Gold, G. E. & Murray, W. M. Upper limb strength and muscle volume in healthy middle-aged adults. J. Appl. Biomech. 31(6), 484–491 (2015).
doi: 10.1123/jab.2014-0177
pubmed: 26155870
Yoon, J. P. et al. Deltoid muscle volume affects clinical outcome of reverse total shoulder arthroplasty in patients with cuff tear arthropathy or irreparable cuff tears. PLoS ONE 12(3), e0174361 (2017).
doi: 10.1371/journal.pone.0174361
pubmed: 28355234
pmcid: 5371314
Turkmen, I. & Altun, G. Increasing the deltoid muscle volume positively affects functional outcomes after arthroscopic rotator cuff repair. Knee Surg. Sports Traumatol. Arthrosc. Off. J. ESSKA 27(1), 259–266 (2019).
doi: 10.1007/s00167-018-5135-8
Audenaert, E. A. et al. Deltoid muscle volume estimated from ultrasonography: In vitro validation and correlation with isokinetic abduction strength of the shoulder. Med. Biol. Eng. Comput. 47(5), 557–563 (2009).
doi: 10.1007/s11517-009-0481-9
pubmed: 19347377
Henninger, H. B. et al. The Muscle cross-sectional area on MRI of the shoulder can predict muscle volume: An MRI study in cadavers. Clin. Orthopaed. Relat. Res. 478(4), 871–883 (2020).
doi: 10.1097/CORR.0000000000001044
Ueda, Y. et al. Comparison of shoulder muscle strength, cross-sectional area, acromiohumeral distance, and thickness of the supraspinatus tendon between symptomatic and asymptomatic patients with rotator cuff tears. J. Should. Elbow Surg. 29(10), 2043–2050 (2020).
doi: 10.1016/j.jse.2020.02.017
Inoue, A., Chosa, E., Goto, K. & Tajima, N. Nonlinear stress analysis of the supraspinatus tendon using three-dimensional finite element analysis. Knee Surg. Sports Traumatol. Arthrosc. Off. J. ESSKA 21(5), 1151–1157 (2013).
doi: 10.1007/s00167-012-2008-4
Webb, J. D., Blemker, S. S. & Delp, S. L. 3D finite element models of shoulder muscles for computing lines of actions and moment arms. Comput. Methods Biomech. Biomed. Eng. 17(8), 829–837 (2014).
doi: 10.1080/10255842.2012.719605
Yang, Z., Xu, G., Yang, J. & Lin, X. Finite element study of the biomechanical effects on the rotator cuff under load. Front. Bioeng. Biotechnol. 11, 1193376 (2023).
doi: 10.3389/fbioe.2023.1193376
pubmed: 37441196
pmcid: 10335761
Yang, Z., Xu, G., Yang, J. & Li, Z. Effect of different loads on the shoulder in abduction postures: A finite element analysis. Sci. Rep. 13(1), 9490 (2023).
doi: 10.1038/s41598-023-36049-9
pubmed: 37303006
pmcid: 10258196
Dao, T. T., Pouletaut, P., Charleux, F., Tho, M. C., Bensamoun, S. Analysis of shear wave propagation derived from MR elastography in 3D thigh skeletal muscle using subject specific finite element model. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference vol. 2014, pp. 4026–4029 (2014)
Duprey, S., Bruyere, K. & Verriest, J. P. Human shoulder response to side impacts: A finite element study. Comput. Methods Biomech. Biomed. Eng. 10(5), 361–370 (2007).
doi: 10.1080/10255840701463986
Koh, S. W., Cavanaugh, J. M., Leach, J. P. & Rouhana, S. W. Mechanical properties of the shoulder ligaments under dynamic loading. Stapp Car Crash J. 48, 125–153 (2004).
pubmed: 17230264
Kang, S. et al. The effects of paraspinal muscle volume on physiological load on the lumbar vertebral column: A finite-element study. Spine 46(19), E1015–E1021 (2021).
doi: 10.1097/BRS.0000000000004014
pubmed: 34517397
Lee, H., Kim, S.-Y. & Chae, S.-W. A comparative study of the behaviors of normal and frozen shoulder: A finite element study. Int. J. Precis. Eng. Manuf. 18(4), 545–553 (2017).
doi: 10.1007/s12541-017-0065-9
Ishikawa, H. et al. Rotator cuff muscle imbalance associates with shoulder instability direction. J. Should. Elbow Surg. 32(1), 33–40 (2023).
doi: 10.1016/j.jse.2022.06.022
Bouaicha, S. et al. Cross-sectional area of the rotator cuff muscles in MRI - Is there evidence for a biomechanical balanced shoulder?. PloS ONE 11(6), e0157946 (2016).
doi: 10.1371/journal.pone.0157946
pubmed: 27336464
pmcid: 4918939
Wickham, J., Pizzari, T., Stansfeld, K., Burnside, A. & Watson, L. Quantifying ‘normal’ shoulder muscle activity during abduction. J. Electromyogr. Kinesiol. Off. J. Int. Soc. Electrophysiol. Kinesiol. 20(2), 212–222 (2010).
doi: 10.1016/j.jelekin.2009.06.004
McMahon, P. J. et al. Shoulder muscle forces and tendon excursions during glenohumeral abduction in the scapular plane. J. Should. Elbow Surg. 4(3), 199–208 (1995).
doi: 10.1016/S1058-2746(05)80052-7
Shimizu, T. et al. Atrophy of the rotator cuff muscles and site of cuff tears. Acta Orthopaed. Scand. 73(1), 40–43 (2002).
doi: 10.1080/000164702317281387
Ashry, R. et al. Muscle atrophy as a consequence of rotator cuff tears: Should we compare the muscles of the rotator cuff with those of the deltoid?. Skelet. Radiol. 36(9), 841–845 (2007).
doi: 10.1007/s00256-007-0307-5
Cho, N. S., Cha, S. W. & Rhee, Y. G. Alterations of the deltoid muscle after open versus arthroscopic rotator cuff repair. Am. J. Sports Med. 43(12), 2927–2934 (2015).
doi: 10.1177/0363546515603063
pubmed: 26394890
Levy, O., Mullett, H., Roberts, S. & Copeland, S. The role of anterior deltoid reeducation in patients with massive irreparable degenerative rotator cuff tears. J. Should. Elbow Surg. 17(6), 863–870 (2008).
doi: 10.1016/j.jse.2008.04.005